event reporteustandards.in/.../2016/01/lvdc-event-report-final.pdfo power supply unit psu with...

12
Event Report “First International Conference on Low Voltage Direct Current26 th and 27 th October 2015, New Delhi

Upload: others

Post on 22-Jul-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Event Reporteustandards.in/.../2016/01/LVDC-Event-Report-Final.pdfo Power supply unit PSU with battery backup (BBU 48V) is used instead o DC distribution is limited to the Rack. Standardisation

Event Report

“First International Conference on Low Voltage Direct Current”

26th and 27th October 2015, New Delhi

Page 2: Event Reporteustandards.in/.../2016/01/LVDC-Event-Report-Final.pdfo Power supply unit PSU with battery backup (BBU 48V) is used instead o DC distribution is limited to the Rack. Standardisation

“LVDC – Redefining Electricity” - First International Conference on Low Voltage Direct Current

- 26th and 27th October 2015

Page 3: Event Reporteustandards.in/.../2016/01/LVDC-Event-Report-Final.pdfo Power supply unit PSU with battery backup (BBU 48V) is used instead o DC distribution is limited to the Rack. Standardisation

1. Background: In the recent past, Low Voltage Direct Current (LVDC) has gained significant importance and

attention of global community as it provides wider scope for generation and distribution of electricity with possible extensive usage of renewable energy resources amidst spreading global concerns like depleting fossil fuels; energy conservation; clean environment and continuously growing demand of electrical energy. Moreover, developing countries like India have additional national priority of providing electrical access to its remote villages where there is no power grid connectivity, as yet. All these issues potentially can be well addressed with the use of LVDC generated through renewable resources.

2. Objective: In the above context to deliberate extensively on the subject of LVDC as an enabler to electricity

access and a possible solution to 21st century, International Electrotechnical Commission (IEC) and Bureau of Indian Standards (BIS) jointly organized first IEC-BIS International Conference titled ‘LVDC; Redefining Electricity’ in New Delhi, India on 26-27 October 2015.

3. Conference Programme: The conference highlighted LVDC applications and trends which enabled

stakeholders to review standardization efforts for a faster and cost effective development of LVDC. The two days of the conference were presented with three working technical sessions. Each session offered two sub sessions in parallel. International speakers from IEC and other standardization bodies were present to address the participants. Copy of Program schedule is available here and Technical Session is available here

4. Highlights of the Conference Inaugural sessions attended by SESEI Expert:

Mr. D.K.Nayyar, DDG (Standardization) BIS:

Mr. Nayyar talked about history of DC systems, its usage in New York in the past which later became AC. Similarly in India DC systems were also used in India in earlier days most particularly in cities like Kolkata and Kanpur. Mr Nayyar also talked about DC vs AC system and its Pros and Cons, Need for LVDC in India/ Clean Energy and use of renewable sources of energy and highlighted the work being done at BIS on LVDC through its Panel on LVDC and the draft report which is under progress.

N.S. Sodha, Chairman ETDC (Electro Technical Divisional Council) at BIS in the capacity of Executive Director (Load Despatch and Communication) - Power Grid Corporation of India Limited: Mr. Sodha updated the audience about Power Grid, which is a Public Sector utility provider has laid down 120,000 km of Microwave in India however, rural India is still disconnected from electricity. Govt. programme of Solar Power and other alternative renewable activities were also highlighted including 100% FDI in the sector hence LVDC standardization is important for a commercial rollout and having potential to connect the unconnected and make it affordable as well.

Mr. James E Mathews III, Vice President (IEC) & Chairman (SMB)

Page 4: Event Reporteustandards.in/.../2016/01/LVDC-Event-Report-Final.pdfo Power supply unit PSU with battery backup (BBU 48V) is used instead o DC distribution is limited to the Rack. Standardisation

Mr. Mathews highlighted the current usage of USB/5V; Energy efficiency is also demanding use of DC. Solar usage is also increasing hence the DC@solar lantern became very popular which is also an environment friendly initiatives. He also highlighted Energy storage white paper of IEC and how Systems groups are connected @ IEC such as AAL, SMART ENERGY, and SMART CITY etc.

Mrs. Alka Panda, Director General BIS

Mrs. Panda highlighted following points during her speech: - Renewable has emerged in recent past as the sustainable means to meet the energy requirement - India has started working on the LVDC system well in line with the environment protection and other

issues such as depleting fossil fuels etc. - Scientific community shall debate and come out with their finding from sessions, workshops and

deliberations planned as part of this conference. - She also highlighted that SEG 4 meeting is also scheduled for 28th and 29th Oct 2015 in India.

Mr. Pradeep K Pujari, Secretary, Ministry of Power , Govt. of India Mr. Pujari highlighted following points during his talk: - Universal access to electricity is a fundamental and basic need. However 1.3. Billion people are without

access to electricity of which 97% are from developing nations. - National Grid in India has connected 18,500 rural villages. 80% Power supply currently is through fossil

fuel which is a diminishing resource. - There is a need to look for more sustainable energy sources / ways. Smart grid / efficiency and

renewable are required for clean environment. - India has aligned its efforts on DC but before DC is commercialized there is a need to standardize the

same. - Home and mix use of DC & AC needs to be protected from the consumer point of view. Also the

appliances built on DC will cost high initially hence an eco-system need to evolve fast. -

Mr. Vimal Mahendru, SEG 4 convener / SMB Mr. Mahendru highlighted following points:

Highlighted the various initiatives and schemes Govt. of India has rolled out towards powering India.

Relevance and importance of LVDC.

Increased global partnership on the need for sustainable energy sources / systems and India’s close working relationship with ISO/IEC.

Page 5: Event Reporteustandards.in/.../2016/01/LVDC-Event-Report-Final.pdfo Power supply unit PSU with battery backup (BBU 48V) is used instead o DC distribution is limited to the Rack. Standardisation

Day 1:26th October 2015

Working Session I: Parallel Session 1B - Public Electrical Systems- Last Mile

Dr Abdullah A S. Emhemed: Dr Abdullah from Senior researcher Institute for Energy and Environment at the University of Strathclyde gave Presentation on Enabling an LVDC last mile distribution network. Dr Abdullah highlighted that the applications of LVDC are still at an early stage due to the lack of mature experience and standards. Over and above, the protection challenges that are presented by integrating DC installations in existing AC systems are one of the key issues that delays the wide uptake of LVDC technologies Highlights of his presentation were;

IET Code of practice

Protection in AC is simpler compared to DC. DC needs more correction which means more work.

IEC 61660: It is suitable for characteristics of LVDC short circuits current under all possible system configurations

IEC 60479 - Band I (ELVDC) 0V – 120V and Band II ( LVDC) 120 – 1500 V

IEC 60947 – 2 ( Mechanical Breakers )

Protection Solution: lab developed and tested

Market readiness: UK utility has plans but they see no visible market / Hence not ready for next 10 years Copy of presentation is available here

Jintae Cho, Senior Researcher, KEPRI (Korea Electric Power Research Institute) presentation on “The development of LVDC distribution system in Korea”.

The current trend is towards power utilities which supply electricity to customers. It is expected that DC customers like IDC (Internet Data Center), DC building and DC home will demand power utilities to provide the direct DC electric power soon. KEPCO (Korea Electric Power Corporation), the Korean electric utility, has an interest in DC distribution system. It has researched the LVDC system and has plans to supply DC power to customers directly. This presentation explains the current development status and the construction plan of LVDC distribution system in Korea. Highlights of the presentation are;

IDC ( Internet Data Centre) , currently uses 48V/ 380 V DC distribution system which is 13% more efficient

DC Home gives 1.5% - 3% efficient

DC Home test bed ( KETI) has proven to be 6% efficient with PV, 279Kwz

DC building ( K MEG)

Electric utility needs the DC distribution system

Needs to prove feasibility of LVDC systems

Transmission + 750 V ( 1500 V ) and customer at 380 V Standard

Page 6: Event Reporteustandards.in/.../2016/01/LVDC-Event-Report-Final.pdfo Power supply unit PSU with battery backup (BBU 48V) is used instead o DC distribution is limited to the Rack. Standardisation

DC system is more effective when DC loads is over 44%

Earthing: IT Grounding System for high DC voltage

Copy of presentation is available here

Pasi Nuutinen, Researcher, Lappeenranta University of Technology, Finland gave presentation on Application of LVDC networks in rural distribution in Finland.

Lappeenranta University of Technology (LUT) has researched a concept, where DC is used to replace 20 kV AC branch lines and a 400 V AC networks with ±750 V LVDC network. A research site was built in cooperation with a power company Suur-Savon Sähkö Oy and it was commissioned in June 2012. Finnish DSO Elenia Oy has also implemented an LVDC distribution system into their network, which has been operating since 2014. The LVDC distribution has also been tested in a third location by Ensto Finland Oy, already in 2008. All the experiences compiled over the years in Finland are presented. The main scope is in the used structures, confronted challenges, main drivers of the selected voltage level, and in the standardization of the LVDC distribution concept. Highlights of the presentation are:

Application of LVDC distribution system in rural areas

±750V LVDC mw with Transmission range of up to 10 km

Availability of the maximum allowed 1500 VDC (European Commission Low Voltage Directive (LVD/2006/95/EC)) is crucial for the feasibility of the rural-area LVDC

Protection issues: Finish National Standards SFS 6000 series based on HD60364, IEC 60364, IEC60664

Need to cover 2kHz – 150kHz distributions standardization

Copy of presentation is available here

Ms Worajit Setthapun, Dean, Chang Mai Rajabhat University, Thailand presentation on Lesson Learned from the Application of Community Based DC Microgrid

Appliances such as lighting, air conditioner, television, refrigerator, computer, water heater, and water pump were specially developed for use with DC power. The DC power devices are approximately 30% more efficient then AC power devices. The DC system has been in operation since 2012 and lesson learned were shared in the presentation.

DC Smart grid at the Smart Community

Phase 1 : Lighting 24v dc/ 1 House 240V DC

Phase 2: Household appliances : 260 – 297V DC Copy of presentation is available here

Page 7: Event Reporteustandards.in/.../2016/01/LVDC-Event-Report-Final.pdfo Power supply unit PSU with battery backup (BBU 48V) is used instead o DC distribution is limited to the Rack. Standardisation

Mr. Mario Tokoro, Executive Advisor and Founder, Sony Computer Science Laboratories (CSL), Inc., Japan, presentation on DC-Based Bottom-Up Microgrids as the Next-Generation Electrical Power Infrastructures.

A DC-based, bottom-up microgrid system called DCOES with a novel energy exchange mechanism has been developed and deployed in a community of 19 inhabited houses at the campus of Okinawa Institute of Science and Technology (OIST) since December 2014. The key technology for such a microgrid is an energy exchange mechanism which achieves bidirectional power transmission in the form of DC. The concept of DC-based bottom-up microgrids is a proposition for next-generation electrical power infrastructures. Copy of presentation is available here

Working Session 2 - Parallel Session 2 A on Electrical Equipment

Mr. K. V. Nachiappan, Director, Marketing and R&D, Numeric, gave presentation on UPS Market and its

Trends. Highlights of his presentation are:

DC vs AC UPS is not much efficient (only 0.5% to 1%)

Facebook design Centre at Sweden is based on DC, Power Usage effectiveness (PUE) is 1.08, DC UPS type

85 KW – 48 V, 1250 A,

o V2 SERVER design is not based on LVDC, which means no DC UPS

o Power supply unit PSU with battery backup (BBU 48V) is used instead

o DC distribution is limited to the Rack.

Standardisation for LVDC in UPS Industry: LVDC in UPS @ SC22H / WG6 = UPS 62040 series based on IEC

62040-5-3 Ed.1 to be ready by early 2017

Facebook is a specific case using fine cooling

Copy of presentation is available here

Mr. Pankaj Chaudhury, VDE Representative- India, VDE Testing and Certification Institute, Germany gave presentation on “Application of Energy Storage Systems in LVDC”.

Smart applications of Renewable Energy, Micro-grids, LVDC power distribution & Energy Storage is going to change the landscape in energy management by increasing efficiency & quality of the supply and achieving flexibility both in generation and consumption. The objective of maintaining a continuous supply of power from renewable distributed energy sources in the conditions e.g. when there is no sun or wind, will be fulfilled through energy storage systems that will charge up when excess power is generated and release it when utility-supplied power or other power source ( e.g. Diesel Generator ) is too expensive or insufficient.

Page 8: Event Reporteustandards.in/.../2016/01/LVDC-Event-Report-Final.pdfo Power supply unit PSU with battery backup (BBU 48V) is used instead o DC distribution is limited to the Rack. Standardisation

Standards addressing key issues of safety, interconnections and interoperability will pave the way for faster integration of Energy Storage Systems with LVDC power distribution. Highlights of his presentation are;

A typical Telecom Tower has power demand of 3-5 KW and to ensure a continuous power supply, Diesel Generator is a permanent feature at most of the sites.

Telecom Tower Power Supply Technology AC & DC Solution topology

Off grid Telecom tower Power Supply Topology – DC Nano-grid

Off grid telecom tower : Renewable Integration with Energy Storage

List of standards for lithium ion batteries/energy storage system Copy of presentation is available here

Cristiano Masini, Manager Wiring Devices and Cable Management Standardization Coordination, gave a presentation on “DC installations and related electrical accessories – use cases”:

This presentation dealt with the use of the electrical accessories in various environments, in relation with the voltage levels and possible scenarios. With regard to the voltage levels and the type of supply providing DC, the electrical accessories installed in DC installations will have characteristics that might be different from case to case. And then; depending on the voltage levels, some electrical accessories will be required mandatory to ensure safety. The presentation highlighted use cases covering rural, domestic, tertiary, Industry and Dara centers including characteristics, problems and opportunities for the electrical accessories that can be used in DC installations. Accessories: Assumption per use of existing installations

Light Circuit: 48V (Wire size 1.5 mm2)

Power Circuit: 200 V (Wire Size 2.5 MM2)

Other Circuit: 48 V (2.5 MM2)

Needed DC/DC converter Residential

Protection system > 120 V for power Circuit, Light Circuit < 120 V must be SELV

Socket Topology: 200 V = Power socket, 48V = USB socket Territory

DC/DC converter necessary to get 110 V

Protection system POWER CIRCUIT = Yes (> 120 V) 400 V SHALL BE MANAGED, LIGHT CIRCUIT = No (< 120 V must be SELV) VERY CLOSE TO THE LIMIT

Socket Topology: 400 V (Power socket) (SHALL be with interlock) Existing installations can be + 200V DC Existing installations, with existing products (socket outlets) can’t be used in dc for high power loads at high voltage (≥200V). Lower voltage for high power will require an increase of the cable size (not reasonable for the cost). Standards shall be completely re-written.

Page 9: Event Reporteustandards.in/.../2016/01/LVDC-Event-Report-Final.pdfo Power supply unit PSU with battery backup (BBU 48V) is used instead o DC distribution is limited to the Rack. Standardisation

Copy of presentation is available here

Hyosung Kim Ph.D, Professor, Kongju National University gave a presentation on LVDC arc characteristics in circuit breakers and consent-plugs:

His presentation specially focused on arc behavior in LVDC circuit breakers and socket-plugs. The experimental results indicate that traditional measures in circuit breakers and socket-plugs no longer properly work. AC: Major Material is Copper conduction, uniflow, transportation, trippling > 1 ms Vs DC: Major material is semi –conductor, bi-flow, static switches, < 1 ms, new standards Presentation proposed some new measures to solve these problems. Copy of presentation is available here

Priya Ranjan Mishra, Principal Scientist, Philips Research India – Bangalore, India gave presentation on Lighting with DC distribution - Mapping of multiple DC distribution voltages to different application spaces with case studies.

His presentation was based on the use of chargeable batteries as back-up power source in addition to a main power source. Examples are solar powered indoor and outdoor lighting using 12V batteries, second lighting systems designed for 220V DC CEAG-type battery emergency DC power also in combination with solar power demonstrated by Philips Bangalore and third data centers with 380 V battery systems according to the standard of the European Telecommunication Standardisation Institute (ETSI). A second motivation is the combination of lighting with power and connectivity systems of the IT world such as 5V USB or 54V DC of Power-over-Ethernet systems. The highlights of the presentation are;

Lighting of 5V USB : Charger

Lighting with 12V/24 V ( Solar Panel + battery) : Street Lighting

Solar powered / station in Germany

Office Ceiling with 24V DC with Emerge alliance

Lighting with 54V DC (24W/2400 Lm) o Power over Ethernet o IEEE 802.3 standards

Lighting with 216 V DC Emergency Power o 18 lead – acid batteries of 12 V in series

Public lighting on DC Smart Grid o 380 VDC or 350 VDC? o 63% less cable loss compared with 230V AC

Page 10: Event Reporteustandards.in/.../2016/01/LVDC-Event-Report-Final.pdfo Power supply unit PSU with battery backup (BBU 48V) is used instead o DC distribution is limited to the Rack. Standardisation

o ETSI standards

Lighting with 760 V DC o Pilot in Netherland

Copy of presentation is available here

Day 2: 27th October 2015

Working Session 3 - Parallel Session 3B: Rural Homes / Electricity Access

Ravi Seethapathy, Adjunct Professor University of Toronto gave a presentation on LVDC: A Unique Opportunity for Rural Development.

His presentation focused on Traditional Rural Electrification which has been very difficult due to its high cost of extending distribution systems to remote areas. The rapid proliferation of distributed generation (Solar, Wind, Mini-hydro, Biomass and Biogas) and Energy Storage technologies, has now allowed for micro-grid architectures where such small systems could generate green power locally and operate isolated from the main grid. The stability and power quality of such off-grid systems is being tackled and many solutions are emerging. However, for most rural population (in developing countries) this has meant mere lighting and little usage. Highlights of his presentation were:

About India Smart Grid Forum and his role as chair for WG9 on Renewables and Microgrids

About IEEE Smart villages o Non IP based technology to reduce cost o Plans to train young candidates

About Biosirus o Advanced load control o Advanced HVAC – R o Advance lighting o Off grid DC / AC Rural power

Copy of presentation is available here

Deven Sharma, Vice President – Operations, Simpa Networks, India gave a presentation on Enlightening Rural India

His presentation was based on the Solar LVDC appliance generally available in Indian village family and what Simpa provides currently the appliances, perception of the market in terms of needs with current products, Seasonality of the demand and how the application changes for the same appliance; impact on energy usage, Price points, customer’s willingness to pay for a premium product etc.

Page 11: Event Reporteustandards.in/.../2016/01/LVDC-Event-Report-Final.pdfo Power supply unit PSU with battery backup (BBU 48V) is used instead o DC distribution is limited to the Rack. Standardisation

The highlights of the presentation were:

Nearly 50% of India’s rural population has little or no access to grid-based electricity and instead, relies on kerosene as its primary source of lighting

Solar as a Service

Finances / Pay as you grow model

Battery standards are key

Dc load components, the battery and endurance testing, the speed of bringing a product to market,

and a need to allow solar simulations

Copy of presentation is available here

Harry Stokman, CEO, Direct Current BV, The Netherlands, gave a presentation on Realization of public DC smart grids in the Netherlands

The presentation highlights were:

DC is important not only for the developing countries but also for existing grids in developed areas.

Several ongoing projects in the Netherlands such as public lighting and greenhouses, including photo voltage farms, fully operating on DC and connected to a DC grid.

Hybrid grid planned in an industrial area at the airport

DC grids in social housing areas intending to move from a gas heated to full electrical renewable energy area at the lowest cost for the society.

Standardization provides a national benefit

Transform the last mile of the public network to a DC grid that is not application-based but an open system ready for the future.

Copy of presentation is available here

Kartik Wahi, Co-founder, Claro Energy, India gave presentation on LVDC Applications in Solar Pumping & Current Challenges

The presentation highlighted that LVDC has great potential in solarizing irrigation pump-sets. The highlights of his presentation are:

Aspects of LVDC applications in Agriculture o Solar LVDC in irrigation – Assessing true potential of this application

Showcasing various business models that are being practiced on the ground

Benchmarking & Standardization (or lack thereof)

Sector overview – size of opportunity

Page 12: Event Reporteustandards.in/.../2016/01/LVDC-Event-Report-Final.pdfo Power supply unit PSU with battery backup (BBU 48V) is used instead o DC distribution is limited to the Rack. Standardisation

Major Challenges towards scaling up

Recommendation on standardization for LVDC in agriculture

Irrigation As A Service (IAAS)

Lack of Industry Standards

Copy of presentation is available here

Keynote Address by Shri. Upendra Tripathi, IAS Secretary, Ministry of New and Renewable Energy

Highlight of his speech are:

Long History – Ministry of Ministry of New and Renewable Energy was established in 1982 and Ministry of Environment and Forests in 1986

India has a National Institute of Wind Energy

Carbon tax collection has gone up from 50 to 400

20 KW to 100 KW solar power targets

Total 100 KW from renewable is the targets ( 40 KW roof top only)

73K MW funding available from World Bank, etc.

Rural solar appliances use is encouraged

Standards play an important role

BIS is the agency to ensure quality / compliant products are there in the market

Global solar alliances / DC to play an important role

Energy to all - India and China are major demand and supply market.

IEC could consider a local presence in India

Summary & Conclusion of the Conference

LVDC is not an objective but a means to reach an objective

Research organizations are trying to find solution to technical challenges

Industry is trying to find solutions to market needs

Regulators to make regulations for a sustainable solution

380 V/ Data Centers are important to address as first step: EU/US/Japan/China driving 380 V DC for data Centers

More standards around renewable energy and safety are needed on top of what already exist

Residual current services: standards are not present

Copies of all presentation are available here and Event Details are available here