extended kalman filter

17
Extended Kalman Filter Day 25 1 with slides adapted from http://www.probabilistic-robotics.com

Upload: remy

Post on 06-Feb-2016

75 views

Category:

Documents


3 download

DESCRIPTION

Day 25. Extended Kalman Filter. with slides adapted from http://www.probabilistic-robotics.com. Kalman Filter Summary. Highly efficient : Polynomial in measurement dimensionality k and state dimensionality n : O(k 2.376 + n 2 ) Optimal for linear Gaussian systems ! - PowerPoint PPT Presentation

TRANSCRIPT

1

Extended Kalman FilterDay 25

with slides adapted from http://www.probabilistic-robotics.com

2

Kalman Filter Summary

• Highly efficient: Polynomial in measurement dimensionality k and state dimensionality n: O(k2.376 + n2)

• Optimal for linear Gaussian systems!

• Most robotics systems are nonlinear!

3

Landmark Measurements

• distance, bearing, and correspondence

1

0

t

t

t

y

x

x

yj

xj

m

m

,

,

it

itr

sjit

ttxjtyjit

tyjtxjit

ms

xmym

ymxmr

,

,,

2,

2,

),(atan2

)()(

4

Nonlinear Dynamic Systems

• Most realistic robotic problems involve nonlinear functions

),( 1 ttt xugx

)( tt xhz

5

Nonlinear Dynamic Systems

• localization with landmarks

),( 1

)cos(cos

)sin(sin

tt

t

t

t

t

t

t

t

t

xug

t

tvv

tvv

t

t

ty

tx

x

),,(

,

,,

2,

2,

),(atan2

)()(

mjxh

sj

txjtyj

yjxj

z

it

it

it

t

it

m

xmym

ymxm

s

r

6

Linearity Assumption Revisited

Figure 3.3 (a), p 55

7

Non-linear Function

Figure 3.3 (b), p 55

8

EKF Linearization (1)

Figure 3.4, p 57

9

EKF Linearization (2)

Figure 3.5 (a), p 62

10

EKF Linearization (3)

Figure 3.5 (b), p 62

11

Taylor Series

• recall for f(x) infinitely differentiable around in a neighborhood a

• in the multidimensional case, we need the matrix of first partial derivatives (the Jacobian matrix)

))(()(

...)(!2

)()(

!1

)()()( 2

axafaf

axaf

axaf

afxf

12

• Prediction:

• Correction:

EKF Linearization: First Order Taylor Series Expansion

)(),(),(

)(),(

),(),(

1111

111

111

ttttttt

ttt

tttttt

xGugxug

xx

ugugxug

)()()(

)()(

)()(

ttttt

ttt

ttt

xHhxh

xx

hhxh

13

EKF Algorithm

1. Extended_Kalman_filter( mt-1, St-1, ut, zt):

2. Prediction:3. 4.

5. Correction:6. 7. 8.

9. Return t, St

),( 1 ttt ug

tTtttt RGG SS 1

1)( SS tTttt

Tttt QHHHK

))(( ttttt hzK

tttt HKI SS )(

1

1),(

t

ttt x

ugG

t

tt x

hH

)(

ttttt uBA 1

tTtttt RAA SS 1

1)( SS tTttt

Tttt QCCCK

)( tttttt CzK

tttt CKI SS )(

14

Localization

• Given • Map of the environment.• Sequence of sensor measurements.

• Wanted• Estimate of the robot’s position.

• Problem classes• Position tracking• Global localization• Kidnapped robot problem (recovery)

“Using sensory information to locate the robot in its environment is the most fundamental problem to providing a mobile robot with autonomous capabilities.” [Cox ’91]

15

Landmark-based Localization

16

1. EKF_localization ( mt-1, St-1, ut, zt, m):

Prediction:

2.

3.

4. ),( 1 ttt ug

Tttt

Ttttt VMVGG SS 1

,1,1,1

,1,1,1

,1,1,1

1

1

'''

'''

'''

),(

tytxt

tytxt

tytxt

t

ttt

yyy

xxx

x

ugG

tt

tt

tt

t

ttt

v

y

v

y

x

v

x

u

ugV

''

''

''

),( 1

2

43

221

||||0

0||||

tt

ttt

v

vM

Motion noise

Jacobian of g w.r.t location

Predicted mean

Predicted covariance

Jacobian of g w.r.t control

17

1. EKF_localization ( mt-1, St-1, ut, zt, m):

Correction:

2.

3.

4.

5.

6.

)ˆ( ttttt zzK

tttt HKI SS

,

,

,

,

,

,),(

t

t

t

t

yt

t

yt

t

xt

t

xt

t

t

tt

rrr

x

mhH

,,,

2,

2,

,2atanˆ

txtxyty

ytyxtxt

mm

mmz

tTtttt QHHS S1S t

Tttt SHK

2

2

0

0

r

rtQ

Predicted measurement mean

Pred. measurement covariance

Kalman gain

Updated mean

Updated covariance

Jacobian of h w.r.t location