experimental and numerical investigations of particle clustering in isotropic turbulence

30
Experimental and numerical investigations of particle clustering in isotropic turbulence Workshop on Stirring and Mixing: The Lagrangian Approach Lorentz Center Leiden, The Netherlands August 21-30, 2006 International Collaboration for Turbulence Research (ICTR) Cornell University SUNY Buffalo Max Planck Institute Dr. Lance R. Collins Dr. Hui Meng Dr. Eberhard Bodenschatz Juan Salazar Scott Woodward Dr. Zellman Warhaft Lujie Cao S. Ayyalasomayajula Jeremy de Jong

Upload: diella

Post on 17-Jan-2016

46 views

Category:

Documents


14 download

DESCRIPTION

Workshop on Stirring and Mixing: The Lagrangian Approach Lorentz Center Leiden, The Netherlands August 21-30, 2006. Experimental and numerical investigations of particle clustering in isotropic turbulence. International Collaboration for Turbulence Research (ICTR). - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Experimental and numerical investigations of particle clustering in isotropic turbulence

Experimental and numerical investigations of particle clustering in isotropic turbulence

Workshop on Stirring and Mixing: The Lagrangian ApproachLorentz Center

Leiden, The NetherlandsAugust 21-30, 2006

International Collaboration for Turbulence Research (ICTR)

Cornell University SUNY Buffalo Max Planck Institute

Dr. Lance R. Collins Dr. Hui Meng Dr. Eberhard Bodenschatz

Juan Salazar Scott Woodward

Dr. Zellman Warhaft Lujie Cao

S. Ayyalasomayajula Jeremy de Jong

Page 2: Experimental and numerical investigations of particle clustering in isotropic turbulence

Particle Clustering in Turbulence

Vortices

Strain Region Maxey (1987); Squires & Eaton (1991); Wang & Maxey (1993) Shaw, Reade, Verlinde & Collins (1997) Falkovich, Fouxon & Stepanov (2002); Zaichik & Alipchenkov (2003); Chun, Koch, Rani, Ahluwalia & Collins (2005)

QuickTime™ and aCompact Video decompressorare needed to see this picture.

Page 3: Experimental and numerical investigations of particle clustering in isotropic turbulence

Turbulence in Clouds

BuoyancyCloud CondensationNuclei (CCN)

103 m

10−3 m

Page 4: Experimental and numerical investigations of particle clustering in isotropic turbulence

d2 Lawmass

energy

ddt

d(t) =′ K

d(t)

d2(t)∝ td(t)

Current microphysical models predicto too slow “condensational” growtho too narrow cloud droplet distributions

Shaw (2003)

Page 5: Experimental and numerical investigations of particle clustering in isotropic turbulence

Beard & Ochs (1993)

“… At this rate, we are quite a way off from being able topredict, on firm micro-physical grounds, whether it willrain.” 0.1 m

1 m

10 m

Page 6: Experimental and numerical investigations of particle clustering in isotropic turbulence

Clouds in Climate Models

Visible Wavelengths Infra Red

High, cold clouds

Low, warm clouds

Distribution of cloud cover profoundly influences global energy balance

Raymond Shaw

Page 7: Experimental and numerical investigations of particle clustering in isotropic turbulence

Collision Kernel

Particle clustering impacts the RDF

Nijc = π dij

2 ni n j gij (dij ) (− wij ) Pij (wij | dij ) dwij− ∞

0

dij = (di + d j ) / 2

gij (r) = radial distribution function (RDF)

wij = relative velocity

P(wij | r) = PDF of relative velocity

Sundaram & Collins (1997); Wang, Wexler & Zhou (1998)€

St =1

18

ρ p

ρ

⎝ ⎜

⎠ ⎟dη

⎝ ⎜

⎠ ⎟2

Page 8: Experimental and numerical investigations of particle clustering in isotropic turbulence

Monodisperse clustering: drift

A ≡St τ η

2

3S2 − R2

[ ]p

qrd = − A

rτ η

g(r)

Chun, Koch, Sarma, Ahluwalia & Collins, JFM 2005

η

r

St <<1

Page 9: Experimental and numerical investigations of particle clustering in isotropic turbulence

Monodisperse clustering: diffusion

Chun, Koch, Sarma, Ahluwalia & Collins, JFM 2005

qrD ≡ − B

r2

τ η

∂g∂r

BL = 0.153

BNL = 0.093

Page 10: Experimental and numerical investigations of particle clustering in isotropic turbulence

Monodisperse clustering: RDF

St = 0.7

g(r) =ηr

⎡ ⎣ ⎢

⎤ ⎦ ⎥

A B

0.25

0.20

0.15

0.10

0.05

0.00

A / B

0.200.150.100.050.00

St

Theory 1 Theory 2 DNS Stochastic 1 Stochastic 2

Chun, Koch, Sarma, Ahluwalia & Collins, JFM 2005

Page 11: Experimental and numerical investigations of particle clustering in isotropic turbulence

Bidisperse clustering

Chun, Koch, Sarma, Ahluwalia & Collins, JFM 2005

α€

β€

qrd = − A

rτ η

g(r)

A ≡Stβ τ η

2

3S2 − R2

[ ]p

η

Page 12: Experimental and numerical investigations of particle clustering in isotropic turbulence

Bidisperse clustering

Chun, Koch, Sarma, Ahluwalia & Collins, JFM 2005

qrD ≡ − B

r2

τ η

∂g∂r

BL = 0.153

BNL = 0.093

qra = − D

∂g∂r

D = ΔSt( )2 a0 Rλ( )

η 2

τ η2 τ a

Page 13: Experimental and numerical investigations of particle clustering in isotropic turbulence

Bidisperse clustering: stationary

Chun, Koch, Sarma, Ahluwalia & Collins, JFM 2005

g(r) =η 2

r2 + rc2

⎣ ⎢

⎦ ⎥

A 2 B

1

2

3

4

5

6

7

8

910

g(r)

0.0012 3 4 5 6 7

0.012 3 4 5 6 7

0.12 3 4 5 6 7

1

r / η

(0.2, 0.2) (0.2, 0.19) (0.2, 0.175)

Page 14: Experimental and numerical investigations of particle clustering in isotropic turbulence

RDF Measurements

Experiments and Simulations

Direct Numerical Simulations

Page 15: Experimental and numerical investigations of particle clustering in isotropic turbulence

Turbulence Chamber

38 cm

Fans

Optical Access

Isotropic Turbulence Chamber

Page 16: Experimental and numerical investigations of particle clustering in isotropic turbulence

Flow Characterization

Urms

Vrms

ε

L

η

91

117

130

140

161

173

0.286

0.447

0.564

0.651

0.777

0.906

0.283

0.451

0.577

0.651

0.790

0.942

0.817

3.16

6.63

9.72

15.9

25.5

1.26 ×10−2

1.31×10−2

1.28×10−2

1.30 ×10−2

1.43×10−2

1.39 ×10−2

2.54 ×10−4

1.81×10−4

1.50 ×10−4

1.37 ×10−4

1.21×10−4

1.07 ×10−4

Conditions at 6 Fan Speeds (MKS)

ε =1r

DLL

C2

⎝ ⎜

⎠ ⎟

3/2

Page 17: Experimental and numerical investigations of particle clustering in isotropic turbulence

Metal-Coated Hollow Glass Spheres

Mean = 6 micronsSTD = 3.8 microns1-10 particles/cm3

V = 10-7

Page 18: Experimental and numerical investigations of particle clustering in isotropic turbulence

Measurements of RDF

Wood, Hwang & Eaton (2005)Saw, Shaw, Ayyalasomayajula, ChuangGylfason, Warhaft (2006)

Turbulence Box Wind Tunnel

Page 19: Experimental and numerical investigations of particle clustering in isotropic turbulence

Why 3D?

2D Sampling 1D Sampling

1

2

3

456

10

2

3

456

100

2

3

4

g(r)

0.01 0.1 1 10r / η

g3D( )r g2D( )r g1D( )r

g2D

⎛ ⎝ ⎜

⎞ ⎠ ⎟= 2 g3D

⎛ ⎝ ⎜

⎞ ⎠ ⎟2

+ v2 ⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟dv

0

1

g1D

⎛ ⎝ ⎜

⎞ ⎠ ⎟= 4 g3D

⎛ ⎝ ⎜

⎞ ⎠ ⎟2

+ v2 + w2 ⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟dv dw

0

1

∫0

1

Relations

Holtzer & Collins (2002)

g3D ri( ) ≡Npi

NpVi V

Page 20: Experimental and numerical investigations of particle clustering in isotropic turbulence

3D Particle Position Measurement Techniques

1. Particle Tracking Velocimetry (PTV)• Advantages – Lagrangian particle information• Disadvantages – Limited particle number density.

2. Holographic Particle Image Velocimetry (HPIV)• Advantages – Better particle number density than PTV, larger 3D volume

than Stereo PIV• Disadvantages – Cannot resolve time evolution of particles.

Page 21: Experimental and numerical investigations of particle clustering in isotropic turbulence

40 c

m

1k x 1k CCD

Z

Fan

F

an

F

an

Optical Window

(4 cm)3 Volume

V2

V1V3

X

Y

Z

Numerical ReconstructionIntensity-Based Particle Extraction

Hybrid Digital HPIVNd:YagLaser 532 nm

ReferenceBeam

Beam Expander

Variable BeamAttenuator

Page 22: Experimental and numerical investigations of particle clustering in isotropic turbulence

Particle Concentration and Phase Averaging

Page 23: Experimental and numerical investigations of particle clustering in isotropic turbulence

Size Distribution Evolution

0.0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8 9

Particle size group

Probability

Phase 01Phase 02Phase 03Phase 04Phase 05

Page 24: Experimental and numerical investigations of particle clustering in isotropic turbulence

Time Dependence of RDF

η=150 μm

η=120 μm

Page 25: Experimental and numerical investigations of particle clustering in isotropic turbulence

Direct Numerical Simulations

1283 Grid Points R = 80 1.2 Million Particles (one way coupling) Experimental Particle Size Distribution

Keswani & Collins (2004)

Page 26: Experimental and numerical investigations of particle clustering in isotropic turbulence

Filtering by camera

Mean = 6 micronsSTD = 3.8 microns

Metal-coated hollow glass spheres

Page 27: Experimental and numerical investigations of particle clustering in isotropic turbulence

Filtering by camera

Mean = 6 micronsSTD = 3.8 microns

Metal-coated hollow glass spheres

Page 28: Experimental and numerical investigations of particle clustering in isotropic turbulence

Comparison at R = 130

1

2x100

3

4

g(r)

1086420r / η

St > 0 St > 0.05 St > 0.1 St > 0.15 St > 0.2 St > 0.25 St > 0.3 St > 0.35 St > 0.4 Exp dαtα

Page 29: Experimental and numerical investigations of particle clustering in isotropic turbulence

Comparison at R = 161

1

2

3

4

5

g(r)

1086420r / η

St > 0 St > 0.05 St > 0.1 St > 0.15 St > 0.2 St > 0.25 St > 0.3 St > 0.35 St > 0.4 Exp dαtα

Page 30: Experimental and numerical investigations of particle clustering in isotropic turbulence

Summary Clustering results from a competition between inward

drift and outward diffusion Radial Distribution Function (RDF) is the measure for

collision kernel Analysis of RDF involves Lagrangian statistics along

inertial particle trajectories RDF mainly found in direct numerical simulation 3D measurements of RDF using holographic imaging

Reasonable agreement between experiments and DNS Challenges for the measurement

Characterizing flow (dissipation rate, ε) Particle size distribution (will separate particles) Increasing resolution of experiment (smaller separations)

International Collaboration for Turbulence Research (ICTR)