exercise 1a: transfer functions...

15
EE4107 Cybernetics Advanced Faculty of Technology, Postboks 203, Kjølnes ring 56, N-3901 Porsgrunn, Norway. Tel: +47 35 57 50 00 Fax: +47 35 57 54 01 Exercise 1a: Transfer functions (Solutions) Transfer functions Transfer functions are a model form based on the Laplace transform. Transfer functions are very useful in analysis and design of linear dynamic systems. A general Transfer function is on the form: = () () Where is the output and is the input. A general transfer function can be written on the following general form: = () () = ! ! + !!! !!! + + ! + ! ! ! + !!! !!! + + ! + ! The Numerators of transfer function models describe the locations of the zeros of the system, while the Denominators of transfer function models describe the locations of the poles of the system. Differential Equations While the transfer function gives an external inout representation of a system, will the differential equations of a system give an internal representation of a system. We can find the transfer function from the differential equation by using Laplace and Laplace transformation pairs. Likewise, we can find the differential equation from the transfer function using inverse Laplace. The following transformation pair is much used: Differentiation: 1.order systems: () For higher order systems: (!) ! ()

Upload: vananh

Post on 12-Mar-2018

229 views

Category:

Documents


7 download

TRANSCRIPT

Page 1: Exercise 1a: Transfer functions (Solutions)home.hit.no/~hansha/documents/subjects/EE4107/exercises...Title Microsoft Word - Exercise 1a - Transfer functions - Solutions.docx

EE4107  -­‐  Cybernetics  Advanced  

 

Faculty of Technology, Postboks 203, Kjølnes ring 56, N-3901 Porsgrunn, Norway. Tel: +47 35 57 50 00 Fax: +47 35 57 54 01

 

Exercise  1a:  Transfer  functions  (Solutions)  

Transfer  functions  

Transfer  functions  are  a  model  form  based  on  the  Laplace  transform.  Transfer  functions  are  very  useful  in  analysis  and  design  of  linear  dynamic  systems.  

A  general  Transfer  function  is  on  the  form:  

𝐻 𝑆 =𝑦(𝑠)𝑢(𝑠)

 

Where  𝑦  is  the  output  and  𝑢  is  the  input.  

A  general  transfer  function  can  be  written  on  the  following  general  form:  

𝐻 𝑠 =𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑜𝑟(𝑠)𝑑𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟(𝑠)

=𝑏!𝑠! + 𝑏!!!𝑠!!! +⋯+  𝑏!𝑠 + 𝑏!𝑎!𝑠! + 𝑎!!!𝑠!!! +⋯+  𝑎!𝑠 + 𝑎!

 

The  Numerators  of  transfer  function  models  describe  the  locations  of  the  zeros  of  the  system,  while  the  Denominators  of  transfer  function  models  describe  the  locations  of  the  poles  of  the  system.  

Differential  Equations  

While  the  transfer  function  gives  an  external  in-­‐out  representation  of  a  system,  will  the  differential  equations  of  a  system  give  an  internal  representation  of  a  system.  

We  can  find  the  transfer  function  from  the  differential  equation  by  using  Laplace  and  Laplace  transformation  pairs.  Likewise,  we  can  find  the  differential  equation  from  the  transfer  function  using  inverse  Laplace.  

The  following  transformation  pair  is  much  used:  

Differentiation:  

1.order  systems:  

𝑥⟺ 𝑠𝑥(𝑠)  

For  higher  order  systems:  

𝑥(!) ⟺ 𝑠!𝑥(𝑠)  

Page 2: Exercise 1a: Transfer functions (Solutions)home.hit.no/~hansha/documents/subjects/EE4107/exercises...Title Microsoft Word - Exercise 1a - Transfer functions - Solutions.docx

2  

EE4107  -­‐  Cybernetics  Advanced  

 

Integration:  

𝑥⟺1𝑠𝑥(𝑠)  

Time-­‐delay:  

𝑢 𝑡 − 𝜏 ⟺ 𝑢(𝑠)𝑒!!"  

Static  Time-­‐response  

In  some  cases  we  want  to  find  the  constant  value  𝑦!  of  the  time  response  when  the  time  𝑡 → ∞.  

We  can  then  use  the  final  value  theorem  (sluttverditeoremet):  

𝑦! = lim!→!

𝑦 𝑡 = lim!→!

𝑠 ∙ 𝑦(𝑠)  

MathScript  

MathScript  has  several  functions  for  creating  transfer  functions:  

Function   Description   Example  tf   Creates  system  model  in  transfer  function  form.  You  also  can  

use  this  function  to  state-­‐space  models  to  transfer  function  form.  

>num=[1]; >den=[1, 1, 1]; >H = tf(num, den)

Sys_order1   Constructs  the  components  of  a  first-­‐order  system  model  based  on  a  gain,  time  constant,  and  delay  that  you  specify.  You  can  use  this  function  to  create  either  a  state-­‐space  model  or  a  transfer  function  model,  depending  on  the  output  parameters  you  specify.  

>K = 1; >tau = 1; >H = sys_order1(K, tau)

Sys_order2   Constructs  the  components  of  a  second-­‐order  system  model  based  on  a  damping  ratio  and  natural  frequency  you  specify.  You  can  use  this  function  to  create  either  a  state-­‐space  model  or  a  transfer  function  model,  depending  on  the  output  parameters  you  specify.  

>dr = 0.5 >wn = 20 >[num, den] = sys_order2(wn, dr) >SysTF = tf(num, den)

step   Creates  a  step  response  plot  of  the  system  model.  You  also  can  use  this  function  to  return  the  step  response  of  the  model  outputs.  If  the  model  is  in  state-­‐space  form,  you  also  can  use  this  function  to  return  the  step  response  of  the  model  states.  This  function  assumes  the  initial  model  states  are  zero.  If  you  do  not  specify  an  output,  this  function  creates  a  plot.  

>num=[1,1]; >den=[1,-1,3]; >H=tf(num,den); >t=[0:0.01:10]; >step(H,t);

Example:  

Given  the  following  transfer  function:  

𝐻 𝑠 =1

𝑠 + 1  

In  MathScript  we  will  use  the  following  code:  

% Define Transfer function

Page 3: Exercise 1a: Transfer functions (Solutions)home.hit.no/~hansha/documents/subjects/EE4107/exercises...Title Microsoft Word - Exercise 1a - Transfer functions - Solutions.docx

3  

EE4107  -­‐  Cybernetics  Advanced  

 

num = [1]; den = [1, 1]; H = tf(num, den) % Step Response step(H)

This  gives  the  following  step  response:  

 

A  general  transfer  function  can  be  written  on  the  following  general  form:  

𝐻 𝑠 =𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑜𝑟(𝑠)𝑑𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟(𝑠)

=𝑏!𝑠! + 𝑏!!!𝑠!!! +⋯+  𝑏!𝑠 + 𝑏!𝑎!𝑠! + 𝑎!!!𝑠!!! +⋯+  𝑎!𝑠 + 𝑎!

 

The  Numerators  of  transfer  function  models  describe  the  locations  of  the  zeros  of  the  system,  while  the  Denominators  of  transfer  function  models  describe  the  locations  of  the  poles  of  the  system.  

In  MathScript  we  can  define  such  a  transfer  function  using  the  built-­‐in  tf  function  as  follows:  

num = [bm, bm_1, bm_2, … , b1, b0]; den = [an, an_1, an_2, … , a1, a0]; H = tf(num, den)

Task  1:  Differential  equations  to  Transfer  functions  

Task  1.1  

Given  the  following  differential  equation:  

𝑥 = −0.5𝑥 + 2𝑢  

Find  the  following  transfer  function:  

Page 4: Exercise 1a: Transfer functions (Solutions)home.hit.no/~hansha/documents/subjects/EE4107/exercises...Title Microsoft Word - Exercise 1a - Transfer functions - Solutions.docx

4  

EE4107  -­‐  Cybernetics  Advanced  

 

𝐻 𝑠 =𝑥(𝑠)𝑢(𝑠)

 

Solution:  

Laplace  gives:  

𝑠𝑥(𝑠) = −0.5𝑥(𝑠) + 2𝑢(𝑠)  

Further:  

𝑠𝑥 𝑠 + 0.5𝑥(𝑠) = 2𝑢(𝑠)  

Further:  

𝑥 𝑠 (𝑠 + 0.5) = 2𝑢(𝑠)  

Further:  

𝑥 𝑠𝑢(𝑠)

=2

𝑠 + 0.5=

42𝑠 + 1

 

This  gives:  

𝐻 𝑠 =𝑥 𝑠𝑢(𝑠)

=4

2𝑠 + 1  

Task  1.2  

Given  the  following  2.order  differential  equation:  

𝑦 + 𝑦 + 5𝑦 = 5𝑥  

Find  the  following  transfer  function:  

𝐻 𝑠 =𝑦(𝑠)𝑥(𝑠)

 

Solution:  

We  get:  

𝑠!𝑦 𝑠 + 𝑠𝑦 𝑠 + 5𝑦 𝑠 = 5𝑠𝑥(𝑠)  

Further:  

𝑦 𝑠 [𝑠! + 𝑠 + 5] = 5𝑠𝑥(𝑠)  

This  gives  the  following  transfer  function:  

𝑦 𝑠𝑥(𝑠)

=5𝑠

𝑠! + 𝑠 + 5  

Page 5: Exercise 1a: Transfer functions (Solutions)home.hit.no/~hansha/documents/subjects/EE4107/exercises...Title Microsoft Word - Exercise 1a - Transfer functions - Solutions.docx

5  

EE4107  -­‐  Cybernetics  Advanced  

 

 

Task  2:  Transfer  functions  to  differential  equatons  

Given  the  following  system:  

𝐻 𝑠 =𝑥(𝑠)𝑢(𝑠)

=3

0.5𝑠 + 1  

Task  2.1  

Find  the  differential  equation  from  the  transfer  function  above.  

Solution:  

We  get:  

𝑥(𝑠) 0.5𝑠 + 1 = 3𝑢(𝑠)  

Further:  0.5𝑠𝑥 𝑠 + 𝑥(𝑠) = 3𝑢(𝑠)  

Inverse  Laplace  gives:  

0.5𝑥 + 𝑥 = 3𝑢  

This  gives  the  following  differential  equation:  

𝑥 = −2𝑥 + 6𝑢  

Task  2.2  

Draw  a  block  diagram  of  the  system.  

Solution:  

We  can  draw  the  following  block  diagram:  

 

Page 6: Exercise 1a: Transfer functions (Solutions)home.hit.no/~hansha/documents/subjects/EE4107/exercises...Title Microsoft Word - Exercise 1a - Transfer functions - Solutions.docx

6  

EE4107  -­‐  Cybernetics  Advanced  

 

Note!  Even  when  the  system  is  in  the  time  plane  we  normally  use  the  symbol   .  Other  symbols  that  

are  commonly  used  for  the  integrator  are:    or    

Task  3:  2.order  system  

Given  the  following  transfer  function:  

𝐻 𝑠 =𝑦(𝑠)𝑢(𝑠)

=2𝑠 + 3

𝑠! + 4𝑠 + 3  

Task  3.1  

Find  the  differential  equation  for  the  system.  

Solution:  

We  do  as  follows:  

𝑦 𝑠 𝑠! + 4𝑠 + 3 = 𝑢 𝑠 [2𝑠 + 3]  

This  gives:  

𝑠!𝑦 𝑠 + 4𝑠𝑦 𝑠 + 3𝑦 𝑠 = 2𝑠𝑢 𝑠 + 3𝑢(𝑠)  

This  gives  the  following  differential  equation:  

𝑦 + 4𝑦 + 3𝑦 = 2𝑢 + 3𝑢  

Note!  We  have  used  the  rule:  

𝑥(!) ⟺ 𝑠!𝑥(𝑠)  

Task  4:  Static  Time-­‐response  

Task  4.1  

Given  the  following  system:  

𝐻(𝑠) =𝑦(𝑠)𝑢(𝑠)

=3

2𝑠 + 1  

Find  the  static  time-­‐response.  

We  will  use  a  step  for  the  control  signal  (𝑢 𝑡 = 1).  

Note!  The  Laplace  Transformation  pair  for  a  step  is  as  follows:  

Page 7: Exercise 1a: Transfer functions (Solutions)home.hit.no/~hansha/documents/subjects/EE4107/exercises...Title Microsoft Word - Exercise 1a - Transfer functions - Solutions.docx

7  

EE4107  -­‐  Cybernetics  Advanced  

 

1𝑠⇔ 1  

Solution:  

We  have:  

𝐻(𝑠) =𝑦(𝑠)𝑢(𝑠)

=3

2𝑠 + 1  

Meaning  that:  

𝑦(𝑠) =3

2𝑠 + 1𝑢(𝑠)  

where  𝑢 𝑠 = !!  

This  means:  

𝑦 𝑠 =3

2𝑠 + 1∙1𝑠=

32𝑠 + 1 𝑠

 

Then  we  use  the  final  value  theorem  (sluttverditeoremet):  

𝑦! = lim!→!

𝑦 𝑡 = lim!→!

𝑠 ∙ 𝑦 𝑠 = lim!→!

 𝑠3

2𝑠 + 1 𝑠= lim

!→!  

32𝑠 + 1

=3

2 ∙ 0 + 1= 3  

Task  4.2  

Given  the  following  system:  

𝐻(𝑠) =𝑦(𝑠)𝑢(𝑠)

=6(𝑠 + 1)9𝑠 + 0.25

 

Find  the  static  time-­‐response.  

We  will  use  a  step  for  the  control  signal  (𝑢 𝑡 = 1).  

Solution:  

We  get:  

𝑦(𝑠) =6(𝑠 + 1)9𝑠 + 0.25

𝑢(𝑠)  

where  𝑢 𝑠 = !!  

This  means:  

𝑦 𝑠 =6(𝑠 + 1)9𝑠 + 0.25 𝑠

 

Page 8: Exercise 1a: Transfer functions (Solutions)home.hit.no/~hansha/documents/subjects/EE4107/exercises...Title Microsoft Word - Exercise 1a - Transfer functions - Solutions.docx

8  

EE4107  -­‐  Cybernetics  Advanced  

 

Then  we  get  using  the  final  value  theorem:  

𝑦! = lim!→!

𝑦 𝑡 = lim!→!

𝑠 ∙ 𝑦 𝑠 = lim!→!

 𝑠6 𝑠 + 19𝑠 + 0.25 𝑠

= lim!→!

 6(𝑠 + 1)9𝑠 + 0.25

=6(0 + 1)9 ∙ 0 + 0.25

=6

0.25= 24  

Task  5:  1.order  transfer  functions  

Given  the  following  system:  

𝐻(𝑠) =𝑦(𝑠)𝑢(𝑠)

=2

4𝑠 + 1  

Task  5.1  

What  are  the  values  for  the  gain  𝐾  and  the  time  constant  𝑇  for  this  system?  

Sketch  the  step  response  for  the  system  using  “pen  and  paper”.    

Find  the  step  response  using  MathScript  and  compare  the  result  with  your  sketch.  

Solutions:  

Gain  𝐾  and  the  time-­‐constant  𝑇:  

𝐾 = 2  

𝑇 = 4  

Step  response  for  a  1.order  system:  

 

MathScript:  

clear

Page 9: Exercise 1a: Transfer functions (Solutions)home.hit.no/~hansha/documents/subjects/EE4107/exercises...Title Microsoft Word - Exercise 1a - Transfer functions - Solutions.docx

9  

EE4107  -­‐  Cybernetics  Advanced  

 

clc K=2; T=4; num=[K]; den=[T, 1]; H = tf(num, den); step(H)

This  gives  the  following  plot:  

 

For  a  1.order  system  with  time-­‐delay  we  have:  

 

Task  5.2  

Page 10: Exercise 1a: Transfer functions (Solutions)home.hit.no/~hansha/documents/subjects/EE4107/exercises...Title Microsoft Word - Exercise 1a - Transfer functions - Solutions.docx

10  

EE4107  -­‐  Cybernetics  Advanced  

 

Find  the  differential  equation  from  the  transfer  function  above  and  draw  a  block  diagram  of  the  system  (“pen  and  paper”).  

Solutions:  

For  a  1.order  system  in  general  we  have:  

𝐻(𝑠) =𝑦(𝑠)𝑢(𝑠)

=𝐾

𝑇𝑠 + 1  

or:  

𝑦 𝑠 =𝐾

𝑇𝑠 + 1𝑢(𝑠)  

Which  gives:  

𝑦 𝑠 (𝑇𝑠 + 1) = 𝐾𝑢(𝑠)  

𝑇𝑠𝑦 𝑠 + 𝑦(𝑠) = 𝐾𝑢(𝑠)  

In  the  time  domain  we  get  the  following  differential  equation  (using  Inverse  Laplace):  

𝑦 =1𝑇(−𝑦 + 𝐾𝑢)  

We  can  draw  the  following  block  diagram  of  the  system:  

 

Where  𝐾 = 2  and  𝑇 = 4  for  our  system:  

 

Note!  Even  when  the  system  is  in  the  time  plane  we  normally  use  the  symbol   .  Other  symbols  that  

are  commonly  used  for  the  integrator  are:    or   .  

Task  5.3  

Page 11: Exercise 1a: Transfer functions (Solutions)home.hit.no/~hansha/documents/subjects/EE4107/exercises...Title Microsoft Word - Exercise 1a - Transfer functions - Solutions.docx

11  

EE4107  -­‐  Cybernetics  Advanced  

 

From  the  block  diagram  in  Task  1.2,  find  the  transfer  function  𝐻(𝑠) = !(!)!(!)

 

(The  answer  shall  of  course  be  𝐻(𝑠) = !(!)!(!)

= !!!!!

)  

Solutions:  

From  the  block  diagram  in  the  previous  task  we  get  the  following  transfer  function:  

𝐻 𝑠 =𝑦 𝑠𝑢 𝑠

= 2 ∙0.25 ∙ 1𝑠

1 + 0.25 ∙ 1𝑠=

0.5𝑠 + 0.25

=2

4𝑠 + 1  

As  expected,  the  result  is  the  same  as  the  transfer  function  given  in  Task  1.1.  

Note!  We  have  used  both  the  serial  and  feedback  rules  that  yield  for  block  diagram  reduction.  

 

 

Task  5.4  

Find  the  solution  for  the  differential  equation  and  plot  it  (“pen  and  paper”).  

We  will  use  a  step  for  the  control  signal  (𝑢 𝑡 = 1).  

Note!  The  Laplace  Transformation  pair  for  a  step  is  as  follows:  

1𝑠⇔ 1  

Tip!  You  also  need  to  use  the  following  Laplace  transform  pair:  

𝐾𝑇𝑠 + 1 𝑠

 ⇔ 𝐾(1 − 𝑒!!/!)  

Compare  to  the  results  from  Task  1.1.  

Solutions:  

Page 12: Exercise 1a: Transfer functions (Solutions)home.hit.no/~hansha/documents/subjects/EE4107/exercises...Title Microsoft Word - Exercise 1a - Transfer functions - Solutions.docx

12  

EE4107  -­‐  Cybernetics  Advanced  

 

For  a  1.order  system  in  general  we  have:  

𝐻(𝑠) =𝑦(𝑠)𝑢(𝑠)

=𝐾

𝑇𝑠 + 1  

Here  we  will  find  the  mathematical  expression  for  the  step  response  (𝑦(𝑡)):  

𝑦 𝑠 = 𝐻 𝑠 𝑢(𝑠)  

Where    

𝑢 𝑠 =𝑈𝑠  

We  use  inverse  Laplace  and  find  the  corresponding  transformation  pair  in  order  to  find  𝑦(𝑡)).    

𝑦 𝑠 =𝐾

𝑇𝑠 + 1∙𝑈𝑠  

We  use  the  following  Laplace  transform  pair:  

𝐾𝑇𝑠 + 1 𝑠

 ⇔ 𝐾(1 − 𝑒!!/!)  

This  gives:  

𝑦 𝑡 = 𝐾𝑈(1 − 𝑒!!/!)  

Setting  𝐾 = 2,  𝑇 = 4  and  𝑈 = 1  gives:  

𝑦 𝑡 = 2(1 − 𝑒!!! !)  

We  can  plot  this  in  MathScript:  

clear clc K=2; T=4; U=1; t=0:0.1:20; % Method 1 - Transfer Function num=[K]; den=[T, 1]; H = tf(num, den); figure(1) step(H, t)

Page 13: Exercise 1a: Transfer functions (Solutions)home.hit.no/~hansha/documents/subjects/EE4107/exercises...Title Microsoft Word - Exercise 1a - Transfer functions - Solutions.docx

13  

EE4107  -­‐  Cybernetics  Advanced  

 

% Method 2 - Plot the solution of the differential equation y = K*U*(1-exp(-t/T)); figure(2) plot(t,y)

We  get  the  same  results  (of  course).  

Task  6:  Transfer  functions  in  MathScript  

Define  the  following  transfer  functions  in  MathScript.  

Task  6.1  

 Given  the  following  transfer  function:  

𝐻(𝑠) =2𝑠! + 3𝑠 + 4

5𝑠 + 9  

Solutions:  

MathScript  Code:  

num = [2, 3, 4]; den = [5, 9]; H = tf(num, den)

Task  6.2  

 Given  the  following  transfer  function:  

𝐻(𝑠) =4𝑠! + 3𝑠 + 45𝑠! + 9

 

Solutions:  

MathScript  Code:  

num = [4, 0, 0, 3, 4]; den = [5, 0, 9]; H = tf(num, den)

Note!  If  some  of  the  orders  are  missing,  we  just  put  in  zeros.  The  transfer  function  above  can  be  rewritten  as:  

𝐻(𝑠) =4𝑠! + 0 ∙ 𝑠! + 0 ∙ 𝑠! + 3𝑠 + 4

5𝑠! + 0 ∙ 𝑠 + 9  

Task  6.3  

 Given  the  following  transfer  function:  

Page 14: Exercise 1a: Transfer functions (Solutions)home.hit.no/~hansha/documents/subjects/EE4107/exercises...Title Microsoft Word - Exercise 1a - Transfer functions - Solutions.docx

14  

EE4107  -­‐  Cybernetics  Advanced  

 

𝐻(𝑠) =7 + 3𝑠 + 2𝑠!

5𝑠 + 6𝑠!  

Solutions:  

We  need  to  rewrite  the  transfer  function  to  get  it  in  correct  orders:  

𝐻(𝑠) =2𝑠! + 3𝑠 + 76𝑠! + 5𝑠

 

MathScript  Code:  

num = [2, 3, 7]; den = [6, 5, 0]; H = tf(num, den)

Task  7:  Differential  equations  to  Transfer  functions  

Task  7.1  

Given  the  following  differential  equation:  

𝑥 = −0.5𝑥 + 2𝑢  

Find  the  following  transfer  function:  

𝐻 𝑠 =𝑥(𝑠)𝑢(𝑠)

 

Solution:  

Laplace  gives:  

𝑠𝑥(𝑠) = −0.5𝑥(𝑠) + 2𝑢(𝑠)  

Further:  

𝑠𝑥 𝑠 + 0.5𝑥(𝑠) = 2𝑢(𝑠)  

Further:  

𝑥 𝑠 (𝑠 + 0.5) = 2𝑢(𝑠)  

Further:  

𝑥 𝑠𝑢(𝑠)

=2

𝑠 + 0.5=

42𝑠 + 1

 

This  gives:  

𝐻 𝑠 =𝑥 𝑠𝑢(𝑠)

=4

2𝑠 + 1  

Page 15: Exercise 1a: Transfer functions (Solutions)home.hit.no/~hansha/documents/subjects/EE4107/exercises...Title Microsoft Word - Exercise 1a - Transfer functions - Solutions.docx

15  

EE4107  -­‐  Cybernetics  Advanced  

 

Task  8:  PI  Controller  

A  PI  controller  is  defined  as:  

𝑢(𝑡) = 𝐾!𝑒 +𝐾!𝑇!

𝑒𝑑𝜏!

!  

Where  u  is  the  controller  output  and  𝑒  is  the  control  error:  

𝑒 𝑡 = 𝑟 𝑡 − 𝑦(𝑡)  

Task  8.1  

Find  the  transfer  function  for  the  PI  Controller:  

𝐻! 𝑠 =𝑢(𝑠)𝑒(𝑠)

 

Solutions:  

Using  Laplace  gives:  

𝑢 𝑠 = 𝐾!𝑒 𝑠 +𝐾!𝑇!∙1𝑠𝑒 𝑠  

Then  we  get:  

𝐻! 𝑠 =𝑢(𝑠)𝑒(𝑠)

= 𝐾! +𝐾!𝑇!𝑠

=𝐾!𝑇!𝑠𝑇!𝑠

+𝐾!𝑇!𝑠

=𝐾!𝑇!𝑠 + 𝐾!

𝑇!𝑠=𝐾!(𝑇!𝑠 + 1)

𝑇!𝑠  

This  gives  the  following  transfer  function  for  the  PI  controller:  

𝐻! 𝑠 =𝑢(𝑠)𝑒(𝑠)

=𝐾!(𝑇!𝑠 + 1)

𝑇!𝑠  

Additional  Resources  

• http://home.hit.no/~hansha/?lab=mathscript

Here you will find tutorials, additional exercises, etc.