facultyofmathematics, biomechanicalmodelofthe primates ... · primates’upperlimb pierrekibleur...

37
Faculty of Mathematics, Biomechanical model of the primates’ upper limb Pierre Kibleur Prof. Auke Ijspeert lol Marco Caprogrosso lol Nathan Greiner lol Shravan Tata Ramalingasetty February 12th, 2018

Upload: others

Post on 22-Jul-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: FacultyofMathematics, Biomechanicalmodelofthe primates ... · primates’upperlimb PierreKibleur Prof.AukeIjspeert lolMarcoCaprogrosso lolNathanGreiner lolShravanTataRamalingasetty

Faculty of Mathematics,Biomechanical model of theprimates’ upper limb

Pierre Kibleur Prof. Auke Ijspeertlol Marco Caprogrossolol Nathan Greinerlol Shravan Tata RamalingasettyFebruary 12th, 2018

Page 2: FacultyofMathematics, Biomechanicalmodelofthe primates ... · primates’upperlimb PierreKibleur Prof.AukeIjspeert lolMarcoCaprogrosso lolNathanGreiner lolShravanTataRamalingasetty

1 Introduction

2 Modelling

3 Validation

4 Experiments

5 Conclusion

Contents

2/29 P. Kibleur NHP 2017

Page 3: FacultyofMathematics, Biomechanicalmodelofthe primates ... · primates’upperlimb PierreKibleur Prof.AukeIjspeert lolMarcoCaprogrosso lolNathanGreiner lolShravanTataRamalingasetty

Introduction

Page 4: FacultyofMathematics, Biomechanicalmodelofthe primates ... · primates’upperlimb PierreKibleur Prof.AukeIjspeert lolMarcoCaprogrosso lolNathanGreiner lolShravanTataRamalingasetty

Worldwide, 50 000 people a year suffer a Spinal Cord Injury (SCI), with lifetimeconsequences.Half of the patients are under 30 years old.The injury is often localized, leaving hope to one day find a treatment.But after 40 years of research, we cannot restore basic limb functionality.

Motivation

4/29 P. Kibleur NHP 2017

Page 5: FacultyofMathematics, Biomechanicalmodelofthe primates ... · primates’upperlimb PierreKibleur Prof.AukeIjspeert lolMarcoCaprogrosso lolNathanGreiner lolShravanTataRamalingasetty

Prof. Courtine

Instead, Grégoire Courtine’s pragmatical approach focuseson electrically stimulating the proprioceptive feedback into the spinalcord below the SCI, in order to recruit the reflex loop. It has beenshown to restore walking capabilities in humans with partial SCI.

Adapt the methodology to stereotypical motion of the upper limb.Start with Non Human Primates (NHP).

Motivation

5/29 P. Kibleur NHP 2017

Page 6: FacultyofMathematics, Biomechanicalmodelofthe primates ... · primates’upperlimb PierreKibleur Prof.AukeIjspeert lolMarcoCaprogrosso lolNathanGreiner lolShravanTataRamalingasetty

Prof. Courtine

Instead, Grégoire Courtine’s pragmatical approach focuseson electrically stimulating the proprioceptive feedback into the spinalcord below the SCI, in order to recruit the reflex loop. It has beenshown to restore walking capabilities in humans with partial SCI.

Adapt the methodology to stereotypical motion of the upper limb.Start with Non Human Primates (NHP).

Motivation

5/29 P. Kibleur NHP 2017

Page 7: FacultyofMathematics, Biomechanicalmodelofthe primates ... · primates’upperlimb PierreKibleur Prof.AukeIjspeert lolMarcoCaprogrosso lolNathanGreiner lolShravanTataRamalingasetty

An epidural electrode stimulates groups ofactuators’ sensory neurons’ afferent fibres’ firingrates, to recruit the sensorimotor limb control.

Brain

Produces motion if synchronous withdescending modulation from the brain.

Electrical Epidural Stimulation (EES)

6/29 P. Kibleur NHP 2017

Page 8: FacultyofMathematics, Biomechanicalmodelofthe primates ... · primates’upperlimb PierreKibleur Prof.AukeIjspeert lolMarcoCaprogrosso lolNathanGreiner lolShravanTataRamalingasetty

An epidural electrode stimulates groups ofactuators’ sensory neurons’ afferent fibres’ firingrates, to recruit the sensorimotor limb control.

Brain

Produces motion if synchronous withdescending modulation from the brain.

Electrical Epidural Stimulation (EES)

6/29 P. Kibleur NHP 2017

Page 9: FacultyofMathematics, Biomechanicalmodelofthe primates ... · primates’upperlimb PierreKibleur Prof.AukeIjspeert lolMarcoCaprogrosso lolNathanGreiner lolShravanTataRamalingasetty

What are the patterns of afferents’firing rates?

Page 10: FacultyofMathematics, Biomechanicalmodelofthe primates ... · primates’upperlimb PierreKibleur Prof.AukeIjspeert lolMarcoCaprogrosso lolNathanGreiner lolShravanTataRamalingasetty

Kinematic recordings are reproduced in OpenSim simulations in order to predict them.

Biomechanical model

8/29 P. Kibleur NHP 2017

Page 11: FacultyofMathematics, Biomechanicalmodelofthe primates ... · primates’upperlimb PierreKibleur Prof.AukeIjspeert lolMarcoCaprogrosso lolNathanGreiner lolShravanTataRamalingasetty

3 algorithms to process the recorded kinematics into the afferents’ firing rates:Inverse Dynamics Compute Muscle Controls Prochazka’s modela� fx

Computational model

9/29 P. Kibleur NHP 2017

Page 12: FacultyofMathematics, Biomechanicalmodelofthe primates ... · primates’upperlimb PierreKibleur Prof.AukeIjspeert lolMarcoCaprogrosso lolNathanGreiner lolShravanTataRamalingasetty

3 algorithms to process the recorded kinematics into the afferents’ firing rates:Inverse Dynamics Compute Muscle Controls Prochazka’s modela� fx

Joint angles that minimize the error in marker position are used to calculate joint torques.

q =argminq

i!i‖

xexpi − xi(q)‖

2,

� =M(q)q̈ + C(q, q̇) +G(q).

Computational model

9/29 P. Kibleur NHP 2017

Page 13: FacultyofMathematics, Biomechanicalmodelofthe primates ... · primates’upperlimb PierreKibleur Prof.AukeIjspeert lolMarcoCaprogrosso lolNathanGreiner lolShravanTataRamalingasetty

3 algorithms to process the recorded kinematics into the afferents’ firing rates:Inverse Dynamics Compute Muscle Controls Prochazka’s modela� fx

Muscle activations able to render the torques minimize muscle fatigue (Anderson, 2001).min ∑

ma2m +

i!i(q̈∗i − q̈i)

2,

s. t. �j =∑

mFm(t) ⋅ rj,m(q).

Computational model

9/29 P. Kibleur NHP 2017

Page 14: FacultyofMathematics, Biomechanicalmodelofthe primates ... · primates’upperlimb PierreKibleur Prof.AukeIjspeert lolMarcoCaprogrosso lolNathanGreiner lolShravanTataRamalingasetty

3 algorithms to process the recorded kinematics into the afferents’ firing rates:Inverse Dynamics Compute Muscle Controls Prochazka’s modela� fx

Afferent firings are estimated from stimuli different fibres respond to (Prochazka, 1999).

fIafIbfII

=⎛

�l �v �a 0 cIa0 0 0 �F 0 l 0 a 0 cII

ΔlvpaF1

= A�m(t).

Computational model

9/29 P. Kibleur NHP 2017

Page 15: FacultyofMathematics, Biomechanicalmodelofthe primates ... · primates’upperlimb PierreKibleur Prof.AukeIjspeert lolMarcoCaprogrosso lolNathanGreiner lolShravanTataRamalingasetty

Modelling

Page 16: FacultyofMathematics, Biomechanicalmodelofthe primates ... · primates’upperlimb PierreKibleur Prof.AukeIjspeert lolMarcoCaprogrosso lolNathanGreiner lolShravanTataRamalingasetty

Imported SIMM arm model (Chan, 2006):∙ Macacca Mulatta∙ Right arm∙ 7 bones (6 monkey + human hand)∙ 3 of them fixed∙ 7 degrees of freedom∙ 39 musculo-tendon units∙ 18 of them unparametrized

�aS

�rS

�fS

�fE

�p

�aW �fW

xy

zy

Geometry, leeway of the modelled arm.

Base model

11/29 P. Kibleur NHP 2017

Page 17: FacultyofMathematics, Biomechanicalmodelofthe primates ... · primates’upperlimb PierreKibleur Prof.AukeIjspeert lolMarcoCaprogrosso lolNathanGreiner lolShravanTataRamalingasetty

Fix the model in OpenSimin order to use it for thecomputations, at differentlevels of the musculoskele-tal modelling.

Segments -> Joints -> Actuators:a)

- length

- mass

- CoM

- Inertia

b)

- operating range

- joint coupling

- damper

- ligament

c)

- optimal fibre length

- tendon slack length

- pennation angle

- maximal isometric force

Model adaptations

12/29 P. Kibleur NHP 2017

Page 18: FacultyofMathematics, Biomechanicalmodelofthe primates ... · primates’upperlimb PierreKibleur Prof.AukeIjspeert lolMarcoCaprogrosso lolNathanGreiner lolShravanTataRamalingasetty

Validation

Page 19: FacultyofMathematics, Biomechanicalmodelofthe primates ... · primates’upperlimb PierreKibleur Prof.AukeIjspeert lolMarcoCaprogrosso lolNathanGreiner lolShravanTataRamalingasetty

Inverse Dynamics Compute Muscle Controls Prochazka’s modela�

Forward Dynamicsq

x

here

∙ Validate the torques, before even trying to compute muscle activities

Where to validate the model?

14/29 P. Kibleur NHP 2017

Page 20: FacultyofMathematics, Biomechanicalmodelofthe primates ... · primates’upperlimb PierreKibleur Prof.AukeIjspeert lolMarcoCaprogrosso lolNathanGreiner lolShravanTataRamalingasetty

Published results of the study of humans’ planar elbow flexion are used (Gribble, 1999).

Compare torques manually computed with OpenSim’s:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

−0.2

−0.1

0

0.1

0.2

Time [s]

Joint

torque

s[Nm]

��fS, simulation

��fE, simulation

��fS, manual

��fE, manual

Task:

z

x

y

Morphometrical validation: dynamics

15/29 P. Kibleur NHP 2017

Page 21: FacultyofMathematics, Biomechanicalmodelofthe primates ... · primates’upperlimb PierreKibleur Prof.AukeIjspeert lolMarcoCaprogrosso lolNathanGreiner lolShravanTataRamalingasetty

Inverse Dynamics Compute Muscle Controls Prochazka’s modela�

Forward Dynamicsq

x

here

∙ Validate the torques, before even trying to compute muscle activities∙ Validate individual actuators’ properties (Hicks, 2015)

Recently enforced by implementation (Millard, 2013)∙ Validate the muscle activities

Where to validate the model?

16/29 P. Kibleur NHP 2017

Page 22: FacultyofMathematics, Biomechanicalmodelofthe primates ... · primates’upperlimb PierreKibleur Prof.AukeIjspeert lolMarcoCaprogrosso lolNathanGreiner lolShravanTataRamalingasetty

69 EMG-kinematic simultaneous recordings of NHP frontal centre-out tasks are sharedwith us (Miller, Chowdhury, 2017). 22 muscles are monitored.

xy

Frontal centre-out task.

Muscular model validation: data

17/29 P. Kibleur NHP 2017

Page 23: FacultyofMathematics, Biomechanicalmodelofthe primates ... · primates’upperlimb PierreKibleur Prof.AukeIjspeert lolMarcoCaprogrosso lolNathanGreiner lolShravanTataRamalingasetty

69 EMG-kinematic simultaneous recordings of NHP frontal centre-out tasks are sharedwith us (Miller, Chowdhury, 2017). 22 muscles are monitored. Find the important ones.

xy

Frontal centre-out task.

0

10

20

30

tricepsshort[]

0 50 100%

0.6

0.8

1

Time

bicepslong[]

Example (filtered) EMG signals.

Muscular model validation: data

17/29 P. Kibleur NHP 2017

Page 24: FacultyofMathematics, Biomechanicalmodelofthe primates ... · primates’upperlimb PierreKibleur Prof.AukeIjspeert lolMarcoCaprogrosso lolNathanGreiner lolShravanTataRamalingasetty

69 EMG-kinematic simultaneous recordings of NHP frontal centre-out tasks are sharedwith us (Miller, Chowdhury, 2017). 22 muscles are monitored. Find the important ones.

xy

Frontal centre-out task.

0 0.2 0.4 0.6 0.8 1

teres major

deltoid medial head

triceps short head

Standard correlation in normalized time.

Mean and variance of the correlation between all EMGrecordings.

Muscular model validation: data

17/29 P. Kibleur NHP 2017

Page 25: FacultyofMathematics, Biomechanicalmodelofthe primates ... · primates’upperlimb PierreKibleur Prof.AukeIjspeert lolMarcoCaprogrosso lolNathanGreiner lolShravanTataRamalingasetty

Compare EMGs of important muscles to computedcontrols.

0

0.5

1

tricepshort

EMG Computed muscle activity

0

0.5

1

deltoidmedial

0 50 100%

0

0.5

1

Time

teresmajor

0 50 100%

Time

Static PushingStatic Pushing

Profiles of muscle activity, recorded and computed.

Allow the computed activity to beearlier than the EMG: Δt ≤ .1s(Miller, 1993).

maxΔt ∫

tf

t0EMG(t) ⋅ a(t + Δt)dt,

0 0.2 0.4 0.6 0.8 1

T. M.

T. S.

D. M.

Preak cross-correlation

Muscular model validation: muscle controls

18/29 P. Kibleur NHP 2017

Page 26: FacultyofMathematics, Biomechanicalmodelofthe primates ... · primates’upperlimb PierreKibleur Prof.AukeIjspeert lolMarcoCaprogrosso lolNathanGreiner lolShravanTataRamalingasetty

Inverse Dynamics Compute Muscle Controls Prochazka’s modela�

Forward Dynamicsq

x

here

∙ Validate the torques, before even trying to compute muscle activities∙ Validate individual actuators’ properties (Hicks, 2015)

Recently enforced by implementation (Millard, 2013)∙ Validate the muscle activities∙ Validate the inversibility of computations if possible

Where to validate the model?

19/29 P. Kibleur NHP 2017

Page 27: FacultyofMathematics, Biomechanicalmodelofthe primates ... · primates’upperlimb PierreKibleur Prof.AukeIjspeert lolMarcoCaprogrosso lolNathanGreiner lolShravanTataRamalingasetty

0

10

20

30

θf S[deg]

Average recorded kinematics Muscle-induced joint angles output

0 50 100%

50

60

70

80

Time

θf E[deg]

Static Pushing

Principal joint angle evolutions, frontal-centre out task.

a

q

Inverting the previouscomputations enables usto feed the model muscleactivities, and observethe resulting kinematics.

Model validation: feed-forward kinematics

20/29 P. Kibleur NHP 2017

Page 28: FacultyofMathematics, Biomechanicalmodelofthe primates ... · primates’upperlimb PierreKibleur Prof.AukeIjspeert lolMarcoCaprogrosso lolNathanGreiner lolShravanTataRamalingasetty

Inverse Dynamics Compute Muscle Controls Prochazka’s modela� f

Forward Dynamicsq

x

here

∙ Validate the torques, before even trying to compute muscle activities∙ Validate individual actuators’ properties (Hicks, 2015)

Recently enforced by implementation (Millard, 2013)∙ Validate the muscle activities∙ Validate the inversibility of computations if possible∙ Validate the firing rates

Where to validate the model?

21/29 P. Kibleur NHP 2017

Page 29: FacultyofMathematics, Biomechanicalmodelofthe primates ... · primates’upperlimb PierreKibleur Prof.AukeIjspeert lolMarcoCaprogrosso lolNathanGreiner lolShravanTataRamalingasetty

C5

C6

Bic

eps

bra

chii

C7

C8

T1

Ia Ib II

C5

C6

Tri

cep

sb

rach

ii

C7

C8

T1

0 Time 100 % 0 Time 100 % 0 Time 100 %

Activity

Min Max

Elbow flexion (.5s):

Elbow extension (.5s):

Afferent fibres activities with parameters tuned to the cat’s normal locomotion (Prochazka, 1999),based on motor pools distributions in the Non Human Primate (Jenny, 1983).

Validation: firing rates predictions

22/29 P. Kibleur NHP 2017

Page 30: FacultyofMathematics, Biomechanicalmodelofthe primates ... · primates’upperlimb PierreKibleur Prof.AukeIjspeert lolMarcoCaprogrosso lolNathanGreiner lolShravanTataRamalingasetty

Experiments

Page 31: FacultyofMathematics, Biomechanicalmodelofthe primates ... · primates’upperlimb PierreKibleur Prof.AukeIjspeert lolMarcoCaprogrosso lolNathanGreiner lolShravanTataRamalingasetty

Recorded kinematics

Forward control

−200204060

�f S[de

g]

Recorded kinematics Muscle-induced joint angles output

9 9.5 10 10.5 11 11.5 12 12.5 13 13.5406080100120140

Time [s]

�f E[de

g]

Reaching Grasping ReturningPreparation

Principal joint angle evolutions, reaching & grasping task.

Experiment: reaching & grasping task

24/29 P. Kibleur NHP 2017

Page 32: FacultyofMathematics, Biomechanicalmodelofthe primates ... · primates’upperlimb PierreKibleur Prof.AukeIjspeert lolMarcoCaprogrosso lolNathanGreiner lolShravanTataRamalingasetty

C5

C6Bicepsbrachii

C7

C8

T1

Ia Ib II

C5

C6

Tricepsbrachii

C7

C8

T1

9 Time [s] 13.5 9 Time [s] 13.5 9 Time [s] 13.5

Activity

Min MaxPreparation Reaching

Grasping Returning

Biceps and Triceps afferent activities

25/29 P. Kibleur NHP 2017

Page 33: FacultyofMathematics, Biomechanicalmodelofthe primates ... · primates’upperlimb PierreKibleur Prof.AukeIjspeert lolMarcoCaprogrosso lolNathanGreiner lolShravanTataRamalingasetty

C5

C6

C7

C8

T1

Ia Ib II

9 Time [s] 13.5 9 Time [s] 13.5 9 Time [s] 13.5

Activity

Min MaxPreparation Reaching

Grasping Returning

Afferent fibres activities with parameters tuned to the cat’s normal locomotion, based on motorpools distributions in the NHP.

Averaged afferent activities

26/29 P. Kibleur NHP 2017

Page 34: FacultyofMathematics, Biomechanicalmodelofthe primates ... · primates’upperlimb PierreKibleur Prof.AukeIjspeert lolMarcoCaprogrosso lolNathanGreiner lolShravanTataRamalingasetty

Conclusion

Page 35: FacultyofMathematics, Biomechanicalmodelofthe primates ... · primates’upperlimb PierreKibleur Prof.AukeIjspeert lolMarcoCaprogrosso lolNathanGreiner lolShravanTataRamalingasetty

Current State:∙ Macacca fascicularis right arm∙ Fully parametrized∙ Integrated in computations chain∙ Estimates sensorineural activity

Future developments:1 Add functionality2 Improve physiological correctness3 Replace cost function4 Use spinal maps to tune the EES

Summary

28/29 P. Kibleur NHP 2017

Page 36: FacultyofMathematics, Biomechanicalmodelofthe primates ... · primates’upperlimb PierreKibleur Prof.AukeIjspeert lolMarcoCaprogrosso lolNathanGreiner lolShravanTataRamalingasetty

Current State:∙ Macacca fascicularis right arm∙ Fully parametrized∙ Integrated in computations chain∙ Estimates sensorineural activity

Future developments:1 Add functionality2 Improve physiological correctness3 Replace cost function4 Use spinal maps to tune the EES

Summary

28/29 P. Kibleur NHP 2017

Page 37: FacultyofMathematics, Biomechanicalmodelofthe primates ... · primates’upperlimb PierreKibleur Prof.AukeIjspeert lolMarcoCaprogrosso lolNathanGreiner lolShravanTataRamalingasetty

THANK YOU!