evolution of rechargeable lithium ion battery - isaac ra
Embed Size (px)
DESCRIPTION
Presentations from the International Workshop on Energy Storage Technologies and Applications, April 2013, ADB Headquarters, ManilaTRANSCRIPT

Isaac Ra
CEO of Eco Plus
Intrsquol Workshop Energy Storage
Technologies and Application ADB
April 3 2013
Market Megatrends of Rechargeable Battery
[MWh] [kWh] [Wh]
Tablet PC PT
e-scooter
PHEV
EV
HEV
Hybrid FLift
Locomotive
Home
CES
FR
Wind farm
Flexible
Wireless cleaner
Smart phone
UPS Uninterruptible Power Supply
FR Frequency Regulation
CES Community Energy Storage
UPS
Mobile IT devices
Transportation Power storage
Energy
Life Change by Rechargeable Li-ion battery
1800
Volta
battery
1859
Lead-acid
battery
Power source
for automobile
1888
Alkaline
battery
Portable power
source in WAR
1970
Ni-Cd
battery
Power tool
Walkman
1991
Commercialization
of lithium-ion battery (Sony)
Mobile IT
devices
2000
Mass production
of LIB in Korea
(LG Chem
Samsung SDI)
Evolution
History
2009
Mass production of LIB
for HEV
(Hyundai Motor LG Chem)
1997
HEV with Ni-MH
battery
(Toyota Honda)
History of Rechargeable battery
Turning
Point
Hybrid Electric
Vehicle(HEV)
Plug-in Hybrid
Electric Vehicle
(PHEV)
Engine + Motor
Engine + Motor
Pure Electric Vehicle
(FCEV BEV) Motor
CO2 emission
Types of Electric Vehicles
Toyota Prius
GM Volt
Nissan Leaf
1 Global warming by GHG(Green House Gas)
2 Oil crisis
Why EV
Source IEA (Intrsquol Energy Agency)
gt 500km (60kWh)
32 km
64km
gt 250km (30kWh)
HEV
PHEV20
PHEV40
EV
2kWh
8kWh
16kWh
30kWh
60kWh
E-driving range CO2 emission
123gkm
60gkm
49gkm
[Fuel economy]
[16kml]
[25kml]
[32kml]
[gt 70kml]
20Ah 37V = 64Wh
310
1250
2500
4680
9370
Current(Ampere) Voltage = Power(Watt)
Power(Watt) time(Hour) = Energy(Wh)
Battery and EV
Toyota Prius
GM Volt
Nissan Leaf
of batteries
Toyota Prius PHEV
Ref 2012 Hiedge Report IIT Report
EV Battery Market
from httpberclblgovvenkatRagone-constructionpps
Why LIB
1 Most light metal
2 Most active metal
highest voltage amp energy
Why Lithium
37 V 12 V
90
110
130
150
170
190
200 300 400 500 600 700 800 900
Gra
vim
etr
ic E
nerg
y D
en
sit
y (
Wh
kg
)
Volumetric Energy Density(Whl)
Typ1250mAh
Typ1370mAh
Typ1420mAh
Typ1700mAh
Typ1900mAh
Typ2000mAh
Typ2200mAhTyp2400mAh
Typ2600mAhTyp2800mAh
Typ3000mAh
1994
1995
1996
1998
2000
2001
2002
20032005
20072008
Typ3600mAh
Typ860mAh (1st LIB by SONY)
Map of energy density for cylindrical LIB
Under development
Cylindrical LIB Capacity-up history
03V
40V
LiCoO2(145mAhg)
Li[NiCoMn]O2(145~170mAhg)
LiMn2O4(100mAhg)
Graphite(360mAhg)
LiNiO2(200mAhg)
48V
37V
38V
34V LiFePO4(160mAhg)
32V
Li4Ti5O12(160mAhg)
Electrolyte
Stable
window
LiNi05Mn15O4(110mAhg)
16V
~90 of cathode materials
Electrode materials and voltage
LCO
[LiCoO2]
High V(gt43V)
High capacity
Metal-doped LCO
[Mg Ti Al]
OLO(over-lithiated oxide)
[xLi2MnO3(1-x)LiMeO2]
bull Power
bull Cycle life
bull Safety
Low cost NCM
[LiNi13Co13Mn13O2]
NCA
[LiNi08Co015Al005O2]
[LiNi05Co02Mn03O2
LiNi06Co02Mn02O2 ]
[LiNi05Mn05O2]
bull Safety
bull Power
Low cost
safety
4V-spinel
[LiMn2O4]
5V-spinel
[LiNi05Mn15O4] bull Electrolyte
Safety
Low cost
LFP olivine
[LiFePO4]
LMP olivine
[LiMnPO4]
bull Mn dissolution
bull Electrolyte
Cathode materials for LIBrsquos
High safety but extremely low energy density
Currently used
Volume expansion when lithiated (~300 vs 10 graphite)
Mechanical degradation electrical isolation
Cell expansion amp capacity loss during chargedischarge
cycle-life
ldquoElectrode and cell expansionrdquo
ldquoCracking amp electrical isolationrdquo
Li-insertion
After cycle
14
Anode materials for LIBrsquos
100 -
200 -
300 -
400 -
500 -
Gra
vim
etr
ic e
nerg
y d
ensity(W
hk
g)
Current
LIB
Advanced
LIB
CarbonLiFePO4
Si-carbon composite
Li2MnO3-NCM
CarbonLiMnPO4
Lithium-sulfur
Lithium-air battery
All Solid State Battery
Present Near future Future
Carbon
[NCM+LiMn2O4]
Technical Trend for EV
Next generation
Battery
Advanced LIB
- E-mail hjna0805ecoplus9com
- Mobile Phone ++82-10-8966-5407

Market Megatrends of Rechargeable Battery
[MWh] [kWh] [Wh]
Tablet PC PT
e-scooter
PHEV
EV
HEV
Hybrid FLift
Locomotive
Home
CES
FR
Wind farm
Flexible
Wireless cleaner
Smart phone
UPS Uninterruptible Power Supply
FR Frequency Regulation
CES Community Energy Storage
UPS
Mobile IT devices
Transportation Power storage
Energy
Life Change by Rechargeable Li-ion battery
1800
Volta
battery
1859
Lead-acid
battery
Power source
for automobile
1888
Alkaline
battery
Portable power
source in WAR
1970
Ni-Cd
battery
Power tool
Walkman
1991
Commercialization
of lithium-ion battery (Sony)
Mobile IT
devices
2000
Mass production
of LIB in Korea
(LG Chem
Samsung SDI)
Evolution
History
2009
Mass production of LIB
for HEV
(Hyundai Motor LG Chem)
1997
HEV with Ni-MH
battery
(Toyota Honda)
History of Rechargeable battery
Turning
Point
Hybrid Electric
Vehicle(HEV)
Plug-in Hybrid
Electric Vehicle
(PHEV)
Engine + Motor
Engine + Motor
Pure Electric Vehicle
(FCEV BEV) Motor
CO2 emission
Types of Electric Vehicles
Toyota Prius
GM Volt
Nissan Leaf
1 Global warming by GHG(Green House Gas)
2 Oil crisis
Why EV
Source IEA (Intrsquol Energy Agency)
gt 500km (60kWh)
32 km
64km
gt 250km (30kWh)
HEV
PHEV20
PHEV40
EV
2kWh
8kWh
16kWh
30kWh
60kWh
E-driving range CO2 emission
123gkm
60gkm
49gkm
[Fuel economy]
[16kml]
[25kml]
[32kml]
[gt 70kml]
20Ah 37V = 64Wh
310
1250
2500
4680
9370
Current(Ampere) Voltage = Power(Watt)
Power(Watt) time(Hour) = Energy(Wh)
Battery and EV
Toyota Prius
GM Volt
Nissan Leaf
of batteries
Toyota Prius PHEV
Ref 2012 Hiedge Report IIT Report
EV Battery Market
from httpberclblgovvenkatRagone-constructionpps
Why LIB
1 Most light metal
2 Most active metal
highest voltage amp energy
Why Lithium
37 V 12 V
90
110
130
150
170
190
200 300 400 500 600 700 800 900
Gra
vim
etr
ic E
nerg
y D
en
sit
y (
Wh
kg
)
Volumetric Energy Density(Whl)
Typ1250mAh
Typ1370mAh
Typ1420mAh
Typ1700mAh
Typ1900mAh
Typ2000mAh
Typ2200mAhTyp2400mAh
Typ2600mAhTyp2800mAh
Typ3000mAh
1994
1995
1996
1998
2000
2001
2002
20032005
20072008
Typ3600mAh
Typ860mAh (1st LIB by SONY)
Map of energy density for cylindrical LIB
Under development
Cylindrical LIB Capacity-up history
03V
40V
LiCoO2(145mAhg)
Li[NiCoMn]O2(145~170mAhg)
LiMn2O4(100mAhg)
Graphite(360mAhg)
LiNiO2(200mAhg)
48V
37V
38V
34V LiFePO4(160mAhg)
32V
Li4Ti5O12(160mAhg)
Electrolyte
Stable
window
LiNi05Mn15O4(110mAhg)
16V
~90 of cathode materials
Electrode materials and voltage
LCO
[LiCoO2]
High V(gt43V)
High capacity
Metal-doped LCO
[Mg Ti Al]
OLO(over-lithiated oxide)
[xLi2MnO3(1-x)LiMeO2]
bull Power
bull Cycle life
bull Safety
Low cost NCM
[LiNi13Co13Mn13O2]
NCA
[LiNi08Co015Al005O2]
[LiNi05Co02Mn03O2
LiNi06Co02Mn02O2 ]
[LiNi05Mn05O2]
bull Safety
bull Power
Low cost
safety
4V-spinel
[LiMn2O4]
5V-spinel
[LiNi05Mn15O4] bull Electrolyte
Safety
Low cost
LFP olivine
[LiFePO4]
LMP olivine
[LiMnPO4]
bull Mn dissolution
bull Electrolyte
Cathode materials for LIBrsquos
High safety but extremely low energy density
Currently used
Volume expansion when lithiated (~300 vs 10 graphite)
Mechanical degradation electrical isolation
Cell expansion amp capacity loss during chargedischarge
cycle-life
ldquoElectrode and cell expansionrdquo
ldquoCracking amp electrical isolationrdquo
Li-insertion
After cycle
14
Anode materials for LIBrsquos
100 -
200 -
300 -
400 -
500 -
Gra
vim
etr
ic e
nerg
y d
ensity(W
hk
g)
Current
LIB
Advanced
LIB
CarbonLiFePO4
Si-carbon composite
Li2MnO3-NCM
CarbonLiMnPO4
Lithium-sulfur
Lithium-air battery
All Solid State Battery
Present Near future Future
Carbon
[NCM+LiMn2O4]
Technical Trend for EV
Next generation
Battery
Advanced LIB
- E-mail hjna0805ecoplus9com
- Mobile Phone ++82-10-8966-5407

Life Change by Rechargeable Li-ion battery
1800
Volta
battery
1859
Lead-acid
battery
Power source
for automobile
1888
Alkaline
battery
Portable power
source in WAR
1970
Ni-Cd
battery
Power tool
Walkman
1991
Commercialization
of lithium-ion battery (Sony)
Mobile IT
devices
2000
Mass production
of LIB in Korea
(LG Chem
Samsung SDI)
Evolution
History
2009
Mass production of LIB
for HEV
(Hyundai Motor LG Chem)
1997
HEV with Ni-MH
battery
(Toyota Honda)
History of Rechargeable battery
Turning
Point
Hybrid Electric
Vehicle(HEV)
Plug-in Hybrid
Electric Vehicle
(PHEV)
Engine + Motor
Engine + Motor
Pure Electric Vehicle
(FCEV BEV) Motor
CO2 emission
Types of Electric Vehicles
Toyota Prius
GM Volt
Nissan Leaf
1 Global warming by GHG(Green House Gas)
2 Oil crisis
Why EV
Source IEA (Intrsquol Energy Agency)
gt 500km (60kWh)
32 km
64km
gt 250km (30kWh)
HEV
PHEV20
PHEV40
EV
2kWh
8kWh
16kWh
30kWh
60kWh
E-driving range CO2 emission
123gkm
60gkm
49gkm
[Fuel economy]
[16kml]
[25kml]
[32kml]
[gt 70kml]
20Ah 37V = 64Wh
310
1250
2500
4680
9370
Current(Ampere) Voltage = Power(Watt)
Power(Watt) time(Hour) = Energy(Wh)
Battery and EV
Toyota Prius
GM Volt
Nissan Leaf
of batteries
Toyota Prius PHEV
Ref 2012 Hiedge Report IIT Report
EV Battery Market
from httpberclblgovvenkatRagone-constructionpps
Why LIB
1 Most light metal
2 Most active metal
highest voltage amp energy
Why Lithium
37 V 12 V
90
110
130
150
170
190
200 300 400 500 600 700 800 900
Gra
vim
etr
ic E
nerg
y D
en
sit
y (
Wh
kg
)
Volumetric Energy Density(Whl)
Typ1250mAh
Typ1370mAh
Typ1420mAh
Typ1700mAh
Typ1900mAh
Typ2000mAh
Typ2200mAhTyp2400mAh
Typ2600mAhTyp2800mAh
Typ3000mAh
1994
1995
1996
1998
2000
2001
2002
20032005
20072008
Typ3600mAh
Typ860mAh (1st LIB by SONY)
Map of energy density for cylindrical LIB
Under development
Cylindrical LIB Capacity-up history
03V
40V
LiCoO2(145mAhg)
Li[NiCoMn]O2(145~170mAhg)
LiMn2O4(100mAhg)
Graphite(360mAhg)
LiNiO2(200mAhg)
48V
37V
38V
34V LiFePO4(160mAhg)
32V
Li4Ti5O12(160mAhg)
Electrolyte
Stable
window
LiNi05Mn15O4(110mAhg)
16V
~90 of cathode materials
Electrode materials and voltage
LCO
[LiCoO2]
High V(gt43V)
High capacity
Metal-doped LCO
[Mg Ti Al]
OLO(over-lithiated oxide)
[xLi2MnO3(1-x)LiMeO2]
bull Power
bull Cycle life
bull Safety
Low cost NCM
[LiNi13Co13Mn13O2]
NCA
[LiNi08Co015Al005O2]
[LiNi05Co02Mn03O2
LiNi06Co02Mn02O2 ]
[LiNi05Mn05O2]
bull Safety
bull Power
Low cost
safety
4V-spinel
[LiMn2O4]
5V-spinel
[LiNi05Mn15O4] bull Electrolyte
Safety
Low cost
LFP olivine
[LiFePO4]
LMP olivine
[LiMnPO4]
bull Mn dissolution
bull Electrolyte
Cathode materials for LIBrsquos
High safety but extremely low energy density
Currently used
Volume expansion when lithiated (~300 vs 10 graphite)
Mechanical degradation electrical isolation
Cell expansion amp capacity loss during chargedischarge
cycle-life
ldquoElectrode and cell expansionrdquo
ldquoCracking amp electrical isolationrdquo
Li-insertion
After cycle
14
Anode materials for LIBrsquos
100 -
200 -
300 -
400 -
500 -
Gra
vim
etr
ic e
nerg
y d
ensity(W
hk
g)
Current
LIB
Advanced
LIB
CarbonLiFePO4
Si-carbon composite
Li2MnO3-NCM
CarbonLiMnPO4
Lithium-sulfur
Lithium-air battery
All Solid State Battery
Present Near future Future
Carbon
[NCM+LiMn2O4]
Technical Trend for EV
Next generation
Battery
Advanced LIB
- E-mail hjna0805ecoplus9com
- Mobile Phone ++82-10-8966-5407

1800
Volta
battery
1859
Lead-acid
battery
Power source
for automobile
1888
Alkaline
battery
Portable power
source in WAR
1970
Ni-Cd
battery
Power tool
Walkman
1991
Commercialization
of lithium-ion battery (Sony)
Mobile IT
devices
2000
Mass production
of LIB in Korea
(LG Chem
Samsung SDI)
Evolution
History
2009
Mass production of LIB
for HEV
(Hyundai Motor LG Chem)
1997
HEV with Ni-MH
battery
(Toyota Honda)
History of Rechargeable battery
Turning
Point
Hybrid Electric
Vehicle(HEV)
Plug-in Hybrid
Electric Vehicle
(PHEV)
Engine + Motor
Engine + Motor
Pure Electric Vehicle
(FCEV BEV) Motor
CO2 emission
Types of Electric Vehicles
Toyota Prius
GM Volt
Nissan Leaf
1 Global warming by GHG(Green House Gas)
2 Oil crisis
Why EV
Source IEA (Intrsquol Energy Agency)
gt 500km (60kWh)
32 km
64km
gt 250km (30kWh)
HEV
PHEV20
PHEV40
EV
2kWh
8kWh
16kWh
30kWh
60kWh
E-driving range CO2 emission
123gkm
60gkm
49gkm
[Fuel economy]
[16kml]
[25kml]
[32kml]
[gt 70kml]
20Ah 37V = 64Wh
310
1250
2500
4680
9370
Current(Ampere) Voltage = Power(Watt)
Power(Watt) time(Hour) = Energy(Wh)
Battery and EV
Toyota Prius
GM Volt
Nissan Leaf
of batteries
Toyota Prius PHEV
Ref 2012 Hiedge Report IIT Report
EV Battery Market
from httpberclblgovvenkatRagone-constructionpps
Why LIB
1 Most light metal
2 Most active metal
highest voltage amp energy
Why Lithium
37 V 12 V
90
110
130
150
170
190
200 300 400 500 600 700 800 900
Gra
vim
etr
ic E
nerg
y D
en
sit
y (
Wh
kg
)
Volumetric Energy Density(Whl)
Typ1250mAh
Typ1370mAh
Typ1420mAh
Typ1700mAh
Typ1900mAh
Typ2000mAh
Typ2200mAhTyp2400mAh
Typ2600mAhTyp2800mAh
Typ3000mAh
1994
1995
1996
1998
2000
2001
2002
20032005
20072008
Typ3600mAh
Typ860mAh (1st LIB by SONY)
Map of energy density for cylindrical LIB
Under development
Cylindrical LIB Capacity-up history
03V
40V
LiCoO2(145mAhg)
Li[NiCoMn]O2(145~170mAhg)
LiMn2O4(100mAhg)
Graphite(360mAhg)
LiNiO2(200mAhg)
48V
37V
38V
34V LiFePO4(160mAhg)
32V
Li4Ti5O12(160mAhg)
Electrolyte
Stable
window
LiNi05Mn15O4(110mAhg)
16V
~90 of cathode materials
Electrode materials and voltage
LCO
[LiCoO2]
High V(gt43V)
High capacity
Metal-doped LCO
[Mg Ti Al]
OLO(over-lithiated oxide)
[xLi2MnO3(1-x)LiMeO2]
bull Power
bull Cycle life
bull Safety
Low cost NCM
[LiNi13Co13Mn13O2]
NCA
[LiNi08Co015Al005O2]
[LiNi05Co02Mn03O2
LiNi06Co02Mn02O2 ]
[LiNi05Mn05O2]
bull Safety
bull Power
Low cost
safety
4V-spinel
[LiMn2O4]
5V-spinel
[LiNi05Mn15O4] bull Electrolyte
Safety
Low cost
LFP olivine
[LiFePO4]
LMP olivine
[LiMnPO4]
bull Mn dissolution
bull Electrolyte
Cathode materials for LIBrsquos
High safety but extremely low energy density
Currently used
Volume expansion when lithiated (~300 vs 10 graphite)
Mechanical degradation electrical isolation
Cell expansion amp capacity loss during chargedischarge
cycle-life
ldquoElectrode and cell expansionrdquo
ldquoCracking amp electrical isolationrdquo
Li-insertion
After cycle
14
Anode materials for LIBrsquos
100 -
200 -
300 -
400 -
500 -
Gra
vim
etr
ic e
nerg
y d
ensity(W
hk
g)
Current
LIB
Advanced
LIB
CarbonLiFePO4
Si-carbon composite
Li2MnO3-NCM
CarbonLiMnPO4
Lithium-sulfur
Lithium-air battery
All Solid State Battery
Present Near future Future
Carbon
[NCM+LiMn2O4]
Technical Trend for EV
Next generation
Battery
Advanced LIB
- E-mail hjna0805ecoplus9com
- Mobile Phone ++82-10-8966-5407

Hybrid Electric
Vehicle(HEV)
Plug-in Hybrid
Electric Vehicle
(PHEV)
Engine + Motor
Engine + Motor
Pure Electric Vehicle
(FCEV BEV) Motor
CO2 emission
Types of Electric Vehicles
Toyota Prius
GM Volt
Nissan Leaf
1 Global warming by GHG(Green House Gas)
2 Oil crisis
Why EV
Source IEA (Intrsquol Energy Agency)
gt 500km (60kWh)
32 km
64km
gt 250km (30kWh)
HEV
PHEV20
PHEV40
EV
2kWh
8kWh
16kWh
30kWh
60kWh
E-driving range CO2 emission
123gkm
60gkm
49gkm
[Fuel economy]
[16kml]
[25kml]
[32kml]
[gt 70kml]
20Ah 37V = 64Wh
310
1250
2500
4680
9370
Current(Ampere) Voltage = Power(Watt)
Power(Watt) time(Hour) = Energy(Wh)
Battery and EV
Toyota Prius
GM Volt
Nissan Leaf
of batteries
Toyota Prius PHEV
Ref 2012 Hiedge Report IIT Report
EV Battery Market
from httpberclblgovvenkatRagone-constructionpps
Why LIB
1 Most light metal
2 Most active metal
highest voltage amp energy
Why Lithium
37 V 12 V
90
110
130
150
170
190
200 300 400 500 600 700 800 900
Gra
vim
etr
ic E
nerg
y D
en
sit
y (
Wh
kg
)
Volumetric Energy Density(Whl)
Typ1250mAh
Typ1370mAh
Typ1420mAh
Typ1700mAh
Typ1900mAh
Typ2000mAh
Typ2200mAhTyp2400mAh
Typ2600mAhTyp2800mAh
Typ3000mAh
1994
1995
1996
1998
2000
2001
2002
20032005
20072008
Typ3600mAh
Typ860mAh (1st LIB by SONY)
Map of energy density for cylindrical LIB
Under development
Cylindrical LIB Capacity-up history
03V
40V
LiCoO2(145mAhg)
Li[NiCoMn]O2(145~170mAhg)
LiMn2O4(100mAhg)
Graphite(360mAhg)
LiNiO2(200mAhg)
48V
37V
38V
34V LiFePO4(160mAhg)
32V
Li4Ti5O12(160mAhg)
Electrolyte
Stable
window
LiNi05Mn15O4(110mAhg)
16V
~90 of cathode materials
Electrode materials and voltage
LCO
[LiCoO2]
High V(gt43V)
High capacity
Metal-doped LCO
[Mg Ti Al]
OLO(over-lithiated oxide)
[xLi2MnO3(1-x)LiMeO2]
bull Power
bull Cycle life
bull Safety
Low cost NCM
[LiNi13Co13Mn13O2]
NCA
[LiNi08Co015Al005O2]
[LiNi05Co02Mn03O2
LiNi06Co02Mn02O2 ]
[LiNi05Mn05O2]
bull Safety
bull Power
Low cost
safety
4V-spinel
[LiMn2O4]
5V-spinel
[LiNi05Mn15O4] bull Electrolyte
Safety
Low cost
LFP olivine
[LiFePO4]
LMP olivine
[LiMnPO4]
bull Mn dissolution
bull Electrolyte
Cathode materials for LIBrsquos
High safety but extremely low energy density
Currently used
Volume expansion when lithiated (~300 vs 10 graphite)
Mechanical degradation electrical isolation
Cell expansion amp capacity loss during chargedischarge
cycle-life
ldquoElectrode and cell expansionrdquo
ldquoCracking amp electrical isolationrdquo
Li-insertion
After cycle
14
Anode materials for LIBrsquos
100 -
200 -
300 -
400 -
500 -
Gra
vim
etr
ic e
nerg
y d
ensity(W
hk
g)
Current
LIB
Advanced
LIB
CarbonLiFePO4
Si-carbon composite
Li2MnO3-NCM
CarbonLiMnPO4
Lithium-sulfur
Lithium-air battery
All Solid State Battery
Present Near future Future
Carbon
[NCM+LiMn2O4]
Technical Trend for EV
Next generation
Battery
Advanced LIB
- E-mail hjna0805ecoplus9com
- Mobile Phone ++82-10-8966-5407

1 Global warming by GHG(Green House Gas)
2 Oil crisis
Why EV
Source IEA (Intrsquol Energy Agency)
gt 500km (60kWh)
32 km
64km
gt 250km (30kWh)
HEV
PHEV20
PHEV40
EV
2kWh
8kWh
16kWh
30kWh
60kWh
E-driving range CO2 emission
123gkm
60gkm
49gkm
[Fuel economy]
[16kml]
[25kml]
[32kml]
[gt 70kml]
20Ah 37V = 64Wh
310
1250
2500
4680
9370
Current(Ampere) Voltage = Power(Watt)
Power(Watt) time(Hour) = Energy(Wh)
Battery and EV
Toyota Prius
GM Volt
Nissan Leaf
of batteries
Toyota Prius PHEV
Ref 2012 Hiedge Report IIT Report
EV Battery Market
from httpberclblgovvenkatRagone-constructionpps
Why LIB
1 Most light metal
2 Most active metal
highest voltage amp energy
Why Lithium
37 V 12 V
90
110
130
150
170
190
200 300 400 500 600 700 800 900
Gra
vim
etr
ic E
nerg
y D
en
sit
y (
Wh
kg
)
Volumetric Energy Density(Whl)
Typ1250mAh
Typ1370mAh
Typ1420mAh
Typ1700mAh
Typ1900mAh
Typ2000mAh
Typ2200mAhTyp2400mAh
Typ2600mAhTyp2800mAh
Typ3000mAh
1994
1995
1996
1998
2000
2001
2002
20032005
20072008
Typ3600mAh
Typ860mAh (1st LIB by SONY)
Map of energy density for cylindrical LIB
Under development
Cylindrical LIB Capacity-up history
03V
40V
LiCoO2(145mAhg)
Li[NiCoMn]O2(145~170mAhg)
LiMn2O4(100mAhg)
Graphite(360mAhg)
LiNiO2(200mAhg)
48V
37V
38V
34V LiFePO4(160mAhg)
32V
Li4Ti5O12(160mAhg)
Electrolyte
Stable
window
LiNi05Mn15O4(110mAhg)
16V
~90 of cathode materials
Electrode materials and voltage
LCO
[LiCoO2]
High V(gt43V)
High capacity
Metal-doped LCO
[Mg Ti Al]
OLO(over-lithiated oxide)
[xLi2MnO3(1-x)LiMeO2]
bull Power
bull Cycle life
bull Safety
Low cost NCM
[LiNi13Co13Mn13O2]
NCA
[LiNi08Co015Al005O2]
[LiNi05Co02Mn03O2
LiNi06Co02Mn02O2 ]
[LiNi05Mn05O2]
bull Safety
bull Power
Low cost
safety
4V-spinel
[LiMn2O4]
5V-spinel
[LiNi05Mn15O4] bull Electrolyte
Safety
Low cost
LFP olivine
[LiFePO4]
LMP olivine
[LiMnPO4]
bull Mn dissolution
bull Electrolyte
Cathode materials for LIBrsquos
High safety but extremely low energy density
Currently used
Volume expansion when lithiated (~300 vs 10 graphite)
Mechanical degradation electrical isolation
Cell expansion amp capacity loss during chargedischarge
cycle-life
ldquoElectrode and cell expansionrdquo
ldquoCracking amp electrical isolationrdquo
Li-insertion
After cycle
14
Anode materials for LIBrsquos
100 -
200 -
300 -
400 -
500 -
Gra
vim
etr
ic e
nerg
y d
ensity(W
hk
g)
Current
LIB
Advanced
LIB
CarbonLiFePO4
Si-carbon composite
Li2MnO3-NCM
CarbonLiMnPO4
Lithium-sulfur
Lithium-air battery
All Solid State Battery
Present Near future Future
Carbon
[NCM+LiMn2O4]
Technical Trend for EV
Next generation
Battery
Advanced LIB
- E-mail hjna0805ecoplus9com
- Mobile Phone ++82-10-8966-5407

gt 500km (60kWh)
32 km
64km
gt 250km (30kWh)
HEV
PHEV20
PHEV40
EV
2kWh
8kWh
16kWh
30kWh
60kWh
E-driving range CO2 emission
123gkm
60gkm
49gkm
[Fuel economy]
[16kml]
[25kml]
[32kml]
[gt 70kml]
20Ah 37V = 64Wh
310
1250
2500
4680
9370
Current(Ampere) Voltage = Power(Watt)
Power(Watt) time(Hour) = Energy(Wh)
Battery and EV
Toyota Prius
GM Volt
Nissan Leaf
of batteries
Toyota Prius PHEV
Ref 2012 Hiedge Report IIT Report
EV Battery Market
from httpberclblgovvenkatRagone-constructionpps
Why LIB
1 Most light metal
2 Most active metal
highest voltage amp energy
Why Lithium
37 V 12 V
90
110
130
150
170
190
200 300 400 500 600 700 800 900
Gra
vim
etr
ic E
nerg
y D
en
sit
y (
Wh
kg
)
Volumetric Energy Density(Whl)
Typ1250mAh
Typ1370mAh
Typ1420mAh
Typ1700mAh
Typ1900mAh
Typ2000mAh
Typ2200mAhTyp2400mAh
Typ2600mAhTyp2800mAh
Typ3000mAh
1994
1995
1996
1998
2000
2001
2002
20032005
20072008
Typ3600mAh
Typ860mAh (1st LIB by SONY)
Map of energy density for cylindrical LIB
Under development
Cylindrical LIB Capacity-up history
03V
40V
LiCoO2(145mAhg)
Li[NiCoMn]O2(145~170mAhg)
LiMn2O4(100mAhg)
Graphite(360mAhg)
LiNiO2(200mAhg)
48V
37V
38V
34V LiFePO4(160mAhg)
32V
Li4Ti5O12(160mAhg)
Electrolyte
Stable
window
LiNi05Mn15O4(110mAhg)
16V
~90 of cathode materials
Electrode materials and voltage
LCO
[LiCoO2]
High V(gt43V)
High capacity
Metal-doped LCO
[Mg Ti Al]
OLO(over-lithiated oxide)
[xLi2MnO3(1-x)LiMeO2]
bull Power
bull Cycle life
bull Safety
Low cost NCM
[LiNi13Co13Mn13O2]
NCA
[LiNi08Co015Al005O2]
[LiNi05Co02Mn03O2
LiNi06Co02Mn02O2 ]
[LiNi05Mn05O2]
bull Safety
bull Power
Low cost
safety
4V-spinel
[LiMn2O4]
5V-spinel
[LiNi05Mn15O4] bull Electrolyte
Safety
Low cost
LFP olivine
[LiFePO4]
LMP olivine
[LiMnPO4]
bull Mn dissolution
bull Electrolyte
Cathode materials for LIBrsquos
High safety but extremely low energy density
Currently used
Volume expansion when lithiated (~300 vs 10 graphite)
Mechanical degradation electrical isolation
Cell expansion amp capacity loss during chargedischarge
cycle-life
ldquoElectrode and cell expansionrdquo
ldquoCracking amp electrical isolationrdquo
Li-insertion
After cycle
14
Anode materials for LIBrsquos
100 -
200 -
300 -
400 -
500 -
Gra
vim
etr
ic e
nerg
y d
ensity(W
hk
g)
Current
LIB
Advanced
LIB
CarbonLiFePO4
Si-carbon composite
Li2MnO3-NCM
CarbonLiMnPO4
Lithium-sulfur
Lithium-air battery
All Solid State Battery
Present Near future Future
Carbon
[NCM+LiMn2O4]
Technical Trend for EV
Next generation
Battery
Advanced LIB
- E-mail hjna0805ecoplus9com
- Mobile Phone ++82-10-8966-5407

Ref 2012 Hiedge Report IIT Report
EV Battery Market
from httpberclblgovvenkatRagone-constructionpps
Why LIB
1 Most light metal
2 Most active metal
highest voltage amp energy
Why Lithium
37 V 12 V
90
110
130
150
170
190
200 300 400 500 600 700 800 900
Gra
vim
etr
ic E
nerg
y D
en
sit
y (
Wh
kg
)
Volumetric Energy Density(Whl)
Typ1250mAh
Typ1370mAh
Typ1420mAh
Typ1700mAh
Typ1900mAh
Typ2000mAh
Typ2200mAhTyp2400mAh
Typ2600mAhTyp2800mAh
Typ3000mAh
1994
1995
1996
1998
2000
2001
2002
20032005
20072008
Typ3600mAh
Typ860mAh (1st LIB by SONY)
Map of energy density for cylindrical LIB
Under development
Cylindrical LIB Capacity-up history
03V
40V
LiCoO2(145mAhg)
Li[NiCoMn]O2(145~170mAhg)
LiMn2O4(100mAhg)
Graphite(360mAhg)
LiNiO2(200mAhg)
48V
37V
38V
34V LiFePO4(160mAhg)
32V
Li4Ti5O12(160mAhg)
Electrolyte
Stable
window
LiNi05Mn15O4(110mAhg)
16V
~90 of cathode materials
Electrode materials and voltage
LCO
[LiCoO2]
High V(gt43V)
High capacity
Metal-doped LCO
[Mg Ti Al]
OLO(over-lithiated oxide)
[xLi2MnO3(1-x)LiMeO2]
bull Power
bull Cycle life
bull Safety
Low cost NCM
[LiNi13Co13Mn13O2]
NCA
[LiNi08Co015Al005O2]
[LiNi05Co02Mn03O2
LiNi06Co02Mn02O2 ]
[LiNi05Mn05O2]
bull Safety
bull Power
Low cost
safety
4V-spinel
[LiMn2O4]
5V-spinel
[LiNi05Mn15O4] bull Electrolyte
Safety
Low cost
LFP olivine
[LiFePO4]
LMP olivine
[LiMnPO4]
bull Mn dissolution
bull Electrolyte
Cathode materials for LIBrsquos
High safety but extremely low energy density
Currently used
Volume expansion when lithiated (~300 vs 10 graphite)
Mechanical degradation electrical isolation
Cell expansion amp capacity loss during chargedischarge
cycle-life
ldquoElectrode and cell expansionrdquo
ldquoCracking amp electrical isolationrdquo
Li-insertion
After cycle
14
Anode materials for LIBrsquos
100 -
200 -
300 -
400 -
500 -
Gra
vim
etr
ic e
nerg
y d
ensity(W
hk
g)
Current
LIB
Advanced
LIB
CarbonLiFePO4
Si-carbon composite
Li2MnO3-NCM
CarbonLiMnPO4
Lithium-sulfur
Lithium-air battery
All Solid State Battery
Present Near future Future
Carbon
[NCM+LiMn2O4]
Technical Trend for EV
Next generation
Battery
Advanced LIB
- E-mail hjna0805ecoplus9com
- Mobile Phone ++82-10-8966-5407

from httpberclblgovvenkatRagone-constructionpps
Why LIB
1 Most light metal
2 Most active metal
highest voltage amp energy
Why Lithium
37 V 12 V
90
110
130
150
170
190
200 300 400 500 600 700 800 900
Gra
vim
etr
ic E
nerg
y D
en
sit
y (
Wh
kg
)
Volumetric Energy Density(Whl)
Typ1250mAh
Typ1370mAh
Typ1420mAh
Typ1700mAh
Typ1900mAh
Typ2000mAh
Typ2200mAhTyp2400mAh
Typ2600mAhTyp2800mAh
Typ3000mAh
1994
1995
1996
1998
2000
2001
2002
20032005
20072008
Typ3600mAh
Typ860mAh (1st LIB by SONY)
Map of energy density for cylindrical LIB
Under development
Cylindrical LIB Capacity-up history
03V
40V
LiCoO2(145mAhg)
Li[NiCoMn]O2(145~170mAhg)
LiMn2O4(100mAhg)
Graphite(360mAhg)
LiNiO2(200mAhg)
48V
37V
38V
34V LiFePO4(160mAhg)
32V
Li4Ti5O12(160mAhg)
Electrolyte
Stable
window
LiNi05Mn15O4(110mAhg)
16V
~90 of cathode materials
Electrode materials and voltage
LCO
[LiCoO2]
High V(gt43V)
High capacity
Metal-doped LCO
[Mg Ti Al]
OLO(over-lithiated oxide)
[xLi2MnO3(1-x)LiMeO2]
bull Power
bull Cycle life
bull Safety
Low cost NCM
[LiNi13Co13Mn13O2]
NCA
[LiNi08Co015Al005O2]
[LiNi05Co02Mn03O2
LiNi06Co02Mn02O2 ]
[LiNi05Mn05O2]
bull Safety
bull Power
Low cost
safety
4V-spinel
[LiMn2O4]
5V-spinel
[LiNi05Mn15O4] bull Electrolyte
Safety
Low cost
LFP olivine
[LiFePO4]
LMP olivine
[LiMnPO4]
bull Mn dissolution
bull Electrolyte
Cathode materials for LIBrsquos
High safety but extremely low energy density
Currently used
Volume expansion when lithiated (~300 vs 10 graphite)
Mechanical degradation electrical isolation
Cell expansion amp capacity loss during chargedischarge
cycle-life
ldquoElectrode and cell expansionrdquo
ldquoCracking amp electrical isolationrdquo
Li-insertion
After cycle
14
Anode materials for LIBrsquos
100 -
200 -
300 -
400 -
500 -
Gra
vim
etr
ic e
nerg
y d
ensity(W
hk
g)
Current
LIB
Advanced
LIB
CarbonLiFePO4
Si-carbon composite
Li2MnO3-NCM
CarbonLiMnPO4
Lithium-sulfur
Lithium-air battery
All Solid State Battery
Present Near future Future
Carbon
[NCM+LiMn2O4]
Technical Trend for EV
Next generation
Battery
Advanced LIB
- E-mail hjna0805ecoplus9com
- Mobile Phone ++82-10-8966-5407

1 Most light metal
2 Most active metal
highest voltage amp energy
Why Lithium
37 V 12 V
90
110
130
150
170
190
200 300 400 500 600 700 800 900
Gra
vim
etr
ic E
nerg
y D
en
sit
y (
Wh
kg
)
Volumetric Energy Density(Whl)
Typ1250mAh
Typ1370mAh
Typ1420mAh
Typ1700mAh
Typ1900mAh
Typ2000mAh
Typ2200mAhTyp2400mAh
Typ2600mAhTyp2800mAh
Typ3000mAh
1994
1995
1996
1998
2000
2001
2002
20032005
20072008
Typ3600mAh
Typ860mAh (1st LIB by SONY)
Map of energy density for cylindrical LIB
Under development
Cylindrical LIB Capacity-up history
03V
40V
LiCoO2(145mAhg)
Li[NiCoMn]O2(145~170mAhg)
LiMn2O4(100mAhg)
Graphite(360mAhg)
LiNiO2(200mAhg)
48V
37V
38V
34V LiFePO4(160mAhg)
32V
Li4Ti5O12(160mAhg)
Electrolyte
Stable
window
LiNi05Mn15O4(110mAhg)
16V
~90 of cathode materials
Electrode materials and voltage
LCO
[LiCoO2]
High V(gt43V)
High capacity
Metal-doped LCO
[Mg Ti Al]
OLO(over-lithiated oxide)
[xLi2MnO3(1-x)LiMeO2]
bull Power
bull Cycle life
bull Safety
Low cost NCM
[LiNi13Co13Mn13O2]
NCA
[LiNi08Co015Al005O2]
[LiNi05Co02Mn03O2
LiNi06Co02Mn02O2 ]
[LiNi05Mn05O2]
bull Safety
bull Power
Low cost
safety
4V-spinel
[LiMn2O4]
5V-spinel
[LiNi05Mn15O4] bull Electrolyte
Safety
Low cost
LFP olivine
[LiFePO4]
LMP olivine
[LiMnPO4]
bull Mn dissolution
bull Electrolyte
Cathode materials for LIBrsquos
High safety but extremely low energy density
Currently used
Volume expansion when lithiated (~300 vs 10 graphite)
Mechanical degradation electrical isolation
Cell expansion amp capacity loss during chargedischarge
cycle-life
ldquoElectrode and cell expansionrdquo
ldquoCracking amp electrical isolationrdquo
Li-insertion
After cycle
14
Anode materials for LIBrsquos
100 -
200 -
300 -
400 -
500 -
Gra
vim
etr
ic e
nerg
y d
ensity(W
hk
g)
Current
LIB
Advanced
LIB
CarbonLiFePO4
Si-carbon composite
Li2MnO3-NCM
CarbonLiMnPO4
Lithium-sulfur
Lithium-air battery
All Solid State Battery
Present Near future Future
Carbon
[NCM+LiMn2O4]
Technical Trend for EV
Next generation
Battery
Advanced LIB
- E-mail hjna0805ecoplus9com
- Mobile Phone ++82-10-8966-5407

90
110
130
150
170
190
200 300 400 500 600 700 800 900
Gra
vim
etr
ic E
nerg
y D
en
sit
y (
Wh
kg
)
Volumetric Energy Density(Whl)
Typ1250mAh
Typ1370mAh
Typ1420mAh
Typ1700mAh
Typ1900mAh
Typ2000mAh
Typ2200mAhTyp2400mAh
Typ2600mAhTyp2800mAh
Typ3000mAh
1994
1995
1996
1998
2000
2001
2002
20032005
20072008
Typ3600mAh
Typ860mAh (1st LIB by SONY)
Map of energy density for cylindrical LIB
Under development
Cylindrical LIB Capacity-up history
03V
40V
LiCoO2(145mAhg)
Li[NiCoMn]O2(145~170mAhg)
LiMn2O4(100mAhg)
Graphite(360mAhg)
LiNiO2(200mAhg)
48V
37V
38V
34V LiFePO4(160mAhg)
32V
Li4Ti5O12(160mAhg)
Electrolyte
Stable
window
LiNi05Mn15O4(110mAhg)
16V
~90 of cathode materials
Electrode materials and voltage
LCO
[LiCoO2]
High V(gt43V)
High capacity
Metal-doped LCO
[Mg Ti Al]
OLO(over-lithiated oxide)
[xLi2MnO3(1-x)LiMeO2]
bull Power
bull Cycle life
bull Safety
Low cost NCM
[LiNi13Co13Mn13O2]
NCA
[LiNi08Co015Al005O2]
[LiNi05Co02Mn03O2
LiNi06Co02Mn02O2 ]
[LiNi05Mn05O2]
bull Safety
bull Power
Low cost
safety
4V-spinel
[LiMn2O4]
5V-spinel
[LiNi05Mn15O4] bull Electrolyte
Safety
Low cost
LFP olivine
[LiFePO4]
LMP olivine
[LiMnPO4]
bull Mn dissolution
bull Electrolyte
Cathode materials for LIBrsquos
High safety but extremely low energy density
Currently used
Volume expansion when lithiated (~300 vs 10 graphite)
Mechanical degradation electrical isolation
Cell expansion amp capacity loss during chargedischarge
cycle-life
ldquoElectrode and cell expansionrdquo
ldquoCracking amp electrical isolationrdquo
Li-insertion
After cycle
14
Anode materials for LIBrsquos
100 -
200 -
300 -
400 -
500 -
Gra
vim
etr
ic e
nerg
y d
ensity(W
hk
g)
Current
LIB
Advanced
LIB
CarbonLiFePO4
Si-carbon composite
Li2MnO3-NCM
CarbonLiMnPO4
Lithium-sulfur
Lithium-air battery
All Solid State Battery
Present Near future Future
Carbon
[NCM+LiMn2O4]
Technical Trend for EV
Next generation
Battery
Advanced LIB
- E-mail hjna0805ecoplus9com
- Mobile Phone ++82-10-8966-5407

03V
40V
LiCoO2(145mAhg)
Li[NiCoMn]O2(145~170mAhg)
LiMn2O4(100mAhg)
Graphite(360mAhg)
LiNiO2(200mAhg)
48V
37V
38V
34V LiFePO4(160mAhg)
32V
Li4Ti5O12(160mAhg)
Electrolyte
Stable
window
LiNi05Mn15O4(110mAhg)
16V
~90 of cathode materials
Electrode materials and voltage
LCO
[LiCoO2]
High V(gt43V)
High capacity
Metal-doped LCO
[Mg Ti Al]
OLO(over-lithiated oxide)
[xLi2MnO3(1-x)LiMeO2]
bull Power
bull Cycle life
bull Safety
Low cost NCM
[LiNi13Co13Mn13O2]
NCA
[LiNi08Co015Al005O2]
[LiNi05Co02Mn03O2
LiNi06Co02Mn02O2 ]
[LiNi05Mn05O2]
bull Safety
bull Power
Low cost
safety
4V-spinel
[LiMn2O4]
5V-spinel
[LiNi05Mn15O4] bull Electrolyte
Safety
Low cost
LFP olivine
[LiFePO4]
LMP olivine
[LiMnPO4]
bull Mn dissolution
bull Electrolyte
Cathode materials for LIBrsquos
High safety but extremely low energy density
Currently used
Volume expansion when lithiated (~300 vs 10 graphite)
Mechanical degradation electrical isolation
Cell expansion amp capacity loss during chargedischarge
cycle-life
ldquoElectrode and cell expansionrdquo
ldquoCracking amp electrical isolationrdquo
Li-insertion
After cycle
14
Anode materials for LIBrsquos
100 -
200 -
300 -
400 -
500 -
Gra
vim
etr
ic e
nerg
y d
ensity(W
hk
g)
Current
LIB
Advanced
LIB
CarbonLiFePO4
Si-carbon composite
Li2MnO3-NCM
CarbonLiMnPO4
Lithium-sulfur
Lithium-air battery
All Solid State Battery
Present Near future Future
Carbon
[NCM+LiMn2O4]
Technical Trend for EV
Next generation
Battery
Advanced LIB
- E-mail hjna0805ecoplus9com
- Mobile Phone ++82-10-8966-5407

LCO
[LiCoO2]
High V(gt43V)
High capacity
Metal-doped LCO
[Mg Ti Al]
OLO(over-lithiated oxide)
[xLi2MnO3(1-x)LiMeO2]
bull Power
bull Cycle life
bull Safety
Low cost NCM
[LiNi13Co13Mn13O2]
NCA
[LiNi08Co015Al005O2]
[LiNi05Co02Mn03O2
LiNi06Co02Mn02O2 ]
[LiNi05Mn05O2]
bull Safety
bull Power
Low cost
safety
4V-spinel
[LiMn2O4]
5V-spinel
[LiNi05Mn15O4] bull Electrolyte
Safety
Low cost
LFP olivine
[LiFePO4]
LMP olivine
[LiMnPO4]
bull Mn dissolution
bull Electrolyte
Cathode materials for LIBrsquos
High safety but extremely low energy density
Currently used
Volume expansion when lithiated (~300 vs 10 graphite)
Mechanical degradation electrical isolation
Cell expansion amp capacity loss during chargedischarge
cycle-life
ldquoElectrode and cell expansionrdquo
ldquoCracking amp electrical isolationrdquo
Li-insertion
After cycle
14
Anode materials for LIBrsquos
100 -
200 -
300 -
400 -
500 -
Gra
vim
etr
ic e
nerg
y d
ensity(W
hk
g)
Current
LIB
Advanced
LIB
CarbonLiFePO4
Si-carbon composite
Li2MnO3-NCM
CarbonLiMnPO4
Lithium-sulfur
Lithium-air battery
All Solid State Battery
Present Near future Future
Carbon
[NCM+LiMn2O4]
Technical Trend for EV
Next generation
Battery
Advanced LIB
- E-mail hjna0805ecoplus9com
- Mobile Phone ++82-10-8966-5407

High safety but extremely low energy density
Currently used
Volume expansion when lithiated (~300 vs 10 graphite)
Mechanical degradation electrical isolation
Cell expansion amp capacity loss during chargedischarge
cycle-life
ldquoElectrode and cell expansionrdquo
ldquoCracking amp electrical isolationrdquo
Li-insertion
After cycle
14
Anode materials for LIBrsquos
100 -
200 -
300 -
400 -
500 -
Gra
vim
etr
ic e
nerg
y d
ensity(W
hk
g)
Current
LIB
Advanced
LIB
CarbonLiFePO4
Si-carbon composite
Li2MnO3-NCM
CarbonLiMnPO4
Lithium-sulfur
Lithium-air battery
All Solid State Battery
Present Near future Future
Carbon
[NCM+LiMn2O4]
Technical Trend for EV
Next generation
Battery
Advanced LIB
- E-mail hjna0805ecoplus9com
- Mobile Phone ++82-10-8966-5407

100 -
200 -
300 -
400 -
500 -
Gra
vim
etr
ic e
nerg
y d
ensity(W
hk
g)
Current
LIB
Advanced
LIB
CarbonLiFePO4
Si-carbon composite
Li2MnO3-NCM
CarbonLiMnPO4
Lithium-sulfur
Lithium-air battery
All Solid State Battery
Present Near future Future
Carbon
[NCM+LiMn2O4]
Technical Trend for EV
Next generation
Battery
Advanced LIB
- E-mail hjna0805ecoplus9com
- Mobile Phone ++82-10-8966-5407

Advanced LIB
- E-mail hjna0805ecoplus9com
- Mobile Phone ++82-10-8966-5407

- E-mail hjna0805ecoplus9com
- Mobile Phone ++82-10-8966-5407