estimates of var for itô processes - rice universityjrojo/pasi/lectures/begona 1.pdf · if the...

34
Estimates of VaR for Itô Processes Begoña Fernández Facultad de Ciencias, UNAM PASI, may, 2010, CIMAT Begoña Fernández () VaR Itô noviembre, 2009 1 / 30

Upload: hoangque

Post on 21-Aug-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

Estimates of VaR for Itô Processes

Begoña Fernández

Facultad de Ciencias, UNAMPASI, may, 2010, CIMAT

Begoña Fernández () VaR Itô noviembre, 2009 1 / 30

Motivation Preliminaries

Risk Measures

1 VaRα and Expected Shortfall.

2 Ruin Probability.

3 Expectation with respect an utility function.

Begoña Fernández () VaR Itô noviembre, 2009 2 / 30

Motivation Preliminaries

VaRα and Expected Shortfall

If X is a r.v. VaRα(X ) is defined by

VaRα(X ) = inf{z ∈ R | P(X > z) < α}= inf{z ∈ R | P(X ≤ z) ≥ q},

α = 1− q.Basel Accords regulate the credit institutions. One criteria is VaRα

1− α = .99, where X represent the loss. The institutions must becovered for losses inferior to this quantile.Expected Shortfall

E [X − VaRα |X > VaRα]

Begoña Fernández () VaR Itô noviembre, 2009 3 / 30

Motivation Preliminaries

Difficulties

Estimation of very small probabilities. Different Methods:

1 Variance Reduction.

2 Bayesian

3 Extreme Value Theory. (Embrechts et al.)

For independent r.v. and for some kinds of dependence

Begoña Fernández () VaR Itô noviembre, 2009 4 / 30

Motivation Preliminaries

Ruin Probability in Insurance

Cramér-Lundberg Model:

Xt = x + ct −Nt∑

i=1

Yi

Ruin Probability = P[Xt < 0,p. a. t > 0] = ψ(x)

Find x such the ruin probabilty Ψ(x) ≤ q.

Begoña Fernández () VaR Itô noviembre, 2009 5 / 30

Motivation Preliminaries

Survival Probability = δ(x) = 1− ψ(x)

δ′(x) =λ

cδ(x)− λ

c

∫ x

0δ(x − y)f (y)dy

If the r.v. . Yi admit Laplace transform

Ce−θx ≤ ψ(x) ≤ e−θx

Begoña Fernández () VaR Itô noviembre, 2009 6 / 30

Motivation Preliminaries

Optimization w. r. Utility Function

Utility function U, represents the risk aversion. (ConcaveFunctions).

E [U(X )]

Begoña Fernández () VaR Itô noviembre, 2009 7 / 30

Motivation Preliminaries

Stochastic Processes

If we have a stochastic processes Xt , t ∈ [0,T ] that represents thewealth or the price of a finantial asset, what is the random variable wechoose to calculate the Var?

For each t ∈ [0,T ], Xt . Levy Processes. Important propertyindependent and stationary increments.

Some kind of Dynamic Var (Mc-Kean, Embrechts et al.) for timeSeries.

Begoña Fernández () VaR Itô noviembre, 2009 8 / 30

Motivation Preliminaries

The General Model

Let Bt , t ≥ 0 be a Brownian Motion and Nt , t ≥ 0 a Poisson Processindependent of B.M.

Xt = x +

∫ t

0σ(s, ωXs)dBs +

∫ t

0b(s, ω,Xs)ds +

Nt∑i=1

γT−i

Yi , t > 0,

Begoña Fernández () VaR Itô noviembre, 2009 9 / 30

Motivation Preliminaries

1 Estimates of VaR and expected shortfall for processes withoutjumps.

2 Estimates of VaR and Ruin Probabilities for the General Model.

Begoña Fernández () VaR Itô noviembre, 2009 10 / 30

Motivation Preliminaries

Joint work with Laurent Denis and Ana Meda.

dXt = b(t ,Xt )dt + σ(t ,Xt )dWt , t > 0, X0 = m (1)

We can take as our r.v Xt for t > 0 fixed.

Estimates for the density (when it exists) of Xt can be used toobtain bounds for the VaR and the expected shortfall. In general,these are lower estimates. (Bally, V. Talay, D).

Begoña Fernández () VaR Itô noviembre, 2009 11 / 30

Motivation Preliminaries

For t ∈ R+ fixedX ∗t = sup

0≤s≤tXs

VaRtm,α = inf{z ∈ R, Pm(X ∗t ≥ z) ≤ α}.

E [X ∗t − VaRtm,α |X ∗t > VaRt

m,α] = E [X ∗t |X ∗t > VaRtm,α]− VaRt

m,α

Begoña Fernández () VaR Itô noviembre, 2009 12 / 30

Motivation Preliminaries

Main Idea

Obtain upper and lower bounds for the tail distribution of X ∗t , undersome conditions of the coefficients and then

1 VaRtm,α.

2 Expected shortfall.

3 The toy models.

Begoña Fernández () VaR Itô noviembre, 2009 13 / 30

Motivation Preliminaries

Toy Models

1 Geometric Brownian Type

dXt = btXtdt + σtXtdWt .

2 Cox-Ingersol Ross (Positive Process):

dXt = (b − cXt )dt +√

a∗√

XtdWt , b, c,a ∈ Z +

3 Vasicek Type Model

dXt = (β − µXt )dt + σdWt , µ, σ ∈ R+, β ∈ R.

Begoña Fernández () VaR Itô noviembre, 2009 14 / 30

Motivation Preliminaries

Hipothesis (UB):

1 b(t , z) ≤ b∗, b∗ ≥ 0.2 |σ(t , z)| ≤

√a∗(z+)γ , a∗ > 0, γ ∈ [0,1).

1 Geometric Brownian Type Model We will take

Yt = log(Xt ), dYt = (bt −σ2

t2

)dt + σtdWt .

2 Cox-Ingersoll-Ross (Positive Process)

b(t , z) = b − cz+ ≤ b = b∗, σ(t , z) =√

a∗√|z|

3 Vasicek Type Model

Yt = e∫ t

0 µsdsXt , dYt = βe∫ t

0 µsdsdt + σe∫ t

0 µsdsdWt

Begoña Fernández () VaR Itô noviembre, 2009 15 / 30

Motivation Preliminaries

Lemma

Assume (UB) then for t > 0, z ∈ IR we have

Pm(X ∗t ≥ z) ≤ 2Φ

((z −m − b∗t)+

√a∗tzγ

).

where

Φ(x) =1√2π

∫ +∞

xe−

u22 du.

Begoña Fernández () VaR Itô noviembre, 2009 16 / 30

Motivation Preliminaries

Proof

If z ≥ m, then we can assume

For all y ≥ z, a(y) = a(z).

P(X ∗t ≥ z) ≤ P( sup0≤s≤t

∫ s

0σ(Xu)dWu ≥ z −m − b∗t)

Rs =

∫ s

0σ(Xu)dWu, Rs = B〈R,R〉s , B, B.M.

P(X ∗t ≥ z) ≤ P( sup0≤s≤t

B〈R,R〉s ≥ z −m − b∗t)

≤ P( sup0≤u≤a∗tz2γ

Bu ≥ z −m − b∗t)

= 2Φ

((z −m − b∗t)+

√a∗tzγ

).

Begoña Fernández () VaR Itô noviembre, 2009 17 / 30

Motivation Preliminaries

Upper Estimates

Theorem

Assume (UB). For each 0 < t ,

VaRtm,α ≤ r ,

where r is the unique root in [b∗(t) + m,+∞[ of the equation

z − zγ√

a∗(t)Φ−1(α/2)−m − b∗(t) = 0.

Begoña Fernández () VaR Itô noviembre, 2009 18 / 30

Motivation Preliminaries

CorollaryAssume (UB)

1 Geometric Brownian Type. Assume bs ≤ b∗, a∗ ≤ σs ≤ a∗:

VaRtm,α ≤ met(b∗− a∗

2 )++√

a∗tΦ(α2 )

2 CIR

VaRtm,α ≤ m + b∗ +

12

a∗(Φ−1)2(α/2)

+12

Φ−1(α/2)√

a∗(Φ−1)2(α/2) + 4(m + b∗)

3 Vasicek Type Model µt = µ

VaRtm,α ≤ m + βeµt + eµtσ

√tΦ−1(α/2)

Begoña Fernández () VaR Itô noviembre, 2009 19 / 30

Motivation Preliminaries

PropositionAssume (UB)

E(X ∗t |X ∗t ≥ VaRtm,α) ≤ 2

α

∫ ∞VaRt

m,α

Φ

((z −m − b∗)+

√a∗zγ

)dz

Begoña Fernández () VaR Itô noviembre, 2009 20 / 30

Motivation Preliminaries

Hypothesis LB

For all z ∈ R, t ≥ 0,b(t , z) ≥ b∗, b∗ ≤ 0.σ(t , z) ≥ a∗, a∗ > 0.

Lemma

Assume (LB). Then for all z ∈ IR y t ≥ 0,

((z −m − b∗t)+

√a∗t

)≤ P(X ∗t ≥ z).

Φ(x) =1√2π

∫ +∞

xe−

u22 du.

Begoña Fernández () VaR Itô noviembre, 2009 21 / 30

Motivation Preliminaries

Theorem

Assume (LB). Then, for all t > 0,

VaRtm,α(X ) ≥ m + b∗t +

√a∗tΦ−1(α/2).

CorollaryIf γ = 0, i.e. σ bounded,

VaRs,tm,α(X ) ≤ m + b∗(t − s) +

√a∗(t − s)Φ−1(α/2).

Begoña Fernández () VaR Itô noviembre, 2009 22 / 30

Motivation Preliminaries

X Geometric Brownian Type.

dXt = btXtdt + atXtdWt .

Yt = ln(Xt ), for all t ≥ 0

Yt = ln(m) +

∫ t

0σs dBs +

∫ t

0(bs −

σ2s

2)ds

If there exist constants 0 < a∗ ≤ a∗ and b∗ ≤ b∗ such that t ≥ 0

b∗ ≤ bt ≤ b∗ and a∗ ≤ σ2t ≤ a∗,

then for all z ≥ ln m and t ≥ 0

P(X ∗t ≥ z) ≤ 2Φ

((z − ln m − t(b∗ − a∗

2 )+)+

√a∗t

).

((z − ln m − t(b∗ − a∗

2 )−)+

√a∗t

)≤ P(X ∗t ≥ z).

Begoña Fernández () VaR Itô noviembre, 2009 23 / 30

Motivation Preliminaries

Aplication

Consider a Russian option, on a Geometric Brownian type process.Let t > 0 be expiration time. The pay-off is given by

fs = M0∨

supu≤s

Xu.

If M0 is fixed, Pm(X ∗t ≥ M0) is the risk for the writter.

We can use the VaR to fix the value M0.

Begoña Fernández () VaR Itô noviembre, 2009 24 / 30

Motivation Preliminaries

Dynamic VaR

X ∗s,t = sups≤r≤t

Xr

We want to measure the VaR of X ∗s,t given that the process Xexceeded VaRs

α

This would help to know how risky the future is (up to time t > s), giventhat you already exceeded VaR in the past.In a natural way we define

VaRs,tα (X ) = inf

{z ∈ IR, Px

(X ∗s,t < z|X ∗s ≥ VaRs

m,α)≥ q

}.

Begoña Fernández () VaR Itô noviembre, 2009 25 / 30

Motivation Preliminaries

Theorem

Assume the process X has the Markov property, then

VaRs,tα (X ) ≤ r ,

where r is the unique root on [b∗t + VaRsm,α,+∞[ of the following

equation:z − zγ

√a∗tΦ−1(α/2)− VaRs

m,α − b∗t = 0. (2)

Begoña Fernández () VaR Itô noviembre, 2009 26 / 30

Motivation Preliminaries

Proof

Px(X ∗s,t ≥ z|X ∗s ≥ VaRs

x ,α(X ))≤

Px

(X ∗s,t ≥ z,X ∗s ≥ VaRs

x ,α(X ))

Px (X ∗s ≥ VaRsx ,α(X ))

.

We now introduce

T = inf{

u > 0, Xu = VaRsx ,α(X )

},

denote by µ the law of T under Px . Then

Px(X ∗s,t ≥ z,X ∗s ≥ VaRs

x ,α(X ))

=

∫ s

0Px(X ∗s,t ≥ z|T = r

)µ(dr)

≤∫ s

0Px(X ∗r ,t ≥ z|T = r

)µ(dr)

=

∫ s

0PVaRs

x,α(X)

(X ∗t−r ≥ z

)µ(dr)

Begoña Fernández () VaR Itô noviembre, 2009 27 / 30

Motivation Preliminaries

∫ s

0PVaRs

x,α(X)

(X ∗t−r ≥ z

)µ(dr)

≤∫ s

02Φ

((z − VaRs

x ,α(X )− b∗(t − r))+√a∗(t − r)zγ

)µ(dr)

≤ 2Φ

((z − VaRs

x ,α(X )− b∗t)+

√a∗tzγ

)Px (T ≤ s)

= 2Φ

((z − VaRs

x ,α(X )− b∗t)+

√a∗tzγ

)Px (X ∗s ≥ VaRs

x ,α(X )).

So,

Px(X ∗s,t ≥ z|X ∗s ≥ VaRs

x ,α(X ))≤ 2Φ

((z − VaRs

x ,α(X )− b∗t)+

√a∗tzγ

),

Begoña Fernández () VaR Itô noviembre, 2009 28 / 30

Motivation Preliminaries

As previously, for γ = 0 or γ = 1/2 we are able to calculate this boundand this yields:

Corollary(i) If γ = 0, that is σ bounded, there is the following estimate:

VaRs,tα (X ) ≤ VaRs

x ,α(X ) + b∗t +√

a∗tΦ−1(α/2).

(ii) If γ = 1/2 we have:

VaRs,tα (X ) ≤ VaRs

x ,α(X ) + b∗t +12

a∗t(φ−1)2(α/2)

+12φ−1(α/2)

√a∗t(a∗t(φ−1)2(α/2) + 4(VaRs

x ,α(X ) + b∗t))

Begoña Fernández () VaR Itô noviembre, 2009 29 / 30

Motivation Preliminaries

Thanks

Begoña Fernández () VaR Itô noviembre, 2009 30 / 30

Reference

D.G. Aronson: Bounds on the fundamental solution of a parabolicequation. Bull. Am. Math. Soc. 73 (1967), pp. 890-896.

V. Bally: Lower bounds for the density of Ito processes. To appearin Ann. of Proba.

V. Bally,M.E.Caballero, N. El-Karoui,B.Fernandez: ReflectedBSDE’s , PDE’s and Variational Inequalities. To appear inBernoulli.

A. Bensoussan, J. L. Lions: Applications des Inéquationsvariationelles en control stochastique. Dunot, Paris, 1978.

P. Bjerksund, G. Stensland: Closed Form Approximation ofAmerican Options, Scandinavian Journal of Mannagement, Vol. 9,Suppl., 1993,pp. 587-599.

M. Broadie, J. Detemple: American option valuation: new bounds,approximation, and comparison of existing methods. Review ofFinancial Studies, 1996, Vol. 9, No. 4, pp. 1211-1250.

Begoña Fernández () VaR Itô noviembre, 2009 30 / 30

Reference

L. Denis, B. Fernández, A. Meda Estimates of Daynamic VaR andMean Loss associated to diffusion processes. IMS collectio. Vol. 4Markov Processes and Related Topics: A Festchrift for ThomasKurtz. , 2008, 301-314.

N. El Karoui, C. Kapoudjan, E. Pardoux, S. Peng, M.C. Quenez:Reflected solutions of Backward SDE’s, and related obstacleproblems for PDE’s. The Annals of Probability,1997, Vol. 25,No 2,702-737.

J-P Fouque, G. Papanicolau and K.R. Sircar: Derivatives in financilmarkets with stochastic volatility. Cambridge University Press,2000.

H. Guérin, S. Meleard, E. Nualart: Exponential estimates forspatially homogeneous Landau equation via Malliavin calculus.Preprint PMA 876,(2004).

Begoña Fernández () VaR Itô noviembre, 2009 30 / 30

Reference

A. Kohatsu-Higa: Lower bounds for densities of uniform ellipticrandom variables on the Wiener space. PTRF 126, pp. 421-457,(2003).

D. Kinderlehrer and G. Stampacciat: An introduction to variationalinequalities and their applications. Academic Press, 1980.

A. Kohatsu-Higa: Lower bounds for the density of uniform ellipticrandom varibles on the Wiener space. PTRF, 126, pp. 421-457(2003).

Ikeda, S. Watanabe: Stochastic Differential Equations andDiffusion Processes. Amsterdam, Oxford, New York, NotrhHolland, Kodansha, 1989.

S. Mohamed: Stochastic differential systems with memory: theory,examples and applications; Gelio Workshop 1996, Progress inProbability, vol. 42, 1996.

Begoña Fernández () VaR Itô noviembre, 2009 30 / 30

Reference

D. Strook: Diffusion semigroups corresponding to uniform ellipticdivergence form operators. Seminaires de Probabilitées XXII,Lecture Notes in Mathematics, 1988.

Begoña Fernández () VaR Itô noviembre, 2009 30 / 30