evolving a lipase for hydrolysis of natural triglycerides along with … · 2020. 11. 12. · 1...

41
This is a repository copy of Evolving a lipase for hydrolysis of natural triglycerides along with enhanced tolerance towards a protease and surfactants . White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/150864/ Version: Accepted Version Article: Alfaro-Chávez, AL, Liu, J-W, Stevenson, BJ et al. (2 more authors) (2019) Evolving a lipase for hydrolysis of natural triglycerides along with enhanced tolerance towards a protease and surfactants. Protein Engineering, Design and Selection, 32 (3). pp. 129-143. ISSN 1741-0126 https://doi.org/10.1093/protein/gzz023 © The Author(s) 2019. Published by Oxford University Press. All rights reserved. This is an author produced version of a paper published in Protein Engineering, Design and Selection. Uploaded in accordance with the publisher's self-archiving policy. [email protected] https://eprints.whiterose.ac.uk/ Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request.

Upload: others

Post on 01-Feb-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • This is a repository copy of Evolving a lipase for hydrolysis of natural triglycerides along with enhanced tolerance towards a protease and surfactants.

    White Rose Research Online URL for this paper:http://eprints.whiterose.ac.uk/150864/

    Version: Accepted Version

    Article:

    Alfaro-Chávez, AL, Liu, J-W, Stevenson, BJ et al. (2 more authors) (2019) Evolving a lipase for hydrolysis of natural triglycerides along with enhanced tolerance towards a protease and surfactants. Protein Engineering, Design and Selection, 32 (3). pp. 129-143. ISSN 1741-0126

    https://doi.org/10.1093/protein/gzz023

    © The Author(s) 2019. Published by Oxford University Press. All rights reserved. This is anauthor produced version of a paper published in Protein Engineering, Design and Selection. Uploaded in accordance with the publisher's self-archiving policy.

    [email protected]://eprints.whiterose.ac.uk/

    Reuse

    Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

    Takedown

    If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request.

    mailto:[email protected]://eprints.whiterose.ac.uk/

  • 1

    Evolving a lipase for hydrolysis of natural triglycerides along with

    enhanced tolerance towards a protease and surfactants.

    AnaL.Alfaro-Chavez1,Jian-WeiLiu

    2,BradleyJ.Stevenson

    1,AdrianGoldman

    3,4andDavidL.

    Ollis1.

    1ResearchSchoolofChemistry,AustralianNationalUniversity,Canberra,ACT2601,Australia

    2CSIROLandandWater,BlackMountain,Canberra,ACT,2601,Australia

    3SchoolofBiomedicalSciences,AstburyCentreforStructuralMolecularBiology,Universityof

    Leeds,LS29JT

    4MolecularandIntegrativeBiosciencesProgram,UniversityofHelsinki,FIN-0018.

    CorrespondingAuthor:

    DavidLOllis

    ResearchSchoolofChemistry

    AustralianNationalUniversity

    Canberra,ACT,2601,Australia

    Tel:+61254377

    E-mail:[email protected]

  • 2

    Abstract

    Intheaccompanyingpaper,wedescribedevolvingalipasetothepointwherevariantswere

    soluble,stableandcapableofdegradingC8triacylglyceridesandC8esters.Thesevariants

    were tested for theirability to survive inanenvironment thatmightbeencountered ina

    washingmachine.Unfortunately,theywereinactivatedbothbytreatmentwithaprotease

    used in laundry detergents and by very low concentrations of sodium dodecyl sulfate. In

    addition,allthevariantshadverylowlevelsofactivitywithtriglycerideswithlongaliphatic

    chainsandwithnaturallyoccurringoils,likeoliveoil.

    Directed evolution was used to select variants with enhanced properties. In the first ten

    roundsofevolution,theprimaryscreenselectedforvariantscapableofhydrolysingoliveoil

    whereas the secondary screen selected for enhanced tolerance towards a protease and

    sodiumdodecylsulphate(SDS).Inthefinalsixroundsofevolution,theprimaryandsecondary

    screensidentifiedvariantsthatretainedactivityaftertreatmentwithSDS.Sixteencyclesof

    evolutiongavevariantswithgreatlyenhancedlipolyticactivityonsubstratesthathadboth

    long(C16andC18)aswellasshort(C3andC8)chains.Wefoundvariantsthatwerestablefor

    morethan3hours inproteaseconcentrationsthatrapidlydegradethewild-typeenzyme.

    Enhancedtolerancetowardssodiumdodecylsulphatewasfoundinvariantsthatcouldbreak

    downnaturallyoccurringlipidandresistproteaseattack.Theaminoacidchangesthatgave

    enhancedpropertieswereconcentratedinthecapdomainresponsibleforsubstratebinding.

  • 3

    The object of this study was to identify lipase variants that could be used in industrial

    applications. To identify suitable variants, we used directed evolution (for reviews, see

    (Arnold1998;ArnoldandVolkov1999;Arnold2018;Porteretal.2016;Powelletal.2001;

    Turner2009)).Thestartingpointforthisworkwasacollectionofvariantsproducedinastudy

    describedintheaccompanyingpaper(Alfaro-Chavezetal.2019).Thesevariantswereevolved

    from a lipase, Lip3 (wild-type -wt), fromDrosophilamelanogaster encoded by the gene

    CG8823.Thepreviousstudyproduced30variantswithhigheractivitiesthanwtasmeasured

    withcrudelysate.Thewtandfiveofthesevariantswerepurifiedandcharacterized.Thewt

    expressed well, but had very little activity due, in part, to its poor solubility. The variants

    exhibited greatly enhanced solubility and thermal stability as well as modest increases in

    activitycomparedwithwt.Wedecidedthatthesevariantswereasuitablestartingpointfor

    thecurrentstudy,whichaimedtoidentifyvariantsthatcouldwithstandtheharshconditions

    foundinlaundrydetergents.

    Laundrydetergentsvaryconsiderably incompositionandapplication.Asetof threequite

    different detergents was chosen for testing variants. The first was a traditional laundry

    powder,LD1,thatreliedmainlyuponsurfaceactiveagentstocleancloths.Thesecond,LD2,

    wasintendedforwashingincoldwaterandcontainedanenzymethatremovedstainsthat

    wererichinprotein;theenzymewasthoughttobeavariantoftheproteasesubtilisin.The

    third detergent, LD3, is marketed as a liquid; it operates in warm water and is intended

    primarilytoremovestainscausedby lipids.Theenzymepresent is thoughttobea lipase.

    Therewerepredominantlytwotypesofsurfaceactiveagents inthesedetergents;anionic

    and non-ionic. There were many types of each of these surface-active agents in the

    detergents,toomanytobeusedforselectioninourexperiments.Wethereforeusedasingle

    representativesurfaceactiveagent,sodiumdodecylsulphate(SDS) intheexperiments.As

    willbeshownbelow,thestartingvariantsexhibitedgoodtolerancetowardssomenon-ionic

    agents,whiletheyshowedpoortolerancetowardsSDS,ananionicsurface-activeagent.One

    ofouraimswastoidentifyvariantsofLip3thatwerestableinSDSandthatretainedtolerance

    tonon-ionicsurface-activeagents.

  • 4

    In addition to surface-active agents, laundry detergents frequently contain enzymes.

    Proteaseswerethefirstandarestillthemostcommonenzymeadditive(Kumaretal.2008;

    Maurer 2004; Saeki et al. 2007). Lipases are also found in laundry detergents (Adrio and

    Demain2014;Hasanetal.2010;NiyonzimaandMore2015),butarenotusedinconjunction

    withproteases thatcoulddegradethem.Acommercialpreparationofsubtilisinknownas

    Alcalase®,wasoneofasetthatwereavailablefromcommercialsuppliersforuseinlaundry

    detergents.Ourobjectivewastoidentifyvariantsthatcouldwithstandtreatmentwiththis

    proteasealongwithsurfaceactiveagents. Inaddition,wewantedLip3variantsthatcould

    degrade lipidsthatmightbeencountered inawashingcycle.Thestartingvariantsforthis

    workhadenhancedactivitytowardstri-octylglyceride.Wewantedtoidentifyvariantsthat

    could act on tri-acyl glycerides with long chains (C16 and C18) and natural oils that had

    variablelengthchains,specificallyoliveoil(16-22C)(Quintero-Flórezetal.2015)andcoconut

    oil(6-14C)(Bezardetal.1971).

    Ourgoalwas to identifyvariantswithenhancedtolerance toSDSandthatwereprotease

    tolerantwhileexhibitingbroadsubstratespecificity.Aschematicworkflowdiagramofthe

    experimentalprocedure isshowninFigure1.Theinitialobjectivewastoproducevariants

    suitableforindustrialapplications.However,itisthemethodsusedtoidentifyvariantsthat

    maybeofpracticaluseratherthanthevariantsthemselves.Ourapproachcanbemodified

    todealwith the featuresofaspecific laundrydetergent. If thedetergentusesaprotease

    otherthanAlcalase®,ourapproachcanbeusedtoevolvetolerancetothatenzyme;and,of

    course,surfactantsotherthanSDScouldbeusedinthesecondaryselectionprocess.

    MaterialsandMethods

    Thematerialsandkitsusedformolecularbiologyaredescribedintheaccompanyingpaper

    (Alfaro-Chavezetal.2019).ChemicalsusedwereofanalyticalgradeandobtainedfromMerck

    Pty. Ltd. (Australia) unless otherwise stated. Tris buffer was obtained from BioStrategy

    (Australia), sodium dodecyl sulfate (SDS) from Amresco (Australia) and Bromophenol blue

    fromLabChemInc.(PA).MaterialstoprepareculturemediawerefromBactoLaboratories

    PtyLtd(Australia).Oliveoil,coconutoilandcommercialdetergents(LD1,LD2andLD3)were

    purchasedfromaCanberransupermarket(2016).

  • 5

    Phase1-Initialcharacterization

    Lip3wtandvariantsR7_59A(Round7,Tray5,Well9A)andR7_82Ewereselectedforinitial

    characterization. These enzymes were purified as described in the accompanying paper

    (Alfaro-Chavezetal.2019).Theobjectofthe initialcharacterizationwastodeterminethe

    abilityoftheenzymestodegradeesterswithlongchains;foursubstrateswereused:pNP-C3,

    pNP-C8, pNP-C16 and pNP-C18. This assay was essentially the same as described in the

    accompanyingpaper(Alfaro-Chavezetal.2019)andwillonlybebrieflydescribedhere.All

    assays were done in triplicate. In addition, the ability of wt and variants to tolerate

    commercialdetergentswithagarplateswastested.

    Esteraseactivity

    Theesteraseactivitywasmeasuredspectrophotometricallyasdescribedintheaccompanying

    paper(Alfaro-Chavezetal.2019).Alltheesteraseassaysweredonewith0.4mMofsubstrate

    andthehydrolysisreactioncarriedoutin96wellplates.Thefinalvolumeofthereactionmix

    was200µLconsistingof100 µLofenzymesolution–eitherpurifiedproteinorcrudelysate.

    Asnotedinthepreviouspaper(Alfaro-Chavezetal.2019),thepurifiedenzymewasstoredas

    aconcentrateinbufferA(seeproteinpurification)anddilutedintoassaybuffer(50mMTris-

    HClBuffer,pH8).100 µLofsubstratesolutionwasaddedtotheenzymesolutionandthe

    reactionfollowedat405nmfor5minutesat22oC.Eachsubstratewaspreparedasfollows:

    aquantityofsubstratewasdissolvedin10mLof isopropanolbeforemixingwith90mlof

    assay buffer to give twice the final substrate concentration. 20 µL/mL Triton X-100 was

    requiredinthefinalsubstratepreparationtopreventtheprecipitationofpNP-C16andpNP-

    C18whentheyweremixedwiththeassaybuffer(Guptaetal.2002).Theactivitywastaken

    astheinitialvelocityofthereaction,asdescribedinouraccompanyingpaper(Alfaro-Chavez

    etal.2019).

    TolerancetoDetergent,SDSandTolerancetoAlcalase

    Twoesteraseassayswerecarriedout.Inthefirst,theassaywasasdescribedintheprevious

    paragraph.Inthesecond,the100µLofenzymealsocontainedeither:5g/LLD1,LD2,orLD3,

    or2%(v/v)TritonX100or20g/LSDS,or0.4%(v/v)Alcalase®.Thesolutionsofenzymeand

  • 6

    additivewereincubatedat22°Cforonehourandtheactivitymeasuredasdescribedinthe

    previousparagraphusingpNP-C16.Thetoleranceswerecalculatedbydividingtherateofthe

    secondreactionbythefirst.

    Tolerancetocommercialdetergentsasdeterminedwithagarplates.

    Theagarplateswerepreparedinessentiallythesamewayasdescribedintheaccompanying

    paper(Alfaro-Chavezetal.2019).However,inadditiontoC8-TAG,variousconcentrationsof

    thecommercialdetergents(0.1%,0.5%,1%and2%)wereadded.

    Phase2-Evolution

    Stage1-Librarycreation

    ThelibrarycreationemployederrorpronePolymeraseChainReaction(epPCR)asdescribed

    previously (Alfaro-Chavez et al. 2019; Stevenson et al. 2008). This protocol used short

    extensiontimessothatthegeneswouldbeshuffledwiththeStaggeredextensionprocess

    (StEP)(Stemmer1994;Zhaoetal.1998).R8wasgeneratedfrom50-60ngofeachofthe30

    genes isolated in R7 variants. Randomized mutations were introduced using MnCl2, high

    concentrationsofMgCl2andTaqDNApolymerase(Alfaro-Chavezetal.2019).Thelibraries

    forR8toR23wereproducedbymixingtheproductofthreePCRruns,eachwithdifferent

    amounts of MnCl2. The amplified mixed product was cleaned using the Wizard® PCR

    purificationkit(Promega)anddigestedwith20UofeachNdeIandEcoRI-HF.Thedigestion

    proceededat37°CforthreehoursintheCutsmart®buffer.Thedigestedproductwasisolated

    byagarosegelelectrophoresisandtheWizardpurificationkit.TheligationwassetupwithT4

    DNAligaseandthepurifiedPCRproductligatedintothepETMCSIIIplasmidcutwiththesame

    restrictionenzymes.Thereactionwascarriedoutovernightat4°C.Theresultantplasmids

    werepurifiedwiththePromega®PCRpurificationkitandelutedinto30µLofwaterbefore

    transformationintoE.coliBL21(DE3)byelectroporation.TransformantswereplatedonLB-

    agarplateswith100mg/Lampicillintodeterminetheconcentrationofcolonyformingunits

    beforeplatingoutallofthelibraryonselectionagarplatesat300-500coloniesperplate.

    TheinitialR14librarygaveasmallerthanexpectednumberofcolonieswhenitwastested,

    solibrarycreationwasrepeatedwiththeadditionofthewtgenetothemixtureofgenesto

    perform this epPCR cycle. In R19 a different approach was taken. The digested gene was

  • 7

    ligatedintopET26btoreducetheexpressionlevel.However,thetransformationefficiency

    was still lower than required. The problem with library size was eventually solved by

    introducinganewprimerforsequencingandepPCR:5’-GAAGGAGATATACATATGGG-3’.

    This primer included theNdeI site and was used in R19 to R23. R23 was prepared as for

    previousroundsexceptthattheparentgenesusedastemplatesinepPCRwereR18_211H,

    R21_112B,R21_411C,R22_73H,R22_512GandR22_311H.

    Stage2-Libraryscreening

    Thiswasthedonewithalargeprimaryscreenthatgaveafewhundredvariantsfortestingin

    secondaryscreens.Theprimaryscreenwasdoneinthreedifferentways:A)agarplateswith

    lipid(R8through17),B)96-wellplateculture(R18)andC)agarplatesreplicatedontofilters

    withselectionusing1-naphthylpalmitate.Themethodsusedfortheprimaryscreenaregiven

    below,followedbythesecondaryscreenmethods.

    Agarplates+lipid:R8-R17.

    TheagarplateswerepreparedwithglyceryltrioctanoateinR8andR9andwitholiveoilin

    R10toR23,butwithdetergentsincludedinR10andR11.Asinourpreviousstudy,theLBagar

    plateswerepreparedwiththelipidsincorporatedbysonication.ForR8andR9,themolten

    agarsolutionconsistedof0.6%TGC8incorporatedwithvigorousagitationbeforesonication

    (at≈60°C)fortwoperiodsof15minat50%powerand50%pulselengthusinganOmniSonic

    Ruptor®sonicatorequippedwithanOT-T-375probeprovidedbyOmniSonic.Ampicillinwas

    added in a final concentration of 50 µg/mL. The agar plates with olive oil had a final

    concentrationof0.2%(v/v)andwerepreparedinthesameway.R10andR11usedagarplates

    supplementedwithanenzymaticdetergent(LD2)previouslyheatinactivated(65°Cforone

    hour).Thedetergentwasaddedtoafinalconcentrationof0.1%(w/v).

    Therewerebetween300to500coloniesinoculatedperplate.Theselectionwasbasedon

    the quality of the halos. This usually meant that colonies with the largest haloes were

    selected. Not all colonies grew to the same size and so in some cases, we selected small

    colonieswithlargehaloescomparedtothecolonysizeforsecondaryscreening.

  • 8

    96-wellplateselection:R18

    AfterR17,wedecidedtoscreenlargelibrariesfortolerancetoSDS.InR18thiswasdonewith

    96-wellplates.ThelibraryforR18consistedof~1.4x104variantsandwasplatedin4096-well

    platesso thateachwellhad,onaverage,between3-4colonies thatgrew in200µLofLB

    mediumwith50µg/mLampicillin.Theplateswereincubatedfor18hoursat37°Cand500

    rpminHeidolphMicroplateShakerTitramax1000withIncubator1000.Afterincubation,25

    µLofcultureweretransferredtoreplicaplates(twicetogiveplatesAandB)andlysedwith

    2µgoflysozyme.

    PlateAwasusedtoselectmutantstolerantto0.5%SDSandplateBwasusedtochecklipolytic

    activity.70µLofSDSsolutionpreparedinassaybuffertoafinalconcentrationof0.5%SDS

    wasaddedtoplateA.After15minutesofincubationatroomtemperature,theactivitywas

    measured by adding 100 µL of pNP-C16 substrate mixture . Activity was followed for 5

    minutesat405nminaSpectramaxM2ereaderatroomtemperature.Totestlipolyticactivity,

    wepreparedamixture(0.02%v/vcoconutoil,0.02%oliveoilv/vin1mMTris-HClbufferpH

    8, 0.07 mM phenol red and 0.1% Triton X-100 as emulsifier), which was sonicated for 15

    minutesatmediumultrasonicpowerinSoniclean160TUltrasonicCleaner3todissolvethe

    lipids.175µLofthismixturewasaddedtoplateB.

    Theplateswereincubatedatroomtemperatureat100rpmfor1hourinHeidolphMicroplate

    Shaker Titramax 1000 and the mutants that turned yellow were selected. The mutants

    selected from plates A and B were streaked into LB amp plates with 0.2% olive oil and

    incubated overnight at 37° C. the colonies with the clearest haloes were selected and

    transferredtonew96-wellplateswith200µLofLBmediumwith50mg/Lampicillin(LBA)

    andincubatedat37°Covernightandfurthertestedinsecondaryscreening.

    Agarplates–1-Naphthylpalmitate:R19-R23.

    This screen followed a similar protocol to one that had been used to select lipases for

    biodieselproduction(Kormanetal.2013).Thescreen involvedreplicationofthecolonies,

    their lysis, treatment of the lysate with SDS and subsequent activity determination. After

    preparing the library determining the cell density, around 500 colonies per plate were

  • 9

    inoculated on LB agar plates with Ampicillin. The plates were then incubated at 37° C

    overnight. The colonies were then blotted onto Whatman grade 3 filter paper (GE

    Healthcare),lysedwith50mMTris-HClatpH8,0.1MNaCl,0.1%TritonX-100and1mg/ml

    lysozyme (Sigma) and incubated for one hour at room temperature. The lysis buffer was

    decantedandthelysedcellstreatedwithSDSforonehour,withtheconcentrationofSDS

    increasedineachroundofevolution.Theactivityofthelysedcellswasdeterminedbyadding

    amixtureof1mM1-Naphthylpalmitate,3mMFastBlueB,0.5%(v/v)TritonX-100and0.5%

    (w/v)agarand50mMTris-HClpH8.Activemutantsexhibitedanintensebrownishcolour,so

    thecorrespondingcoloniesontheagarplatesweretransferredto96-wellplateswith200µL

    of LBAand incubated at 37 °C overnight. The variants were then tested in the secondary

    screen.

    Stage3Secondaryscreen

    Thecoloniesofvariantsselectedintheprimaryscreenweregrowntoprovidecrudelysate

    fortestingtheiresteraseactivity,andsomeoftheroundsusedotherassaysaswell.InR18

    anesteraseassaywasusedtoselectvariantstogeneratethenextlibrary.Inotherrounds,

    two assays were used to select variants. These dual assays employed an esterase to

    determine:A)tolerancetodetergents(R8-R10),mainlySDS(R11–R17andR19–R23);B)

    tolerancetoprotease(R12–R17);andC)Thermostability(R21-R23).Inthesedualassays,

    variants that exhibited good activity in either assay were selected along with those that

    performedwellinbothassays.

    Coloniesweregrownin96-wellplateswith200µLofLBmediumcontaininganantibiotic.

    Thesesolutionswereinoculatedwithcoloniesselectedfromthepreviousprimaryscreenand

    were grown for 18 hours at 37° C in an incubated shaker (Heidolph Microplate Shaker

    Titramax1000withIncubator1000)setat500rpm.Next,25µL(R15–R18)or50µL(R11–

    R14andR19-R23)or100µL(R8–R10)aliquotsofovernightcultureweretransferredto96-

    wellplatesandlysedwithlysozyme(finalconcentration80µg/mL)inassaybufferininafinal

    volumeof250µL.

  • 10

    Esteraseactivity

    Esteraseactivitywasmeasuredusingp-nitrophenylesterstoidentifythemostactivevariants.

    Thisassaywasessentiallythesameasusedfortheinitialcharacterisationasdescribedabove

    asintheaccompanyingpaper(Alfaro-Chavezetal.2019).Thereactionmixturecontained30

    µLofcrudelysatetowhich70µLassaybufferwasadded.Thereactionwasinitiatedbythe

    additionof100µLofsubstratemixturepreparedasdescribedunderinitialcharacterization.

    The formation of p-nitrophenolate was followed spectrophotometrically at 405 nm. The

    activitywastakenasthe initialvelocityof thereaction,asdescribed inouraccompanying

    paper(Alfaro-Chavezetal.2019).

    TolerancetoDetergent,SDS,orAlcalase

    With one exception, the same methods were used as those described in the Initial

    Characterizationsectiongivenabove.Theexceptionwasproteinsource;crudelysateswere

    usedasdescribedinthepreviousparagraph.InthesecondaryscreenforR23,theesterase

    activitywasmeasuredbeforeandaftertreatmentwith4%(w/v)SDSasdescribedbelow(final

    characterisation).ThemosttolerantandactivevariantwascharacterizedinPhase3.

    Thermostability

    Lipasesampleswereincubatedat60-65°Cfor30minutesfollowedby4°Cfor20minutesin

    a Bio-Rad C1000TM

    before centrifuging in an Eppendorf 5804 Benchtop centrifuge for 5

    minutesat300rpm.Fiftymicrolitresofeachsupernatantwasaddedtoa96-wellplatewell

    and50µLofassaybufferwasaddedbeforethereactionwasinitiatedwith100µLofpNP-C8

    ester.Theinitialratewasmeasuredasdescribedaboveforesteraseactivity.

    Phase3-Finalcharacterization

    Wecharacterisedseveralvariantstogainsomeinsightsintothecourseoftheevolution.The

    variantschosenwerethebest in their respectiverounds.VariantswerechosenfromR13,

    R17,R18,R20andR23(R13_44C,R17_29G,R18_211H,R20_11A,R23_110A).Theseenzymes

    werepurifiedasdescribedintheaccompanyingpaper(Alfaro-Chavezetal.2019).Mostof

    the assays were same as described above in the initial characterization. In addition, the

    lipolyticactivityofthesevariants,wt,R7_59AandR7_82Eweremeasured(below)andthe

    meltingtemperature(T50)wasdetermined.WedefinedtheT50asthetemperatureatwhich

  • 11

    theenzymeretainshalfofitsactivityafterheattreatmentfor45minutes(formethodssee

    (Alfaro-Chavezetal.2019)).ActivityasafunctionofSDSconcentrationwasalsodetermined

    fortheR7_59A,R18_211HandR23_110Avariants.Allassaysweredoneintriplicate.

    Lipolyticactivity

    Themethodapplied,detailedintheaccompanyingpaper(Alfaro-Chavezetal.2019),isbased

    onthelipaseassaydescribedby(Camacho-Ruizetal.2015).Inadditiontothesubstratesused

    inthepreviousstudy,glyceryltrioleateandoliveoilwerestudied.Themethodmeasuresa

    shiftinpHthatisproduceduponthereleaseoffreefattyacidsinthelipasecatalysedreaction.

    Thebufferusedwas1mMTrisHClpH=8with0.07mMphenolred.Sonicationwasusedto

    incorporate the following lipids into this buffer: 1 mM tributyrin-TG C4, 1 mM glyceryl

    trioctanoate-TGC8,1mMglyceryltrioleateTGC18,0.04%coconutoiland0.04%oliveoil.

    Theassayrequired0.2%TritonX-100forOliveoilandTGC18.Thereactionwasinitiatedby

    theadditionof10µLofenzymesolutionto190µLofsuspendedsubstrate.Thereactionwas

    followedspectrophotometricallyat560nm.TheamountofacidreleasedasafunctionofpH

    wasreadfromthecalibrationcurveintheaccompanyingpaper(Alfaro-Chavezetal.2019).

    Theactivity/permoleofenzymewascalculatedforeachvariant.

    TolerancetohighconcentrationsofSDS

    The tolerance of R7_82E, R18_211H and R23_110A to high concentrations of SDS was

    determined. The protein concentration used was 1 mg/ml (R7_82E) and 0.1 mg/ml

    (R18_211HandR23_110A)allintheassaybuffer.AhigherconcentrationoftheR7variant

    wasneededsothatitsactivitycouldbeaccuratelymeasured.WeaddedSDSstocksolution

    (20%w/v)to50µLoftheproteinsolutionandmadethesolutiontoafinalvolumeof100µL

    withfinalSDSconcentrationsof0.1,0.5,2,4,8and10%.AcontrolwithoutSDSwasalso

    madeandusedtomeasuretheinitialactivityoftheenzymes.Thesesolutionswereleftfor

    30minutesat22oC.TheSDSwasprecipitatedwith25µLofassaybufferthatcontained0.3

    MKCl,andanother25µLassaybufferaddedtogiveafinalvolumeof150µL.Thesolutions

    werecentrifugedfor30minutesat2235gatroomtemperatureand10µLofsupernatant

    weretransferredtofresh96-wellplatestomeasureesteraseactivitywithpNP-C16.Activity

    wasmeasuredspectrophotometricallyat405nmasdescribedunderinitialcharacterization.

  • 12

    This procedure was applied as a secondary screen for R23 with 4% of SDS as final

    concentration.

    Proteolyticdigestion

    TheR712HwassubjectedproteolyticattackwithAlcalase®.Sampleswerepreparedfollowing

    theproceduredescribedbyWu(Wuetal.1999).0.1%v/vAlcalase®waspreparedwith50

    mMphosphatebufferandmixedina1:1ratiowith8mg/mlofthelipasesolution.Samples

    wereincubatedat22°Cand120μLaliquotswereremovedat:1,2,3,4,6,8,10,20,30,40,

    50and60minutes.40μLof10%trichloroaceticacidwasaddedtoeachsampletostopthe

    reaction.Thesampleswerecentrifugedat12500rpmfor5minutesandwashedtwicewith

    200μLdiethylether.Thesampletubeswerethenleftopentoevaporatethediethylether

    andthepelletresuspendedin100μLofbuffer(50mMTris-HClpH8)andpreparedtorunin

    a SDS-PAGE gel. The sample collected after one minute gave rise to bands in a gel that

    corresponded to Alcalase along with the intact variant and a collection of low molecular

    weightbands.ItappearedthatAlcalasehaddigestedmuchoftheenzymeafteraminute.A

    samplecollectedafteroneminutewasbuffer-exchangedusinganAmiconUltrafilterinto0.5

    mLof20mMammoniumformatepH3usingthreewashesat4°Cfollowedbycentrifugation

    at10000rpmfor5minutes.Thefinalconcentrationofthesamplewas2mg/mL.Thesamples

    wereanalysedattheMassSpectrometryFacilityattheResearchSchoolofChemistry(ANU)

    andthecleavagesitesidentifiedusingtheFindPeptserver(Gattikeretal.2002).

    Theworkdescribedherecanbedivided(Figure1)intothreephases.Inthefirstphase,we

    characterizedtheabilityofthestartingvariantstodegradeavarietyoftriacylglycerols(TAGs)

    andesterswithlongaliphaticchains,aswellastheirtoleranceofsurfaceactiveagentsand

    proteolyticenzymes.Theresultsoftheseexperimentswereusedtodesigntheexperiments

    inthesecondphase,theevolution. Theevolutionwasaniterativeprocessinwhichthree

    stages were repeated till the desired variants were obtained (Figure 1). In the first stage,

    librariesofmutatedgenesweregeneratedand transformed intoE. coli for the two-stage

    screeningprocess.Theselibrariesvariedinsize,theaveragebeingaround5x104,fromwhich

    about103variantswereselectedforsecondaryscreening,andafewtensselectedtogenerate

  • 13

    the next library. As will be described below, the methods used to measure activity in the

    secondary screen utilized variants as produced in crude lysates so that it was not clear if

    increases in activity were due to increased catalytic performance or a change in physical

    properties,suchasincreasedexpression,solubilityorstability.Forthisreason,aselectionof

    variants was purified and characterized; their catalytic properties were determined along

    withtheirtoleranceofproteasesandsurfaceactiveagents.

    Phase1InitialCharacterisation

    Our startingpointwas the30variantswehadpreviously identifiedafter seven rounds of

    directed evolution as being more stable, soluble and active thanwt (Alfaro-Chavez et al.

    2019).WetestedtheabilityofwtandtwoselectedR7variantstodegradeesterswithlong

    aliphaticchains,andtheiractivitiesafterbeingtreatedwithsolutionsofthreecommercial

    laundrydetergents(LD1,LD2andLD3),SDS,ananionicdetergent,andTritonX-100,anon-

    ionicdetergent.R7_59AandR7_82Ewerechosenbecausetheyexhibitedthebestlipolytic

    activitywithnaturaloils(Alfaro-Chavezetal.2019).

    NeitherthewtnortheR7variantsexhibitedsignificantactivityinthepresenceofSDS,LD1or

    LD2(TableI).AlthoughLD2containedaprotease,itwasheatinactivatedpriortobeingused,

    sothelackofactivityisnotduetoproteolysis.Thestartingvariantsexhibitedvaryinglevels

    oftolerancetoTritonX-100andLD3.TheR7_59Avariantwasunaffectedby2%TritonX-100,

    suggesting that tolerance to this reagent would not present problems for evolution.

    Alcalase®,aproteasemarketedforuseinlaundrydetergents,almostcompletelyinactivated

    thewt enzyme, but R7_82 exhibited some tolerance to it, suggesting that finding other

    variants resistant to proteases should be possible. Although the starting enzymes had

    reasonablelevelsofactivitytowardsC3andC8substrates,theyhadlowlevelsofactivitywith

    substratesthathadlongaliphaticchains(C16andC18).Forthisreason,wedecidedtoselect

    foractivitywithasubstratethatwasmid-waybetweenC8andC16,soC12esterswereused

    inthefirstround(R8)oftheexperimentsdescribedinthispaper.

    TheadditionofTAGstoagarmakestheplatescloudy,andtheybecomeclearinthepresence

    ofanactivelipase,socoloniesproducingactivelipasehaveclearhaloesaroundthem(Lanka

    and Latha 2015; Lawrence et al. 1967). Could we add detergents to the agar to test for

  • 14

    tolerancetothesereagents?SDSlysescellssoitwaspointlesstryingthisreagent.However,

    low concentrations of LD1 and LD2 could be used while LD3 did not appear to be an

    impedimenttogrowthofE.coli(TableII).WedecidedtotryLD2intheprimaryscreenforR9

    andR10(TableIII),butitresultedinlowsurvivalratesandsoitwasnotusedinlaterrounds

    ofevolution.Theseresultssuggestedthat,iflargelibrariesweretobetestedfortoleranceto

    surfaceactiveagents,thetestswerebestdoneinthesecondaryscreen,asinR8toR17,or

    byreplicatingthelibraryandlysingcells,aswasdoneinR18toR23.

    Phase2Evolution

    Thesecondphaseofthisworkinvolved16roundsofdirectedevolutionthatcanbedivided

    intothreesectionsbasedontheselectionconditions(TableIII).Inthefirstsection(R8-R17),

    selectionintheprimaryscreenwasdonewithagarplatesdopedwithTAGsoroliveoil.Asin

    theaccompanyingpaper(Alfaro-Chavezetal.2019),selectionintheprimaryscreenwasdone

    bypickingcoloniesthatgaverisetolargehaloes.Inthesecondsection(R18),96wellplates

    were used to grow a library for primary screening and selection was done by monitoring

    esteraseactivity in thepresenceofSDSornaturaloils. In the thirdsection (R19-R23), the

    librarywasgrownonagarplates,replicatedonafilter,thecellslysedandactivitymonitored

    with1-naphthylpalmitate.Attheendofeachround,thegenesofvariantsselectedinthe

    secondaryscreenweresequenced(TableS2).

    Thegenesofthebest30variantsidentifiedattheendofthepreviousstudy(Alfaro-Chavez

    etal.2019)wereused,asinthatpaper,togeneratethelibraryscreenedinR8.Thelibrary

    size was estimated to be 3 x 105, much higher than subsequent libraries, because larger

    quantitiesofgenesfrommorevariantswereused. Insubsequentrounds, the librarysizes

    variedfromabout8x103to6x10

    4.ThiswasnotduetotheamountofDNAusedtogenerate

    thelibrary,andnotbecausethevariantswerebecominglethaltothecells.Thelatteridea

    wastestedinR19byexpressingthevariantgenesinwithaplasmidthatgavelowerlevelsof

    expression(pET26b),whichonlygaveaslightincreaseinlibrarysize.Wethereforeacquired

    a fresh stock of pETMCSIII and new primers for the epPCR (see methods), which led to

    relativelylargelibrariesforthefinalthreerounds(TableIII).

    R8-R18:Broadeningspecificityandincreasingtolerance

  • 15

    The objectives of the evolution varied through the course of the experiment, and so the

    methods used to screen the libraries changed (Table III). In R8 through R12, the primary

    screen targeted rate enhancement and broader substrate specificity while exposing the

    variantstolowlevelsofcommerciallaundrydetergents.InR8,theprimaryscreenutilisedC8

    TAG,withpNP-C8inthesecondaryscreen.Thiswasliketheconditionsusedtoselectvariants

    inR1throughR7ofourpreviousstudy.InR12,colonieswereselectedafter72hoursbased

    onhaloesformedinplatescontainingfromoliveoil.Inthesecondaryscreen,goodactivity

    wasobtainedwithpNP-C12.Intheserounds,therewasanincreasingamountofSDSadded

    tolysatepriortotheesteraseassay;inR12theSDSconcentrationwas0.07%,upfromthe

    0.02%usedinthepreviousround.

    InR13throughR17,evolutionforenhancedcatalyticpropertiescontinued.Forinstance,In

    R13haloeswereobservedafter48hourswhileinR17haloescouldbeseeninjust40hours.

    Inthesecondaryscreen,esteraseactivitywaseasilydetectedwithpnp-C12inR13andwith

    pNP-C16inR17.InR13,0.4%Alcalasewasaddedtothecrudelysateanhourpriortoassaying.

    ThesameconcentrationofproteasewasusedinR17,butthevariantswereexposedfor3

    hours.VariantswithgoodtolerancetoAlcalasewereeasilyidentifiedinthesecondaryscreen,

    butthesamewasnottrueforSDStolerance.Attemptsto increasetheSDSconcentration

    above0.1%didnotproducemanyvariantswithdetectableactivity.Itappearedthatthesmall

    secondarylibrariesweresufficientlylargetoincludevariantsthatweretoleranttoprotease,

    butnottoincludethosewithincreasedtolerancetoSDS.Largerlibrarieswerenecessaryto

    screenforSDStoleranceatconcentrationsclosetothetargetof2%.

    InR18,thelibraryusedfortheprimaryscreenwasgrownin96wellplates,replicated,cells

    lysedandtreatedwith0.5%SDSandafteranhourassayedwithpNP-C16toselectvariants

    forsecondaryscreeningwithpNP-C16.Theresidualactivityofonevariantwasmeasuredas

    afunctionofincreasingSDSconcentration(Figure2).ItwasclearthattheR18_211Hvariant

    was considerably more active than the R7 variants, that it retained more than half of its

    activity after treatment with 2% SDS for 15 minutes, and that 4% SDS was required to

    completelyabolishactivity.Atthispoint,R18_211Hwaspurifiedalongwiththewt,twoR7

    variants(R7_59AandR7_82E),oneR13variant(R13_44C),andoneR17variant(R17_29G).

    The properties of these proteins were determined, showing that directed evolution had

  • 16

    resultedinasignificantincreaseinSDStolerance(TableIV).R13_44Cretainedabout60%of

    its activity after 1 hour at 22 ºC with 2% SDS; R17_29G retained 70% whereas R18_211H

    retainedover80%activityinthesametest.Furthermore,R18_211Hwasunaffectedby2%

    TritonX-100,2%Alcalase,0.5%LD2orLD3.ItappearedthatselectionforSDSstabilitywas

    sufficienttoidentifyvariantssufficientlystabletowithstandthedetergentinLD2andLD3.

    R18_211H lost most of its activity when treated with LD1, but was still better than the

    R17_29G;theincreaseinSDStolerancewasaccompaniedbyanincreaseinthermostability.

    TheT50ofR18_211Hwas37o

    Chigherthanthatofthewt,23o

    ChigherthanthebestR7variant

    and18o

    CbetterthanR17_29G(TableIV).TheesteraseactivityoftheR18variantwassimilar

    forpNP-C3,pNP-C8,pNP-C16andpNP-C18substratesanditsactivitywiththelongestchain

    substrates was significantly better variants from previous rounds. This broadening of the

    substratespecificitywasreflectedinthelipolyticactivityoftheR18variant,asitwasmore

    activethanvariantsfrompreviousroundagainstlong-chainTAGs.

    R19toR23:EvolutionforSDStoleranceandCharacterization

    Our goal was to develop a high-throughput screen to select for variants with improved

    tolerancetoSDS.ItwasclearfromR18thatlargelibraries(oftheorder104)wereneededto

    improvetolerancetoSDS.However,makingsuchlargelibrarieswaslaboriousandexpensive

    using96wellplates (>600platesneeded fora6x104 library), sowedecided todevelopa

    replica agar plate assay (see Methods). In R19 through R23 variants were selected for

    secondaryscreeningiftheyexhibitedgoodesteraseactivityaftertreatmentwithSDSona

    replicaplate.Inthesecondaryscreen,theactivityofvariantswasmeasuredwithanesterase

    assay before and after treatment with SDS so that the stability of variants could be

    determined.TheSDSconcentrationwasincreasedsteadilyduringtheserounds(TableIV).In

    R23 olive oil was added to the agar plates used in the primary screen, and selection for

    secondaryscreeningrequiredgoodlipaseactivityaswellasesteraseactivityaftertreatment

    withSDS. Inthisround,3%SDSwasused intheprimaryscreenwhile4%wasused inthe

    secondary screen. We also selected for thermostability in the secondary screen (see

    Methods).

  • 17

    Phase3Detailedcharacterization

    The best variants from each of R13 (R13_44C), R17 (R17_29G), R18 (R18_211H), R20

    (R20_11A),andR23(R23_110A)werepurifiedandcharacterized(TableIV).Inaddition,for

    purposesofcomparison,thewtproteinandtwoofthebetterR7variantswerepurifiedand

    characterized.ComparedwiththeR7variants,theyieldofpurifiedproteindecreased.For

    example,theR7_82Egave55mgfroma250mLculturewhileR18_211Hgrownunderthe

    sameconditionsgave43mg.ComparedwithR7variantstherewasanincreaseinesterase

    andlipaseactivities(TableIV).TheR23_110Avariantwas2-3timesmoreactiveonC3andC8

    shortchainesterscomparedtotheR18_211Hvariant,butabout50%lessactiveonC16and

    C18esters(TableIV).ThiswassurprisingasselectioninthesecondaryscreenwaswithapNP-

    C16substrate.LipolyticactivitydroppedbetweenR18andR23;theactivitiesofR23_110A

    withallsubstrates1.5-3timeslessthanforR18_2117H.

    SDStoleranceimprovedastheevolutionprogressed.Therewasnoobservablelossinactivity

    in the R20 variant after treating with 2% SDS for one hour while the same treatment of

    R23_110A resulted in an increase in the residual activity; concentrations of SDS up to 4%

    activateit(Figure2).CompleteabolitionofactivityoftheR23variantrequiredaonehour

    treatment with 10% SDS as is evident in Figure 2. Although the R23 variant exhibited

    extremelygoodtolerancetoeitherSDSorTritonX100,itwasnotastolerantofcommercial

    powdersLD1andLD2andAlcalasecomparedwiththeR18variant(TableIV).Forexample,

    theR18variantretainedabout80%ofitsactivitywhentreatedwithSDSandretainednear

    100%ofitsactivityaftertreatmentwithLP2orAlcalasewhereastheactivityoftheR23variant

    increased by a factor of 2.6 after treatment with SDS but retained only about 10% of its

    activity after treatment with LP2 and 40% of its activity after treatment with Alcalase.

    However, treatment with LD3, a product formulated to accommodate a lipase, did not

    diminishtheactivityoftheR18,whileitappearedtoactivatetheR23variant.

    Itwasexpected that increased tolerance toSDSwouldbeaccompaniedbyan increase in

    thermostabilityandallthepost-R7variantshadincreasedthermalstabilitycomparedtothe

    R7variant.However,theredidnotappeartobeacorrelationbetweentolerancetoSDSand

    thermostability. The R18 variant exhibited the best thermostability (T1/2 = 73o C), but the

  • 18

    thermalstabilityoftheR23variantwaslower,butstillrespectable(T1/2=65oC),beingclose

    to30o

    Chigherthanthewt.

    Theabilityofavarianttotolerateaproteasereached100%inanR13variantbutdecreased

    to80%inR17_29G(TableIV).However,theabilitytotolerateaproteasevariedwithinany

    round(Figure3),andtherewereafewvariants inR17thatexhibited100%tolerancetoa

    protease after 1 hour and maintained most of their activity after 3 hours (Table S1 in

    Supplementarymaterial).Anattemptwasmadetoidentifyresiduesresponsiblefortolerance

    to Alcalase. The wt protein was digested and the resulting peptides sequenced. The

    proteolyticcutsitesareshownonFigure3.Intwoinstances,therewerechangesclosetothe

    cutsites;theT185Asitewas4residuesawayfromthecutsiteat181;andtheA174Vsiteis3

    residuesawayfromthecutsiteat171.Theremainingcutsiteswerewellseparatedfrom

    variantchanges.

    Analysisofsequencechanges

    Thevariantsoftencontainedmorethanonenewchange(supplementarymaterial,TableS2).

    Only a few persisted into subsequent rounds and some of these approached saturation

    (presentin>90%ofsequencedvariants).Onaverage,aboutonechangeperroundpersisted.

    The initial library for this study was generated with mutated genes of Lip3 from the

    companionstudy(Alfaro-Chavezetal.2019).Thisintroducedfourmutationsthatsaturated

    the R7 final selection (V201A, N268I, P291L and M321L). By R17 there were seven more

    saturatedmutations(M20V,M59L,A174V,T185A,S210T,D230GandL351Q)andbyR23an

    additionalthree(E46K,W107L,C202Y)andonereversion(S210T).Ofthesethreesaturations,

    onlyE46KwaspresentinR7(TableV).Incontrast,thereweremutationsthatrevertedtowt

    astheselectionconditionswerealtered.Forexample,theY40Fchangewaspresentin23%

    ofthevariantssequencedinR7,allvariantssequencedinR17hadrevertedtoYatresidue

    40.E250Gwaspresent in45%ofthegenessequenced inR7and47%atR17butwasnot

    presentatR23.

    AsisevidentinFigure3,alittleoverhalfofthechangesobservedinR23(55%)werefoundin

    theCapdomain,whichcontainsjustonethird(35%)oftheresiduesintheprotein.Ofthe

    changesobservedinR23,sixwereinthecoredomain.Fourofthese(M59L,W107L,M321L

  • 19

    andL351Q)werefoundintheinterfacewiththeCapdomainandtwo(M321LandL351Q)

    wereinloopsthatcontainedtriadresidues(Figure3).WithintheCapdomain,mostofthe

    changesobservedinR23werefoundintheLidportionorveryclosetoit(V201A,C202Yand

    D230G).OnechangeinR23(A174V)wasfoundintheregionlinkingtheCapdomaintothe

    Coredomain.TheremainingchangesobservedinR23(T185A,N268IandP291L)werefound

    inhelicesoftheCapdomain(Figure3).OfthesaturatingchangesobservedthatinR23,four

    ofthe13resultedinchangesofsulphurcontainingresidues.Threeofthefourchangesoccur

    inthecoredomainwithone(M20V)closetotheN-terminus.

    Thestartingvariantsforthepresentworkemergedduringsevenroundsofevolution(Alfaro-

    Chavezetal.2019). Inthisevolution,crudelysatewasusedtoselectvariantsassessedon

    theirabilitytodegradepNP-C8estersandC8TAGs.Theseactivitiesareessentiallythesame

    andsotheevolutionisone-dimensional.Largelibraries,oftheorder104,werescreened,and

    increases in activity occurred because the amount of active enzyme in the crude lysate

    increased.Directedevolutionthusselectedforvariantswithincreasedstabilityandsolubility,

    notnecessarilyincreasedspecificactivity.Thepresentworkwasmoreambitiousasselection

    was for four properties: increased activity, broader substrate specificity, tolerance to a

    proteaseandtolerancetodetergents.

    Atthestartofthiswork,thequestionarose:whatwasthebestapproachtoimprovingthree

    quitedifferentenzymeattributes?Oneapproachwouldbetoevolveoneattributeatatime.

    There were two reasons for not taking this approach. First, we were concerned that the

    improvementsobtainedinoptimizingoneproperty(say,substratespecificity)wouldbelost

    intheprocessofoptimizingotherproperties(say,surfactantstability)insubsequentrounds;

    thatis,substratespecificitywouldbelostassurfactantstabilitywasenhanced.Second,we

    had already developed high throughput screens to improve substrate specificity (Alfaro-

    Chavezetal.2019),butnottoimprovetolerancetoproteasesandsurfaceactiveagents.We

    thereforedecidedtoselectforsubstratespecificityinalargeprimaryscreenfollowedbya

    smaller secondary screen where tolerance for another attribute (stability in surfactants

    and/ortolerancetoaprotease)wasselected.Inthisway,asinglecycleofdirectedevolution

  • 20

    couldbeusedtoimproveallthreeattributesofselectedvariants.Thisapproachwouldreduce

    thenumberofcyclesrequiredtoreachthetargetconditions,providedthatusefulvariants

    couldbeidentifiedinthesmalllibrariesexaminedinthesecondaryscreenandthatthetwo

    properties being selected were not completely mutually incompatible – something we

    thoughtunlikely.ThisapproachtoevolutionresultedinaslowincreaseintolerancetoSDS.

    ItwasthoughtthatamorerapidincreaseinSDStolerancecouldbeachievedbyscreening

    largerlibraries;thiswascarriedoutinthelastsixroundsofevolution.

    Phase1Initialcharacterization

    TheobjectoftheseexperimentswastodeterminethepropertiesoftheR7variants,toselect

    conditionsforscreening.TheR7variantshadlittletoleranceofSDSwhileone(R7_59A)was

    stableinaTritonX-100solution,andanother(R7_82E)exhibitedsometolerancetoAlcalase

    (TableI).Asaresult,littleattentionwaspaidtoTritonX-100inthesubsequentevolution,and

    selectionfortolerancetoAlcalasewasdelayedtillthevariantshadacquiredsomelevelof

    tolerancetoSDS.TheR7variantshadlowlevelsofesteraseactivitywithsubstratesthathad

    longaliphaticchains,suggestingthatthispropertymightbedifficulttoalter.Asaresult,the

    firsttworoundsofevolutionselectedfortheabilitytodegradeC8substrates.Theabilityto

    detectlipaseactivityinthepresenceofcommerciallaundrypowderswasalsotestedwithan

    assaythatutilizedanagarplateasusedintheprimaryscreens(TableIII).Itappearedthat

    activitycouldonlybedetected invery low levelsof LP1andLP2. It subsequentlybecame

    apparentthatthisresultwasduetothepoortoleranceofE.colitotheseproducts.Cellscould

    be grown in LP3, but this product already contained a lipase so there was little point in

    evolvingtolerancetoitinLip3variants.

    Phase2Evolution.

    Themethodusedtogeneratethelibrariesremainedthesameinalltheroundsofevolution,

    even though the library varied in size (see Results). By way of contrast, the selection

    conditionschangedagreatdealinresponsetotheresultsobtainedinthepreviousround.

    Selection inR8throughR17wasforalteredsubstratespecificityalongwithtolerancetoa

    proteaseandSDS.IntheprimaryscreenofR8throughR18,librariesoftheorder104were

    usedtoidentifyvariantswithincreasedactivityonoliveoil,whichhaslongaliphaticchains.

    Theability todegrade these substrates improved slowly (Table IV). Forexample, thebest

  • 21

    variant in R13 exhibited lipase activity with olive oil that was enhanced by a factor of

    approximately4.5comparedwiththewt,whilebyR17thishaddecreasedtoabout2.8.The

    secondary screens were carried out with libraries of the order 103 and selection was for

    tolerance to SDS and proteolysis. Tolerance to proteolytic attack was achieved easily by

    scanning the small libraries of the secondary screen. Tolerance to SDS did not improve

    significantly;0.1%SDSwasusedtoselectvariantsinR17.Itappearedthatlargelibrarieswere

    neededtoevolveforchangesinsubstratespecificityandimprovedtolerancetoSDS.

    FromR18toR23,largelibrarieswereusedtoidentifyvariantswithtolerancetoSDSwhile

    maintainingactivitytowardssubstrateswithlongaliphaticchains.ToleranceofSDSimproved

    dramatically.R23_110A,forinstance,exhibitedactivitythatwasincreasedbyafactorof2.6

    upontreatmentwith2%SDSforanhour;itwasactivatedbySDSconcentrationsupto4%.

    However,thisvariantexhibitedreducedperformanceinsometests;forexample,itslipolytic

    activitywaslessthanthepurifiedR18variant.HowcouldthescreensusedinR19through

    R23bemodifiedtoenablebetterall-roundvariantstobeidentified?Thisrequiresthatthe

    SDStolerancebemaintainedandactivitywithlongchainsubstratesbeimproved.Thiscould

    be achieved by placing greater emphasis on activity. For example, the secondary screen

    selectioncouldbebasedonactivityaswellastolerancetoSDS.InR23,variantswereselected

    iftheyexhibitedhighlevelsoftolerancetoSDSwithoutexceptionallyhighlevelsofactivity.

    A better all-round variant could be obtained by selecting variants that have good SDS

    toleranceandcatalyticactivity.

    Phase3FinalCharacterization

    AcasualinspectionofTableIVpromptsthequestion:whichisthebestvariant?Itisdifficult

    to answer this question as no one variant is best in all the assays. The properties of the

    variantschangedasselectionchangedandthecatalyticpropertiesdidnotshowacleartrend.

    TheR18variantwasthemostactivelipasewitholiveoilwhiletheR20variantwasthemost

    activelipasewithglyceryltrioleate.ThecatalyticpropertiesoftheR23variant(TableIV)were

    inferiortovariantsobtainedinpreviousrounds,butitwasmuchmorestableinSDS.Similarly,

    Alcalasetoleranceshowsnocleartrendastheevolutionprogresses.OneR7variantshows

    sometoleranceofAlcalase;byR13Alcalasetoleranceisnear100%;inR17,itdroppedto80%;

    inR18andR20,itincreasedto100%;andinR23,itdroppedagainto41%.Itappearsthat

  • 22

    tolerancetoAlcalaseiseasilylostandacquired.Itshouldbenotedthatouruseoftheword

    “tolerance”impliesstabilityinsolutionforafewhours(aswasthecaseinourassays).Wedid

    nottestforlongertimeperiods.

    TheonepropertythatsteadilyimprovesduringevolutionisthetolerancetoSDS.Thisreagent

    easily denatures thewt and R7 variants. The R13 variant retains 59% of its activity after

    treatmentwithSDSwhiletheR20retains100%afterthesametreatment.TheR23variant

    (R23_110A)isactivatedbySDS.Ifavariantwasrequiredtocatalysereactionsinthepresence

    ofSDS,theR23_110Aactivities(TableIV)shouldbemultipliedby2.6.Suchacorrectionwould

    maketheR23variantthebestchoiceforinclusioninadetergent–exceptthatR23_110Ais

    susceptible to proteolysis. As noted above, tolerance to proteolytic attack was readily

    acquired through selection with small libraries produced in secondary screens. The R23

    variantusedtogeneratethedatainTableIVwasselectedbecauseofitsabilitytotolerate

    SDSandnoconsiderationwasgiventoitstoleranceofAlcalase.Itisveryprobablethatother

    R23variantsweretolerantofAlcalaseand,ifthiswerenotthecase,tolerancecouldeasilybe

    regeneratedbyscreeningsmalllibraries.

    In the early rounds of evolution, commercial detergents were used in selection. These

    products were not ideal for evolution because their composition is not always publically

    availableandtheycanchangeatthediscretionofthemanufacturer,sowedecidedtouse

    selection with SDS instead. Nevertheless, purified variants were tested for tolerance to

    commercial products. Interestingly, the R23 variant was not the variant most tolerant of

    commercial powders. In going from R18 to 23 the tolerance to SDS increased, but the

    tolerance to LD1 and LD2 decreased. It is probable that SDS is not present in any of the

    commercial product and that in concentrating on SDS stability in R18 through R23 we

    weakened the ability of variants to tolerate the detergents present in LD2. The R18_21H

    variantshowedthebestoveralltolerancetocommercialpowders,butitstolerancetoLD1of

    only16%couldbedescribedasmarginal.However,theR18_21Hvariantwasunaffectedby

    thedetergentsinLD2thathadbeenformulatedtocontainaprotease.Itisnotclearthatthe

    proteaseinLD2isAlcalase,butifitwerethenR18_21Hcouldbeaddedtothisproductsothat

    enzymescouldactonbothproteinsandlipids.

  • 23

    Comparisonwithotherstudies

    Directedevolutionhasbeenusedtoidentifydetergentstablevariantsofotherproteins,but

    themethodsusedforselectionwerequitedifferenttothatusedhere(ScottandPlückthun

    2013; Yong and Scott 2015). In these studies, the Cellular High-Throughput Encapsulation

    SolubilisationandScreening(CHESS)methodwasused(YongandScott2015).Inonestudy,

    very large libraries (1010

    ) were screened with an instrument (FACS) that detected a

    fluorescencesignal.Thevariantproteinsweretestedwith2%SDSinabuffered10%glycerol

    solution.OnevariantthatexhibitedenhancedtolerancetoSDS,hadonlytwochangesfrom

    thestartingprotein.Bywayofcontrast,ourlibrariesweremuchsmallerandrequiredmultiple

    roundsofevolutiontogiveenhancedstability,buttheselectioninourexperimentswasfor

    multiple properties, not just SDS tolerance. When our experiments were focused on

    enhancingSDStolerance(R18-R23),thetolerancequicklyroseandselectioninvolvedtreating

    theenzymewith4%SDS,withnoglycerolpresenttoenhancestability.Wearguethatour

    methodsaremoreversatileandmorethanadequatetoidentifythesmallnumberofchanges

    requiredtogiveenhancedtolerancetoSDS.

    Tothebestofourknowledge,directedevolutionhasnotpreviouslyusedtoenhanceprotease

    tolerancein lipases,thoughotherapproacheshavebeen.Toenhanceproteaseresistance,

    Grbavčićandcoworkersusedalipasefromthesameorganismasaprotease(Grbavčićetal.

    2011).Thisassumesthatthelipasehasevolvedtobetolerantoftheprotease:eveniftrue,it

    is unlikely that both enzymes will be suitable in all other respects for use in a laundry

    detergent.Traditionalproteinengineeringapproacheshavealsobeenused(Frenkenetal.

    1993;Markertetal.2001).Inonesuchapproach,proteasecleavagesiteswereidentifiedand

    site specific mutagenesis used to alter the protein sequence near the cleavage site. This

    approachislabourintensiveandassumesthatthechangeswillnotdegradetheactivityofthe

    enzyme.Finally,previousstudies(Eceetal.2015)haveshownthatincreasedthermalstability

    cangiverisetoincreasedtolerancetosurfaceactiveagents,butevolutionwithselectionfor

    tolerance to surface active agents has not been described in the literature. Overall, we

    expectedthatdirectedevolutionwouldbeamoreefficientwaytogeneratetolerancetoboth

    proteasesandsurfaceactiveagents.Directedevolutionhasbeenusedtogenerateprotease

    toleranceforsmallpeptidesusingadifferentmethod(Fiaccoetal.2016)tothatusedinthe

    presentstudy.

  • 24

    Directedevolutionhasbeenusedinlipasestoidentifyenzymevariantswithalteredsubstrate

    specificity (Bornscheuer2008;KlausLiebetonetal.2000b;Prasadetal.2011;Reetzetal.

    1997).Ourstudydiffersfromthosecitedinthatsubstratespecificitywasalteredalongwith

    otherproperties.

    Sequenceanalysis

    Studies involvingdirectedevolutionoftengivesome insight intotherelationshipbetween

    sequenceandvariousphysicalproperties.Thepresentstudyisunusualinthatselectionwas

    madeforthreeattributes,buttherearemanyotherpropertiesthatmightbeaffectedbythe

    evolution.Forexample:enantioselectivity (Engströmetal.2010;K. Liebetonetal.2000a;

    Reetz et al. 1997), stability in organic compounds (Dror et al. 2014; Korman et al. 2013),

    thermostability(Augustyniaketal.2012;Liuetal.2017;Yuetal.2012;Zhangetal.2003),

    substratespecificity(Fujiietal.2005).

    Thechanges insequencethatoccurduringevolutioncouldprovide informationaboutthe

    role of specific residues in catalysis as well as the physical properties of the enzymes.

    Unfortunately,changesinthesequencewerenotmadesinglyagainstaconstantbackground

    soitisdifficulttoknowtheeffectsofasinglemutationonthepropertiesofavariant.InR1

    toR7(Alfaro-Chavezetal.2019),selectionforincreasedactivityresultedinenhancedstability

    andsolubilitywithmodestgainsinactivity.FromR8onwards,selectionwasbasedonmore

    thanonepropertyandonlyasmallsubsetofvariantswasthoroughlycharacterized,making

    the task of assigning a role to specific changes more difficult. For example, it has been

    suggestedthatsurfactantstabilitycorrelateswiththermalstability(Eceetal.2015;Salameh

    andWiegel2010).Inthisstudy,theSDSstabilityincreasedasevolutionprogressed,butthe

    same cannot be said for thermos-stability. The R23 variant exhibited greatly enhanced

    tolerancetoaheatshockthatthewtortheR7variants,butitwaslessstablethantheR18

    variant.Ourresultsgivesomesupporttothepropositionthatsurfactantandthermalstability,

    however, they also suggest that this proposition may breakdown as SDS concentration

    increases;moredataarerequiredtoconfidentlyanswerthisquestion.

  • 25

    Understandingtherelationshipbetweensequenceandfunctionisusuallydonewiththeaid

    ofoneormorestructures.WewereunabletoobtainuseablecrystalsofLip3orofvariants

    identifiedinR7orR17.Wethereforeadoptedahomologymodellingapproach(Alfaro-Chavez

    etal.2019)andmappedthelocationsofthechangesontoaschematicofthestructure(Figure

    3).ThreeofthechangesfixedintheR7variants(Alfaro-Chavezetal.2019)revertedtowtby

    R17.Thisisbestexplainedbytheshufflingprocessinlibrarygeneration,ratherthansequence

    changesintroducedbytheerrorpronepolymerase.SomeofthegenesfortheR7variants

    wouldhavehadwild-typesequencesatthesepositions,andsoshufflinggavewtfragments

    thatweremoreviableunderthenewselectionconditionsthantheR7variantsequences.One

    ofthesereversions(greensquaresinFigure3)occurredinthecapdomainthatcoversthe

    activesite:wepositthatitisimportantforsubstratespecificity.UptoR7,selectionwasfor

    C8substrateswhileinsubsequentroundsitwasforsubstrateswithlongerchains.Thetwo

    otherchangesoccurredatthestartandendofthesequence,atpositions40and347(green

    squaresinFigure3).Inthesecases,thechangesoccurredinapieceofstrandthatlinkedtwo

    elementsofsecondarystructureandweresolventaccessible.Wespeculatethatthesetwo

    changes enhanced stability in the absence of detergents, but did not stabilise – or were

    destabilising–intheirpresence.OnlyfourchangesobservedinR7(TableVandgreencircles

    inFigure3)werepreserved inR17; thesewere residues201,268,291and321.Asnoted

    above and explained more fully in our previous paper, three of these four changes

    presumablyenhancethestabilityandsolubilityoftheenzyme.

    AttheendofR17(TableV),wesequenced11variants.11changesweresaturated,ofwhich

    fivewerefromR7(foursaturatedandonenotsaturatedinR7).TheM20VandM59Lchanges

    mayreflectoxygensensitivity(seebelow).D230isinthelidofthecapdomain,suggestinga

    role incatalyticenhancement.Otherchangesare in surfaceaccessible loops thatconnect

    secondarystructureelementsandarepossiblyresponsibleforenhancingtolerancetosurface

    activeagents.ThereweretwochangesthatsaturatedinR17(T185AandL351Q)wereclose

    toproteasecleavagesites(seeFigure3).Bothchangescouldhavealteredproteasetolerance.

    Asexpected,therewerenochangesintheinteriorofthemoleculecore.

    At theendofR23, therewere13saturatedchanges; threewerenew,butpresent inR17

    variants(E46K,W107LandC202Y,bluecirclesinFigure3A)andonethatwassaturatedinR17

  • 26

    andlostbyR23(S210T,redsquareinFigure3A).Threemutationssuggestthatchangesin

    chargedresiduescanimproveSDStolerance(E46K,reversionofE347toKandD230G).The

    reversechange,K347E,occurredin30%ofvariants inR7,butdisappearedwhenselection

    involved SDS. Similarly, the D230G change that saturated in R17 removed a negatively

    charged residue from the surface of the protein. The W107L change could give increased

    stabilitybyreplacinganexposedlargearomaticsidechainwithasmallerone.

    TheC202Yisdiscussedbelow.

    AttheendofR23therewerethreechangesinwhichmethionineresidueswerealtered.The

    M21LchangesaturatedinR7.ThechangesthatwereintroducedbetweenR7andR17include

    threechangestomethionineandcysteineresidues:M20V,M59LandC202Y,withtheC202Y

    changesaturatinginR23.WesuspectthattheoxidationsensitivityofMetandCys(Means

    andFeeney1971)mayexplainthesechanges.M20andM321arelocatedonthesurfaceof

    ourmodelstructure,butthereareothersulphurcontainingresiduesthatareaccessibleto

    solventandnotmodified,sooxidationsensitivitycannotbethesoleexplanation.TheM59L

    andC202Ychangesaffectburiedresidues.M59Lmaystabilizebygivingbetterpacking,but

    thisisprobablynottrueofC202Y,asthisresidueisinthecapdomainclosetothehingepoint

    ofthelid,suggestingthatthechangemayenhancecatalysis.

    ConcludingRemarks

    Perhaps the most important aspect of this work has been the development of screens to

    selectforvariantswithenhancedproperties.Itmaybepossibletoadaptthesescreensfor

    tolerance to surface-active agents other than SDS and proteases other than Alcalase. The

    primarygoaloftheworkwastoproducevariantswithenhancementsinthree,potentially

    orthogonal, properties and to develop methods to achieve this end. In this aim, we have

    succeeded.Variantshavebeenidentifiedthatdegradeoilsandthattoleratesurfaceactive

    agentsandproteases.Ourprotocolscanbeusedinthefuturetoevolveotherenzymesfor

    applicationsinlaundrydetergents.However,thepresentworkalsoillustrateshowproteins

    canevolvetosurvivewhatwasinitiallyanextremelyhostileenvironment.Intwostudies,a

    relatively small number of changes were required to convert an enzyme that had poor

    solubilityandweakactivityinwatertoonethatwasnotonlysoluble,butexhibitedenhanced

  • 27

    tolerance to heat treatment and that showed preferential activity in detergent solutions,

    conditionsnotlikelytobeencounteredbytheorganismfromwhichtheenzymewasfound.

    Acknowledgments.

    WeacknowledgethestaffattheBRFforperformingtheDNAsequencing.Theauthorswish

    to thankCSIRO forprovidingproteinpurification facility.A.A. is supportedbyaSENESCYT

    scholarship from the Ecuadorian government. AG is supported by the BBSRC

    (BB/M023281/1), the Academy of Finland (1286429) and by a Royal Society Wolfson

    fellowship(alltoAG).

  • 28

    References

    Adrio,JoseL.andDemain,ArnoldL.(2014),'MicrobialEnzymes:ToolsforBiotechnological

    Processes',Biomolecules,4(1),117-39.

    Alfaro-Chavez,Ana,etal.(2019),'Improvingonnature’sshortcomings:evolvingalipasefor

    increased lipolytic activity, expression and thermostability', Protein Engineering,

    DesignandSelection.

    Arnold,FrancesH.(1998),'DesignbyDirectedEvolution',AccountsofChemicalResearch,31

    (3),125-31.

    --- (2018), 'Directed Evolution: Bringing New Chemistry to Life', Angewandte Chemie

    (Internationaled.inEnglish),57(16),4143-48.

    Arnold, Frances H. and Volkov, Alexander A. (1999), 'Directed evolution of biocatalysts',

    CurrentOpinioninChemicalBiology,3(1),54-59.

    Augustyniak, Wojciech, et al. (2012), 'Biophysical characterization of mutants of Bacillus

    subtilis lipaseevolvedforthermostability:Factorscontributingto increasedactivity

    retention',ProteinScience,21(4),487-97.

    Bezard, J., Bugaut, M., and Clement, G. (1971), 'Triglyceride composition of coconut oil',

    JournaloftheAmericanOilChemists’Society,48(3),134-39.

    Bornscheuer,UweT.(2008),'Alterationoflipasepropertiesbyproteinengineeringmethods',

    OCL,15(3),184-88.

    Camacho-Ruiz, María de los Angeles, et al. (2015), 'A broad pH range indicator-based

    spectrophotometricassayfortruelipasesusingtributyrinandtricaprylin',Journalof

    LipidResearch,56(5),1057-67.

    Celniker, Gershon, et al. (2013), 'ConSurf: Using Evolutionary Data to Raise Testable

    HypothesesaboutProteinFunction',IsraelJournalofChemistry,53(3-4),199-206.

    Dror,Adi,etal. (2014), 'Proteinengineeringbyrandommutagenesisandstructure-guided

    consensus of Geobacillus stearothermophilus Lipase T6 for enhanced stability in

    methanol',Appliedandenvironmentalmicrobiology,80(4),1515-27.

    Ece, Selin, et al. (2015), 'Improving thermal and detergent stability of Bacillus

    stearothermophilusneopullulanasebyrationalenzymedesign',ProteinEngineering,

    DesignandSelection,28(6),147-51.

    Engström,Karin,etal.(2010), 'DirectedEvolutionofanEnantioselectiveLipasewithBroad

    Substrate Scope for Hydrolysis of α-Substituted Esters', Journal of the American

    ChemicalSociety,132(20),7038-42.

    Fiacco, Stephen V., et al. (2016), 'Directed Evolution of Scanning Unnatural-Protease-

    Resistant(SUPR)PeptidesforinVivoApplications',ChemBioChem,17(17),1643-51.

    Frenken,L.G.,etal.(1993),'Pseudomonasglumaelipase:increasedproteolyticstabilityby

    proteinengineering',ProteinEng,6(6),637-42.

    Fujii,Ryota,etal.(2005),'DirectedevolutionofPseudomonasaeruginosalipaseforimproved

    amide-hydrolyzingactivity',ProteinEngineering,DesignandSelection,18(2),93-101.

    Gattiker,Alexandre,etal.(2002),'FindPept,atooltoidentifyunmatchedmassesinpeptide

    massfingerprintingproteinidentification',PROTEOMICS,2(10),1435-44.

    Grbavčić, Sanja, et al. (2011), 'Production of lipase and protease from an indigenous

    Pseudomonas aeruginosa strain and their evaluation as detergent additives:

    Compatibility study with detergent ingredients and washing performance',

    BioresourceTechnology,102(24),11226-33.

  • 29

    Gupta,Namita,Rathi,Pooja,andGupta,Rani(2002),'Simplifiedpara-nitrophenylpalmitate

    assayforlipasesandesterases',AnalyticalBiochemistry,311(1),98-99.

    Hasan, Fariha, et al. (2010), 'Enzymes used in detergents: Lipases', African Journal of

    Biotechnology,9(31),4836-44.

    Korman,TylerP.,etal.(2013),'Dieselzymes:Developmentofastableandmethanoltolerant

    lipaseforbiodieselproductionbydirectedevolution',BiotechnologyforBiofuels,6(1),

    70-70.

    Kumar, Dinesh, et al. (2008), 'Microbial proteases and application as laundry detergent

    additive',ResearchJournalofMicrobiology,3(12),661-72.

    Lanka,SuseelaandLatha,J.NaveenaLavanya(2015), 'Ashortreviewonvariousscreening

    methods to isolate potential lipase producers: Lipases-the present and future

    enzymesofbiotechindustry',InternationalJournalofBiologicalChemistry,9(5),207-

    19.

    Lawrence, R. C., Fryer, T. F., and Reiter, B. (1967), 'Rapid Method for the Quantitative

    EstimationofMicrobialLipases',Nature,213(5082),1264-65.

    Liebeton,K.,etal.(2000a),'Directedevolutionofanenantioselectivelipase',ChemBiol,7(9),

    709-18.

    Liebeton,Klaus,etal.(2000b),'Directedevolutionofanenantioselectivelipase',Chemistry&

    Biology,7(9),709-18.

    Liu, Yihan, et al. (2017), 'Improvement in thermostability of an alkaline lipase I from

    Penicilliumcyclopiumbydirectedevolution',RSCAdvances,7(61),38538-48.

    Markert,Yvonne,etal.(2001),'IncreasedproteolyticresistanceofribonucleaseAbyprotein

    engineering',ProteinEngineering,DesignandSelection,14(10),791-96.

    Maurer,Karl-Heinz(2004), 'Detergentproteases',CurrentOpinioninBiotechnology,15(4),

    330-34.

    Means,GaryandFeeney,Robert(1971),ChemicalModificationofProteins(USA).

    Niyonzima,F.N.andMore,S.S.(2015),'Microbialdetergentcompatiblelipases',JOURNAL

    OFSCIENTIFIC&INDUSTRIALRESEARCH,74(2),105-13.

    Porter,JoanneL.,Rusli,RukhairulA.,andOllis,DavidL.(2016),'DirectedEvolutionofEnzymes

    forIndustrialBiocatalysis',ChemBioChem,17(3),197-203.

    Powell, Keith A., et al. (2001), 'Directed Evolution and Biocatalysis',Angewandte Chemie

    InternationalEdition,40(21),3948-59.

    Prasad, S., Bocola, M., and Reetz, M. T. (2011), 'Revisiting the lipase from Pseudomonas

    aeruginosa:directedevolutionofsubstrateacceptanceandenantioselectivityusing

    iterativesaturationmutagenesis',Chemphyschem,12(8),1550-7.

    Quintero-Flórez,Angélica,etal.(2015),'TheFattyAcidCompositionofVirginOliveOilfrom

    DifferentCultivarsIsDeterminantforFoamCellFormationbyMacrophages',Journal

    ofAgriculturalandFoodChemistry,63(30),6731-38.

    Reetz, Manfred T., et al. (1997), 'Creation of Enantioselective Biocatalysts for Organic

    ChemistrybyInVitroEvolution',AngewandteChemieInternationalEditioninEnglish,

    36(24),2830-32.

    Saeki,Katsuhisa,etal.(2007),'Detergentalkalineproteases:enzymaticproperties,genes,and

    crystalstructures',JournalofBioscienceandBioengineering,103(6),501-08.

    Salameh, Moh'd A. and Wiegel, Juergen (2010), 'Effects of Detergents on Activity,

    Thermostability and Aggregation of Two Alkalithermophilic Lipases from

    Thermosyntrophalipolytica',Theopenbiochemistryjournal,4,22-28.

  • 30

    Scott, Daniel J. and Plückthun, Andreas (2013), 'Direct Molecular Evolution of Detergent-

    Stable G Protein-Coupled Receptors Using Polymer Encapsulated Cells', Journal of

    MolecularBiology,425(3),662-77.

    Stemmer,W.P.(1994),'RapidevolutionofaproteininvitrobyDNAshuffling',Nature,370

    (6488),389-91.

    Stevenson,BradleyJ.,Liu, Jian-Wei,andOllis,DavidL. (2008), 'DirectedEvolutionofYeast

    Pyruvate Decarboxylase 1 for Attenuated Regulation and Increased Stability',

    Biochemistry,47(9),3013-25.

    Turner, Nicholas J. (2009), 'Directed evolution drives the next generation of biocatalysts',

    NatureChemicalBiology,5,567.

    Wu,Chenyi,etal.(1999),'Proteolysisofnativeproteins.Trappingofareactionintermediate',

    JournalofBiologicalChemistry,274(2),1108-15.

    Yong,K.J.andScott,D.J.(2015),'Rapiddirectedevolutionofstabilizedproteinswithcellular

    high-throughputencapsulationsolubilizationandscreening (CHESS)',Biotechnology

    andBioengineering,112(3),438-46.

    Yu,Xiao-Wei,etal.(2012),'EnhancedthermostabilityofaRhizopuschinensislipasebyinvivo

    recombinationinPichiapastoris',MicrobialCellFactories,11(1),102.

    Zhang,Ningyan,etal. (2003), 'Improving toleranceofCandidaantarctica lipaseB towards

    irreversible thermal inactivation through directed evolution', Protein Engineering,

    DesignandSelection,16(8),599-605.

    Zhao,H.,etal. (1998), 'Molecularevolutionbystaggeredextensionprocess (StEP) invitro

    recombination',NatBiotechnol,16(3),258-61.

  • 31

    Listoffigures:

    Fig1.Schematicdiagramtoillustratethestagesinevolution

    Fig2.ToleranceofvariantsoflipaseLip3toSDSafterseveralroundsofevolution

    Fig3.A.SchematicdiagramoflipaseLip3.Arrowsrepresentβsheets,barrelsα-helices.

    CatalytictriadS145,D318andH350areingreenandresiduesoftheoxyanionholein

    orange.MutationssaturatedinR7andretainedthroughoutevolutioningreencircles.

    MutationssaturatedinR17andretaineduntilfinalevolutioninredcircles.Mutations

    saturatedinR23inbluecircles.Mutationsthatweresaturatedbutdisappearedarein

    squares.Alcalase®hydrolysissitesareindicatedbyasterisks(*).B.ModelofLip3.Inthe

    leftthecompletestructure,coredomaininblue,capdomaininbrown,lidinred.Inthe

    rightgreenspheresshowmutationssaturatedinR7,redspheressaturationsinR17,blue

    spheressaturationsinR23andblackspherescutsitesofprotease.

  • TableI.Initialcharacterizationofwild-typeandvariantsfromR7.

    wt R759A R782E

    DetergentEffect

    %remainingactivityafter60minutesofincubation

    % % %

    SDS2% 1±2 1±1 2.3±2.5

    TritonX-1002% 20±3 99±1 37±1

    LD10.5% 5±1 2±1 1.9±0.1

    LD20.5% 2.2±0.3 1.9±0.2 2.5±0.2

    LD30.5% 30.7±0.3 64.7±0.2 36.6±0.4

    Alcalase®2% 4.0±0.4 6.5±0.5 48.8±0.4

    SpecificActivity

    µM!-nitrophenol/min/µgprotein

    pNP-C3 15.9±0.02 99.9±0.1 74.1±0.1

    pNP-C8 96.6±0.1 147.56±0.02 148.14±0.01

    pNP-C16 1.635±0.002 3.06±0.02 0.782±0.004

    pNP-C18 1.566±0.003 4.16±0.01 0.89±0.01

  • TableII.Testofgrowthinagarplateswithdetergents

    Plates CG8823wt R9library

    LBamp ++ ++

    LBampTGC8 ++ ++

    LBampTGC4 ++ ++

    0.05%LD2 ++ ++

    0.1% + +

    0.5% - -

    1% - -

    2% - -

    0.05%LD1 ++ ++

    0.1% + +

    0.5% - -

    1% - -

    2% - -

    0.5%v/vLD3 ++ ++

    1% + ++

    1.5% + ++

    2% + +

    (++)>2000colonies

    (+)~500colonies

    (-)nogrowth

  • TableIII.Experimentaldetailsofthecontinuousgenerationduringdirectedevolution

    Rou

    nd!

    PrimaryScreening! SecondaryScreening

    Library! Variants1! Selection

    2! Selection

    3! Variants

    4

    8 2.72*105

    820 TGC8/18hours pNP-C12/Detergenttolerance! 10

    9 2.4*104

    620TGC8/oliveoil/

    18hours/72hours!

    pNP-C12/

    DetergentLD1!19

    10 6*104

    620oliveoiland

    detergent/72

    hours

    pNP-C12/0.01%SDS! 14

    11 6*104 880

    oliveoiland

    detergent/72

    hours

    pNPC12/0.02%SDS! 20

    12 2.4*104 350 oliveoil/72hours pNP-C12/0.07%SDS! 15

    13 6.4*104 530 oliveoil/48hours

    pNP-C12/0.1%SDS/0.4%protease1

    hour!12

    14 1.4*104 260 oliveoil/48hours

    pNP-C12/0.1%SDS/0.4%protease3

    hour!20

    15 8*103 180 oliveoil/48hours

    pNP-C12/0.1%SDS/0.4%protease1

    and3hours 10

    16 2.1*104 260 oliveoil/40hours

    pNP-C16/0.1%SDS/0.4%protease1

    and3hours/0.02%tritonX-100/oils 20

    17 2.4*104 260 oliveoil/40hours

    pNP-C16/0.1%SDS/0.4%protease1

    and3hours/0.1%tritonX-100/oils

    mixture+phenolred17

    18 1.4*104 350

    96-wellplate

    pNP-C16/SDS

    0.5%/oilsmixture

    pNP-C16 14

    19 3.3*104 440

    LBkanplates

    (pET26b)/1%SDS-

    naphthylpalmitate

    pNP-C16/0.5%SDS 6

    20 3.3*104 180

    LBampplate(new

    primer)/2%SDS-

    naphthylpalmitate

    pNP-C16/0.5%SDS 3

    21 6*104 450

    LBampplate(new

    primer)/2%SDS-

    naphthylpalmitate

    pNP-C16/0.5%SDS/

    thermo65!C30’11

    22 6*104 720

    LBampplate(new

    primer)/2.5%SDS-

    naphthylpalmitate

    pNP-C16/0.5%SDS/

    thermo65!C30’9

    236*10

    4

    (150

    col/plat)

    540LBampplate+olive

    oil/3%SDS-naphthyl

    palmitate

    pNP-C16/4%SDSremovedwithKCl/

    thermo65!C30’10

    1Thenumberofvariantsselectedintheprimaryscreen.

    2Selectionwasdoneforlipolyticactivityinagarplates.ForR9,twosetsofagarplateswereused,one

    waspreparedwithTGC8incubatedfor18hoursandtheotherwaswitholiveoilandincubatedfor72

    hours;timerequiredforhaloformationdecreasedfrom72to40hoursforoliveoilandtheincubation

    temperaturewas37°Cinallrounds.3Selectionwasinteractiveinthesecondaryscreening.Thetemperatureatwhichtheselectedcolonies

    weregrownin96-wellplatesforalaterassayforesteraseactivity4Thenumberofvariantsselectedinthesecondaryscreen.

  • TableIV.Characterizationofmutantsforlibraryofsurfactanttolerance.

    wt R7_59A R7_82E R13_44C R17_29G R18_211H R20_11A R23_110A

    DetergentEffect

    %remainingactivityafter60minutesofincubation

    SDS2% 1±2 1±1 2.3±2.5 59±1.5 69±1.5 84±10 102±2 260±3

    TritonX-1002% 20±3 99±1 37±1 101.5±0.4 95.1±1.4 98±2 98±1 118±4

    LD10.5% 5±1 2±1 1.9±0.1 1.8±0.1 7.2±3.2 16.9±0.2 1.2±0.2 11±1

    LD20.5% 2.2±0.3 1.9±0.2 2.5±0.2 98±3 72.7±3.1 98±1 44±6 11±1

    LD30.5% 30.7±0.3 64.7±0.2 36.6±0.4 98±2 122.3±5.2 97±2 102±1 140±5

    Alcalase®2% 4.0±0.4 6.5±0.5 48.8±0.4 96±4 80.3±2.3 101±2 100±3 41±1

    SpecificActivity

    µMp-nitrophenol/min/µgprotein

    pNP-C3 15.9±0.02 99.9±0.1 74.1±0.1 106.7±0.3 320.1±5 131.6±0.4 476.7±0.1 366.7±0.2

    pNP-C8 96.6±0.1 147.56±0.02 148.14±0.01 145.61±0.03 857.6±6 146.7±0.02 460.81±0.03 697.6±0.1

    pNP-C16 1.635±0.002 3.06±0.02 0.782±0.004 56.6±0.1 21.3±2.2 139.09±0.05 295.32±0.01 95.56±0.01

    pNP-C18 1.566±0.003 4.16±0.01 0.89±0.01 65.98±0.12 29.7±1 160.2±0.1 152.66±0.01 94.2±0.1

    Lipolyticactivity

    µMacidreleased/min/µMprotein

    Tributyrin 4.5±0.3 23±1 16±3 65±1 30±366±1 71±8 40.2±0.3

    glyceryltrioctanoate 9.5±0.2 60±1 57±1 59.4±0.1 78±1 55±1 36.4±4.1 21.7±0.4

    coconutoil 3.1±0.2 14.5±3.5 14±2 13±1 12.4±2 20±2 19±2 10±1

    glyceryltrioleate 0.2±0.2 2.4±0.4 2±1 17.3±0.3 14±0.2 21±1 23±2.0 13.3±0.4

    oliveoil 0.08±0.01 1.3±0.3 1.2±0.5 3.7±0.3 2.2±0.3 16.9±0.4 15±1 5.1±0.3

    Thermostability

    [°C]

    T50,45min 37.3±0.1 45±0.4 49.6±0.7 57.1±0.2 55.8±0.7 73.8±0.3 58.2±0.4 65.1±0.8

  • TableV.Alterationsinaminoacidsequences

    ID

    20

    40

    46

    59

    107

    174

    185

    186

    201

    202

    210

    211

    225

    230

    234

    242

    250

    268

    291

    305

    321

    347

    351

    act

    Subs

    (pNP)

    WT

    MàV

    YàF

    EàK

    MàL

    WàL

    AàV

    TàA

    RàP

    VàA

    CàY

    SàT

    NàH

    TàA

    DàG

    NàS

    YàH

    EàG

    NàI

    PàL

    KàG

    MàL

    KàE

    LàQ

    1

    0.0

    5

    C8

    C16

    R7

    (30)

    %

    10 23 3 10 0% 10 3 0 100 0 30 0 23 7 0 0 47 93 100 3 93 30 3

    104-

    222

    C8

    R17

    (11)

    %

    91 0 55 100 27 100 100 0 100 9 91 18 9 100 18 18 45 100 100 27 100 0 100 0.94-

    1.15

    C16

    R18_211H V K L L V A A Y G I L L Q 1 C16

    R23

    (8)

    %

    100 0 100 100 100 100 100 63 100 100 0 0 0 100 13 0 0 100 100 0 100 0 100 0.2-

    1.2

    C16

    Consurf*

    E E E B E B B E B B E E E E e/f b e/f B E E B E B

    Solv.

    Access.

    (model)

    28.

    9

    131.

    4

    135.

    4

    13 136.

    8

    2.7 23.

    5

    205.

    9

    93.

    6

    32.

    6

    59.

    8

    80.

    3

    120.

    5

    72.

    1

    61 129.

    5

    92 0.0

    3

    3.6 141 10.

    2

    127.

    8

    16.

    1

    *(Celnikeretal.2013)

  • SupplementaryMaterial

    TableS1.Characterizationofvariantsas indicatedby residualactivity for tolerance to

    surfactants,detergentsandAlcalase®

    Time

    [min]wt R7_9A R7_82E R13_44C R18_211H R20_11A

    % % % % % %

    SDS1%

    30 7.98±0.29 29.5±0.1 57.3±0.1 85.02±0.05 101.63±0.02 100.3±0.1

    60 1.98±0.05 31.3±0.1 58.83±0.02 86.1±0.1 98.94±0.03 102.8±0.1

    90 0.9±0.1 30.1±0.1 59.78±0.01 82.82±0.03 99±3 98±5

    120 0.6±0.5 28.9±0.4 54±1 78±2 97±2 100±1

    SDS2%

    30 4.39±0.02 2.3±0.1 3.8±0.4 19±1 21±6 92±5

    60 1±2 1±1 2.3±2.5 59±17 84±13 102±2

    90 1.1±0.4 0.3±0.5 6±6 0.5±0.1 5±1 58±8

    120 0 1±1 2.5±0.5 3±2 2±1 0.4±0.2

    TritonX-

    1002%

    30 80±1 128±2 87±1 100±3 100±1 98.3±0.2

    60 20±3 99±1 37±1 101.6±0.4 98±2 98±1

    90 18.2±0.4 89±1 34±1 100±3 99±1 99.02±0.39

    120 16.5±0.6 75.8±0.5 25±2 101±1 98±2 101±2

    LD10.5%

    30 5.95±0.42 1.7±0.1 0.1±0.4 25.9±0.4 74±5 50±2

    60 5±1 2±1 1.9±0.1 1.8±0.1 16.9±0.2 1.2±0.2

    90 1.1±0.2 0.2±0.1 0.5±0.2 0.9±0.1 6.6±0.1 0.18±0.01

    120 0.5±0.3 0.03±0.02 0.2±0.2 1.2±0.2 5±1 2±2

    LD20.5%

    30 13±3 0.8±0.5 15±1 98.1±0.4 102±2 97±1

    60 2.2±0.3 1.9±0.2 2.5±0.2 98±3 98±1 44±6

    90 1.5±0.2 0.6±0.1 2.6±0.1 97±1 76±1 9±3

    120 2.5±0.4 0.6±0.2 1.5±0.1 95±1 45±1 2.2±0.1

    LD30.5%

    30 83±2 125±42 85±1 101±3 100±1 100±2

    60 30.7±0.3 64.7±0.2 36.6±0.4 98±2 97±2 102±1

    90 21.1±0.3 52.3±0.4 30.6±0.1 99±2 100±1 101±2

    120 21±1 45.9±0.4 24±1 98.4±0.5 99±3 102±1

    Alcalase®

    2%

    30 2.±3 5±1 39±2 99.7±0.2 100±2 99±1

    60 3.97±0.41 6±1 48.8±0.4 96±4 100.5±2 100±3

    90 7±2 5±1 50±1 86±2 95±2 99±3

    120 6±1 4.6±0.3 41±1 59.3±0.4 76±2 66±1

    p2 main p2 Table Ip2 Table IIp2 Table IIIp2 Table IVp2 Table Vp2_Figure 1p2_Figure 2p2_Figure 3p2 Supplementary Material