fairburn, ga wastewater treatment plant project

59
Design Development Report City of Fairburn, Georgia 2015 WASTEWATER TREATMENT AND REUSE FACILTIY PREPARED BY: JVMS ENGINEERING GROUP JVMS ENGINEERING GROUP. | 1100 South Marietta Parkway, Marietta, Georgia 30060

Upload: benjamin-moss-eit

Post on 17-Aug-2015

222 views

Category:

Documents


5 download

TRANSCRIPT

Page 1: Fairburn, GA Wastewater Treatment Plant Project

Design Development Report                        

City of Fairburn, Georgia 

 

2015

WASTEWATER TREATMENT AND REUSE FACILTIY PREPARED BY: JVMS ENGINEERING GROUP 

JVMS ENGINEERING GROUP. | 1100 South Marietta Parkway, Marietta, Georgia 30060

Page 2: Fairburn, GA Wastewater Treatment Plant Project

City of Fairburn, Georgia  Water Reclamation Facility 

 

JVMS Engineering Group  Page 1 of 21  July 20. 2015 

TableofContents1.0 ‐ INTRODUCTION ................................................................................................................................. 3 

2.0 ‐ CITY OF FAIRBURN DESCRIPTION ................................................................................................... 4 

Table 2‐1 .................................................................................................................................................. 5 

3.0 ‐ SITE DESCRIPTION ............................................................................................................................. 6 

Figure 3‐1 ................................................................................................................................................. 6 

Figure 3‐2 ................................................................................................................................................. 7 

Figure 3‐3 ................................................................................................................................................. 8 

Figure 3‐4 ................................................................................................................................................. 9 

4.0 ‐ WASTEWATER LOADING EVALUATION ....................................................................................... 10 

Figure 4‐1 ............................................................................................................................................... 10 

Table 4‐1 ................................................................................................................................................ 11 

Table 4‐2 ................................................................................................................................................ 12 

Table 4‐3 ................................................................................................................................................ 13 

5.0 ‐ TREATMENT WORKS DESCRIPTION ............................................................................................. 14 

Table 5‐1 ................................................................................................................................................ 14 

Figure 5‐1 ............................................................................................................................................... 15 

Figure 5‐2 ............................................................................................................................................... 15 

Figure 5‐3 ............................................................................................................................................... 16 

Figure 5‐4 ............................................................................................................................................... 16 

Figure 5‐5 ............................................................................................................................................... 17 

Figure 5‐6 ............................................................................................................................................... 18 

Figure 5‐7 ............................................................................................................................................... 18 

6.0 ‐ REFERENCES ..................................................................................................................................... 21 

Page 3: Fairburn, GA Wastewater Treatment Plant Project

City of Fairburn, Georgia  Water Reclamation Facility 

 

JVMS Engineering Group  Page 2 of 21  July 20. 2015 

Tables: 

Table 2‐1  City of Fairburn, Regional Climactic Data 

Table 4‐1  City of Fairburn Design Population 

Table 4‐2  Anticipated Wastewater Loading 

Table 4‐3  Wastewater Flow Parameters 

Table 5‐1  Discharge Water & Effluent Limitations 

Figures: 

Figure 3‐1  Facility Layout 

Figure 3‐2  General Location Map 

Figure 3‐3  General Topographic Map 

Figure 3‐4  Site Topographic Map 

Figure 4‐1  City of Fairburn, Populations Predictions 

Figure 5‐1  Typical Parshall Flume 

Figure 5‐2  Typical Mechanical Bar Screen 

Figure 5‐3  Vortex Grit Chamber 

Figure 5‐4  Circular Primary Clarification Tank  

Figure 5‐5  Completely Mixed Activated Sludge with Extended Aeration for Nitrification 

Figure 5‐6  Dual Media Gravity Filter 

Figure 5‐7  Typical UV Disinfection System 

Appendixes: 

Appendix A  Preliminary Design Calculations 

Appendix B  Preliminary Site Drawings & Equipment Treatment System Specifications 

Appendix C  Environmental Informational Document 

 

Page 4: Fairburn, GA Wastewater Treatment Plant Project

City of Fairburn, Georgia  Water Reclamation Facility 

 

JVMS Engineering Group  Page 3 of 21  July 20. 2015 

1.0‐INTRODUCTIONPresently, the City of Fairburn owns and operates a wastewater collection system but relies on Fulton 

County  for wastewater  treatment.   Due  to high costs  for wastewater  treatment by Fulton County, as 

well as  concerns over  future available  capacity  to discharge  to Fulton County,  the City  considers  it  is 

necessary for alternative means of wastewater disposal to be investigated. Based on this investigation, it 

has been determined that a City owned and operated wastewater treatment facility would significantly 

reduce  the  City’s  reliance  on  Fulton  County  for wastewater  treatment  as well  as  reduce  the  City’s 

wastewater treatment costs. 

The Mayor  and  City  Council  through  the  City Administrator’s  office  have  therefore  authorized  JVMS 

Engineering Group to undertake this design development report to describe the proposed wastewater 

treatment  facility.   This activity  is considered an  integral part of  the ongoing process  to create a City 

owned and operated wastewater treatment and disposal facility that can provide adequate wastewater 

treatment capacity for present and future needs. 

It has been determined  through discussion with  the Georgia Department of Environmental Protection 

(EPD) that the option of a conventional surface water discharge into Line Creek (located within the Flint 

River Watershed) is an acceptable option.  Another option for disposal of wastewater into to the nearby 

Whitewater Creek was evaluated.  However, due to in‐stream TMDL conditions in Whitewater Creek, a 

discharge of treated wastewater effluent will not be permitted due to a number of factors including low 

dissolved oxygen  and  high  levels of nitrogen  and phosphorus  in  the  stream.    Therefore,  it has  been 

determined that a discharge into Line Creek is the preferred wastewater disposal option. 

This  design  development  report  defines  treatment  requirements,  provides  design  calculations,  and 

detailed descriptions for the wastewater treatment works and disposal facilities for the City of Fairburn, 

Georgia. The proposed wastewater treatment facility will provide treatment for an average wastewater 

flow of 7.73     million gallons per day  (mgd). This design development  report will define  the  following 

parameters of the proposed wastewater treatment and disposal system: 

Research and investigation findings 

Site selection and location 

Selection of effluent disposal method 

Selection of treatment processes 

Design of treatment works 

Treatment works description 

Ability for future expansion 

Page 5: Fairburn, GA Wastewater Treatment Plant Project

City of Fairburn, Georgia  Water Reclamation Facility 

 

JVMS Engineering Group  Page 4 of 21  July 20. 2015 

2.0‐CITYOFFAIRBURNDESCRIPTIONThe City of Fairburn lies in south Fulton County approximately 17 miles southwest of downtown Atlanta. 

Interstate 85, U.S. Highway 29, State Route 74, State Route 138, and State Route 92 traverse the City.  

The Atlanta and West Point rail line operated by CSX Railroad provides rail service in the area.  Hartsfield 

International  Airport  is  located  approximately  10 miles  northeast  of  Fairburn.  Fairburn  is  developed 

along a northeast to southwest ridge traversed by U.S. Highway 29 and the Atlanta and West Point rail 

line.  The landscape is gently rolling hills and valleys.  The elevation ranges in the City from 900 to 1047 

feet above sea level.  

Climatic conditions prevailing in the Fairburn area includes an annual average temperature of 61.3°F, an 

average winter  temperature  of  43.4°F,  and  an  average  summer  temperature  of  77.6°F.  The  average 

annual  rainfall  is  50.7  inches,  with  an  average  annual  number  of  days  with  rainfall  events  of  115. 

Humidity is high and averages around 73 percent. Regional Climatic Data is shown in Table 1. 

The City of  Fairburn owns  and maintains  a water distribution  system  consisting of  approximately 31 

miles of six‐inch and  larger mains.   Primary water mains consist of one 12‐inch  line on the east side of 

I‐85 and 6 and 8 inch mains throughout the remaining portion of the system.  The system contains over 

300 fire hydrants.  Fairburn does not have any water storage or treatment facilities. The City purchases 

water from the City of Atlanta system through seven master meters that tap City of Atlanta water mains. 

Currently, Fairburn purchases about 14.5 million gallons of potable water per month amounting to an 

average daily  consumption of approximately 0.48 million gallons per day. Approximately 1,740 water 

system  customers were  served  in 1999.   Of  this  total, 89 percent are  classified as  residential and 11 

percent are classified as commercial/industrial customers. 

The sewerage collection system consist of a network of gravity sewers with approximately 43 miles of 

pipelines ranging  in size from 6‐inches to 15‐inches and approximately 631 manholes.   Portions of the 

sewerage system date to 1936.  The system began in the central core of the City and has been expanded 

many  times  to keep pace with growth. The City also operates  three  sewage pump  stations within  its 

collection system. Approximately 1,688 wastewater collection system customers were served  in 1999.  

Of  this  total,  90  percent  are  classified  as  residential  and  10  percent  are  classified  as 

commercial/industrial  customers,  all  located  within  the  City  limits.  Presently  all  of  the  wastewater 

collected  in  the  Fairburn  system  discharges  to  the  Fulton County  sewerage  system  and  is ultimately 

transported to the Camp Creek WWTP for treatment and disposal.  The 1999 average daily wastewater 

flow  to  Fulton County was  approximately 0.423 million  gallons per day  (mgd). Wastewater  flow  and 

quantities to the Fulton County sewer system are monitored via five flow monitoring stations. 

Further descriptions of the City of Fairburn’s water and wastewater systems are detailed in Appendix D, 

Engineering Report Wastewater System  Improvements. Also addressed  in Appendix D are population 

and housing projections along with project  financing and revenues that provide adequate background 

information for the economic and social impact justification of the proposed project. 

   

Page 6: Fairburn, GA Wastewater Treatment Plant Project

City of Fairburn, Georgia  Water Reclamation Facility 

 

JVMS Engineering Group  Page 5 of 21  July 20. 2015 

Table2‐1Regional Climactic Data 

Month  Precipitation Days 

Precipitation (in) 

Standard Deviation (in) 

Temperature °F 

January  12  4.75  1.75  41 

February  10  4.81  1.75  44.8 

March  11  5.77  2.14  53.5 

April  9  4.26  1.83  61.5 

May  9  4.29  1.59  69.2 

June  10  3.56  1.31  76 

July  12  5.01  1.52  78.8 

August  9  3.66  1.39  78.1 

September  8  3.42  1.60  72.7 

October  7  3.05  1.66  65.3 

November  8  3.86  1.80  53.1 

December  10  4.33  1.85  44.5 

Total  115  50.77  50.77  61.3 

Source: Data obtained for the Atlanta, Georgia, Hartsfield International Airport from the National Oceanic and Atmospheric Administration, “Monthly Station Normals of Temperature, Precipitation, and Heating and Colling Degree Days 1961‐90, Georgia” 

 

 

 

 

 

 

 

 

Page 7: Fairburn, GA Wastewater Treatment Plant Project

City of Fairburn, Georgia  Water Reclamation Facility 

 

JVMS Engineering Group  Page 6 of 21  July 20. 2015 

3.0‐SITEDESCRIPTIONThe site chosen for the wastewater treatment and disposal works is a 300+ acre area southwest of the 

City in unincorporated Fulton and Fayette Counties, south of I‐85, and west of GA Highway 74. Present 

land use of  the  site  is unmanaged  forest  area  and  agricultural/pasture  lands.  The  site  is  adjacent  to 

Creekwood Road on the west, Johnson/Bohanan Road to the south and the Fulton/Fayette County line 

to the east. Figure 3‐1 shows an aerial of the facility and the proposed wastewater treatment plant area.  

Figure3‐1Facility Layout 

 

 

Page 8: Fairburn, GA Wastewater Treatment Plant Project

City of Fairburn, Georgia  Water Reclamation Facility 

 

JVMS Engineering Group  Page 7 of 21  July 20. 2015 

Figure 3‐2 shows the City of Fairburn and the surrounding areas in respect to Atlanta, GA. surrounding 

areas consist of intermediate residential and unmanaged forest areas.  

Figure3‐2General Location Map 

 

Topography of the site ranges in elevation from 890 to 958 feet above sea level. Slopes on the site range 

from 2% to 11%. Line Creek flows from north to south through the middle of the property, with multiple 

drainage channels and  intermittent streams  that drain  to Line Creek  from  the site. Additional surface 

water consists of  two  large “farm” ponds  that are approximately 3.0 and 1.5 acres, as well as  limited 

wetlands located in low laying areas along Line Creek.  

Page 9: Fairburn, GA Wastewater Treatment Plant Project

City of Fairburn, Georgia  Water Reclamation Facility 

 

JVMS Engineering Group  Page 8 of 21  July 20. 2015 

Figure 3‐3 shows the general topography of the surrounding area. The regional flow patterns described 

above is visually depicted. As ca be seen, Line Creek forms the border of Fulton and Fayette County, and 

then the border between Coweta and Fayette County. Line Creek continues to south and discharges to 

Flint River.  

Figure3‐3Topographic Map 

 

 

 

Page 10: Fairburn, GA Wastewater Treatment Plant Project

City of Fairburn, Georgia  Water Reclamation Facility 

 

JVMS Engineering Group  Page 9 of 21  July 20. 2015 

Figure 3‐4 shows the site specific topography. Wetlands delineation and mitigation studies for streams 

and wetlands disturbing activities are being conducted by a separate consultant specializing in this field. 

Wetland permitting and mitigation plans  (if  required) will be properly submitted  to  the Army Corp of 

Engineers  for approval and permitting prior  to beginning  construction.  Final design and planning will 

incorporate any required mitigation due to land disturbing activities.  

Figure3‐4Site Topographic Map 

 

 

 

Page 11: Fairburn, GA Wastewater Treatment Plant Project

City of Fairburn, Georgia  Water Reclamation Facility 

 

JVMS Engineering Group  Page 10 of 21  July 20. 2015 

4.0‐WASTEWATERLOADINGEVALUATIONThe following figure of population prediction is taken from Appendix D (Engineering Report, Wastewater 

System  Improvements)  in  which  combined  wastewater  flows  have  been  projected  for  the  City  of 

Fairburn using various models of prediction  (least square method,  ratio method,  logistic curve  fitting, 

and decreasing rate of increase. This figure shows the population used for the predictive model, and the 

population predictions for each model in 2055: 

Figure4‐1City of Fairburn Population Predictions 

 

The figure shows the data that was used for the predictive models (historical population data), and also 

has the population predictions for the four models use. The data was then analyzed and the conclusion 

were drawn based on knowledge of the area, and in depth analysis of the parameters which were used 

to develop the data. Table 4‐1 is a narrative description of those finding, and shows the final conclusions 

which are used for the facility design. 

 

 

 

0

20,000

40,000

60,000

80,000

100,000

120,000

1980 1990 2000 2010 2020 2030 2040 2050 2060

POPULA

TION

YEAR

Fairburn, GA Population Predictions

Historical Population Data

Least Square Method

Mathematical Method

Decreasing Rate of Increase

Ratio Method

Page 12: Fairburn, GA Wastewater Treatment Plant Project

City of Fairburn, Georgia  Water Reclamation Facility 

 

JVMS Engineering Group  Page 11 of 21  July 20. 2015 

Table4‐1City of Fairburn Design Population  

Population Prediction Method 

Population Prediction (2055)  Comments 

Final Population Selection 

55,000 

This population was chosen based on the relative middle ground of the data, engineering judgment, and known factors effecting the population in the area. We believe this population prediction to be conservative enough to ensure the wastewater treatment plant will be serviceable through 2055, but also not incur unnecessary cost if population growth is not achieved to this level. If population exceeds this prediction the design will allow for potential future expansion to handle the increased loading.  

Least Square Method 

78,467 

This number was perceived as high by the group. After a closer look at the population data analyze a few items presented themselves from the data.  1. The City of Fairburn experienced a large population growth from 2000‐2001, and has steadily increased, but at a reduced rate.  2. Population was consistent in the 1990s. 3. Population increase has slowed in recent years, and area has also showed signs of slowed growth based on group's knowledge of the area. 

Ratio Method  17,900 

This prediction was thought by the group to not be conservative enough. It is possible that population growth could be reduced over time, but it is dangerous to design the system based on a smaller number that is so drastically different from the least square model. Additionally, data was compared to the State of Georgia population growth. Growth in this area of Georgia has been considerably higher in recent years than other parts of the State of Georgia. 

Mathematical or Logistic Curve Fitting 

110,026 

In the opinion of the team, this method is not appropriate for the required projection. We attempted to use data across a large span of years. Smaller time frames do not take into account enough of the population trends to predict 40 years. 

Decreasing Rate of Increase 

45,066 

This value seemed reasonable given the supplied data, and the known data for the city. The city has gone through periodic growth periods, which seemed to be marked by a decrease in growth rate due to a variety of factors. Given the value obtained we believe this is reasonable data for planning purposes. 

Source:  Population prediction methods by JVMS Engineering Group, source data was taken from U.S. Census and Google Population©. 

As outlined above, the population selection of 55,000 people in 2055 was selected to insure the plant 

will be able to handle the loadings expected in the future. In Table 4.2, this population prediction is used 

to determine the loading for the plant. Additionally, a few specific industrial clients will be discharging 

their production flows to the facility. That data is also included in the flow loadings for the facility. If 

additional industrial clients would like to discharge their waste to the facility it will be negotiated as 

needed.  

Page 13: Fairburn, GA Wastewater Treatment Plant Project

City of Fairburn, Georgia  Water Reclamation Facility 

 

JVMS Engineering Group  Page 12 of 21  July 20. 2015 

Table4‐2Anticipated Wastewater Loading 

2055 Design Flow Rates 

Parameter  Value  Units    

Design Population:  55,000  person    

Q Factor   102  gal/day‐person   

Population Q  5,610,000 gal/day    

Reduction Factor  0.95  None(1)    

Final Pop. QP  5.33  MGD    

Peaking Factor (PF)  2.23  gal/day(2)    

Peak Flow (QPPF)  11.87  MGD    

     

Additional Flow Sources:    

Industry  Value  Units  Value  Units    

Pet Food  0.6  MGD  600,000  gal/day    

Potato Processing  1.1  MGD  1,100,000 gal/day    

Cheese  0.7  MGD  700,000  gal/day    

Industry Total (QI):  2.4    

 

 

  

   

   

   

  

     

Design Flows    

Design Flow (QT)  7.73  MGD    

Peak Flow (Qpeak)  14.27  MGD    

                 

 

Table 4‐2 shows the design flows expected by the plant using the population predictions discuss 

previously. The peak flow and the average flows for the facility are included in this table, and were used 

in the selection of the various aspects of the wastewater treatment plant. 

The parameters of this facility’s discharge is dependent of the discharge point of the flow. The facility 

discharges to Line Creek, which is located within the Flint River Watershed. The facility discharge is 

required to maintain the limited set forth in Table 4‐3. 

 

 

+

+

Page 14: Fairburn, GA Wastewater Treatment Plant Project

City of Fairburn, Georgia  Water Reclamation Facility 

 

JVMS Engineering Group  Page 13 of 21  July 20. 2015 

Table4‐3Wastewater Flow Parameters 

Parameter  Averaging Period  Effluent Limitations 

Incoming Parameters (Given For Project) 

Flow (MGD) Monthly Average 

Monitor & Report  N/A Daily Max 

BOD5 (mg/L) Monthly Average  30  261 

Daily Average  40  261 

CBOD5 (mg/L) Monthly Average  20 

  Daily Average  25 

Total Suspended Solids (TSS) (mg/L) 

Monthly Average  30  512 

Weekly Average  45  512 

pH Minimum  6 

N/A Maximum  9 

Ammonia (Total as N) (mg/L) 

Monthly Average  0.5  30 

Daily Max  0.5  30 

Temperature (F) 

Monthly Average 

Monitor & Report  N/A Minimum 

Maximum 

 

The  influent  flow to the Landrum Road and White Water Creek Wastewater Pumping Stations are the 

proposed sources of wastewater for this project.   The pump station  locations can be seen  in Figure 1.  

The pump stations serve residential and light industrial areas of south Fulton County, including southern 

portions  of Union  City  and  the  City  of  Fairburn. Wastewater monitoring  of  the  sewer  system  in  the 

vicinity  of  the  pump  stations  has  been  conducted,  with  sample  results  provided  in  Appendix  C, 

Wastewater Sampling Results. 

It is proposed to withdraw a nearly continuous flow from the Fulton County sewer system that is equal 

to or slightly greater than the combined total of the Town of Tyrone and the City of Fairburn’s average 

daily  flow  to  the Fulton County  sewer  system. This maximum daily withdraw of  flow  from  the pump 

station would  be  14.27 MGD.  It  is  for  this  reason we  include  flow  equalization  at  the wastewater 

treatment facility. 

Final  logistics  of  pump  station  arrangements,  locations,  and  capacities will  be  dependent  on  future 

pump station monitoring and anticipated residential build out.  

 

Page 15: Fairburn, GA Wastewater Treatment Plant Project

City of Fairburn, Georgia  Water Reclamation Facility 

 

JVMS Engineering Group  Page 14 of 21  July 20. 2015 

5.0‐TREATMENTWORKSDESCRIPTIONThe effluent requirements that must be met for discharge in the into the receiving water of Line Creek 

are  fairly  stringent  and  therefore  require  a  greater  degree  of  treatment  than  typical  wastewater 

treatment facilities. The EPD treatment criteria for reuse water are as follows: 

Table5‐1Discharge Receiving Water & Effluent Limitations 

Receiving Water  Line Creek 

Final River  Flow to Flint River 

Parameter  Averaging Period Effluent 

Limitations 

Flow (MGD) Monthly Average  Monitor & 

Report Daily Max 

BOD5 (mg/L) Monthly Average  30 

Daily Average  40 

CBOD5 (mg/L) Monthly Average  20 

Daily Average  25 

Total Suspended Solids (TSS) (mg/L) Monthly Average  30 

Weekly Average  45 

pH Minimum  6 

Maximum  9 

Ammonia (Total as N) (mg/L) 

Monthly Average  0.5 

Daily Max  0.5 

Temperature (F) 

Monthly Average Monitor & Report 

Minimum 

Maximum 

Based  upon  the  effluent  requirements  and  an  understanding  of  the  City  of  Fairburn’s  concerns  and 

needs, the following treatment methods were selected and are anticipated to obtain the effluent water 

quality  parameters,  operational  requirements,  cost  ,  and  future  expansion  desired  by  the  City  of 

Fairburn; 

Mechanical Bar Screen 

Vortex Grit Collection 

Primary Clarification/Sedimentation 

Flow Equalization  

Biological Process: Completely Mixed Activated Sludge w/ Nitrification 

Secondary Clarification 

Ammonia Stripping 

Page 16: Fairburn, GA Wastewater Treatment Plant Project

City of Fairburn, Georgia  Water Reclamation Facility 

 

JVMS Engineering Group  Page 15 of 21  July 20. 2015 

Tertiary Filtration and UV Disinfection 

Re‐Aeration (Step Aeration) 

 

Flow will be measured using a Parshall Flume on the influent and effluent of the plant, and large trash or 

solids will be removed from Influent flow, via mechanical bar screen (see Figure 5‐1 & Figure 5‐2).  

Figure5‐1Typical Parshall Flume 

 

 

Figure5‐2Typical Mechanical Bar Screen 

 

Page 17: Fairburn, GA Wastewater Treatment Plant Project

City of Fairburn, Georgia  Water Reclamation Facility 

 

JVMS Engineering Group  Page 16 of 21  July 20. 2015 

 

A vortex grit chamber  is  located after moving for additional solid removal and flow  is then diverted to 

equalization tanks which are used for clarification of wastewater and normalizing flow during peak and 

low flow periods. A visual depiction of a vortex grit chamber is included in Figure 5‐3. 

Figure5‐3Vortex Grit Chamber 

 

Flow will be  split  to  three  circular primary  clarification  tanks which will  continue  to polish water. All 

solids removed in this portion of the treatment process will be collected and taken off‐site and disposed 

of by  a  third party  contractor  as needed. A  visual depiction of  a  circular primary  clarification  tank  is 

provided in Figure 5‐4. 

Figure5‐4Circular Primary Clarification Tank 

 

Page 18: Fairburn, GA Wastewater Treatment Plant Project

City of Fairburn, Georgia  Water Reclamation Facility 

 

JVMS Engineering Group  Page 17 of 21  July 20. 2015 

Water which continues through the treatment process is discharged from primary clarification using an 

overflow weir from the top of the primary clarification tanks. 

Flow  is  then diverted  to  the aeration  tank  for  the digestion process  to  continue. Four aeration  tanks 

which share exterior walls are each 100 feet long, 25 feet wide, and 15 feet in depth. Using sample data 

provided, the cell retention time (7.5 days), detention time (2.13 hours), and food to mass ration (0.36) 

are all in the middle portion of the acceptable range and should allow the plant to adjust as needed. The 

recycle  flow back  through  the process  is 97% and  results  in approximately 90,000 gal/day of wasted 

sludge. The mass of the sludge 315,000 kg/day. Based on the efficiency of aeration process which will be 

adjusted as‐needed once the plant will be required to provide at  least 17,000,000 ft3/day of air. Since 

the ammonia levels are required to be reduced significantly, extended aeration was selected to provide 

additional nitrification  to achieve ammonia  treatment  levels. Therefore,  the airflow  into  the  tank was 

increased to 90 MM ft3/day, and the volume of the tanks for design  is 768,000 ft3. Figure 5‐5 shows a 

visual depiction of the process of completely mixed activated sludge.  

Figure5‐5Completely Mixed Activated Sludge with Extended Aeration for Nitrification 

 

The  surface  area  required  for  secondary  clarification was determined by  analyzing  the hydraulic  and 

solids loading of the tank. Based on preliminary design calculations (these will need to be adjusted once 

laboratory data has been obtained  from  incoming water),  is  controlled by  the hydraulic  loading. The 

secondary clarifier will be equipped with a surface skimming device, and a bottom skimming device to 

insure the take operates properly overtime. Sludge removed during this process will be dewatered using 

a belt press and then removed off site for final disposal by a third party contractor. The State of Georgia 

is suggested and land application of sludge to be applied throughout the state. This can be investigated 

further as required, but this preliminary design includes truck pick‐up by a third‐party contractor. 

Flow  leaving  the  secondary  clarifier  is  proposed  to  then  be  disinfected  using  filtration  and  UV 

disinfection.  Filtration  is  performed by using  throughs,  anthracite  coal,  sand,  and  gravel  to  filter  the 

water  for UV disinfection. The  filtering process will  in  turn  leave  sediment within  the  filter beds. The 

filter beds will be  cleaned,  via backwashing, by pumps  located  in  the  filtration  area. Water which  is 

disinfected  using  UV  Disinfection,  must  be  properly  filtered  to  remove  sediment  from  the  water. 

Sediment in the water is reduces the transmittance of the water and there reduces the contact time of 

Page 19: Fairburn, GA Wastewater Treatment Plant Project

City of Fairburn, Georgia  Water Reclamation Facility 

 

JVMS Engineering Group  Page 18 of 21  July 20. 2015 

the UV waves with the microorganisms and viruses within the. Refer to Figure 5‐6 for a visual depiction 

of the Dual Media Gravity Filter which is proposed to be used for the treatment system. 

Figure5‐6Dual Media Gravity Filter 

 

UV disinfection is currently a proprietary field. Most (if not all) UV disinfection systems are provided by 

specialty contractors. UV disinfection was selected due to the effectiveness and environmental friendly 

option for discharging directly to a water body. Chlorine (or similar) disinfection leaves residual chemical 

within the water over time. This residual  is good for  limiting regrowth of microorganisms and virus for 

drinking water of the public, but reduces natural bacteria which are good for streams. When chlorine is 

used for disinfection of water discharged to waterways, the chlorine effects natural bacterial growth.  

 

Figure5‐7Typical UV Disinfection System 

Page 20: Fairburn, GA Wastewater Treatment Plant Project

City of Fairburn, Georgia  Water Reclamation Facility 

 

JVMS Engineering Group  Page 19 of 21  July 20. 2015 

 

Additional treatment processes for the proposed facility are as follows: 

Raw Sewage Fine Screening: A mechanical bar screen will be used  for  the  removal of solids  from  the 

influent wastewater.  Influent wastewater will  not  likely  contain  large  debris  due  to  interaction with 

multiple pump stations prior to treatment facility. Therefore a mechanically cleaned screen with smaller 

particle flow through sizes (1/4 inch) is desired. Channel size is based on an average flow through velocity 

of 1.5 ft/sec 

Aerated Grit Removal: Grit removal will be through vortex type cylindrical aerated grit chambers. Grit 

chamber sizing is based on a hydraulic detention time at average flow of 45 seconds. 

Influent Flow Measurement: A Parshall flume will be used for incoming flow measurement. This method 

of  flow metering was chosen due  to  the  full pipe  flow of  influent wastewater,  reliability, and ease of 

continuous flow recording.  Influent flow will then be continuously recorded at the office using a simple 

SCADA system, and an Ultrasonic Sensor will be used with the water column of the flume. 

Primary  Clarification:  Three  tanks  of  56  feet  in  diameter  will  be  used  for  ease  of  servicing  and  to 

moderate peak flows. 

Aeration  Equipment:  Blowers with  diffused  air will  be  used  for  the  delivery  of  process  oxygen  and 

mixing.  Blowers  and  diffusers  will  be  used  for  the  primary  biological  treatment  processes,  sludge 

digestion, aerated grit removal, operation of airlift pumps, and any additional pneumatic equipment. 

Secondary  Clarification:  Three  circular  clarifiers  will  be  used  each  capable  of  treating  an  average 

wastewater  flow 1 mgd at a hydraulic  surface  loading  rate of 300 gpd/ft2. This provides a  redundant 

clarifier such that adequate clarification of the wastewater will continue with one of the clarifiers out of 

service. 

Effluent  Flow  Measurement:  A  parshall  flume  with  ultrasonic  level  detector  will  be  used  for  the 

measurement of effluent  flow. Effluent  flow will  then be  continuously  recorded at  the office using a 

simple SCADA system.  

Page 21: Fairburn, GA Wastewater Treatment Plant Project

City of Fairburn, Georgia  Water Reclamation Facility 

 

JVMS Engineering Group  Page 20 of 21  July 20. 2015 

Mechanical  Sludge  Thickening:  Sludge  to  the  aerobic  digesters  from  the  secondary  clarifiers will  be 

increased in solids concentration from 1.5 to 4 percent through the use of a belt thickener. By adding a 

polymer to the sludge to flocculate solids together, excess water contained in the sludge can be drained 

away from the solids by a permeable belt thickener. 

Supervisory Control And Data Acquisition (SCADA): Limited computer monitoring and data recording of 

the following treatment works is proposed: 

Influent flow 

Filter turbidities 

Ultraviolet disinfection 

Effluent flow 

Backwash flow 

Irrigation/reuse flow 

An alarm and automatic pager system will be included to alert due to the following incidences: 

Loss of power 

Pumping system failure 

Loss of disinfection 

Turbidity violation 

Solid Waste Disposal: Disposal of dewatered  sludge  and  screenings will be  to  a  sanitary  landfill.  It  is 

proposed  to  located  the  influent  headworks  and  sludge  dewatering  system  in  the  same  building 

adjacent  to one  another  such  that  sludge  and  screenings  can be disposed of  in  the  same dumpster. 

Dumpster removal will be through a commercially contracted waste hauler. 

Back Up Power Source: An adequate back up power source will be supplied either through an alternative 

second power grid or through an on site generator.  

Maintenance  Building:  Within  the  same  building  as  sludge  handling  and  the  headworks  will  be  a 

maintenance area for the storage of equipment and replacement parts. Required equipment consists of 

tools for repairs, vehicles for spray area maintenance, and spare treatment equipment items and parts. 

Offices & Laboratory: Laboratory facilities will be provided to conduct routine testing of the wastewater 

processes in order to meet monitoring and permit requirements, as well as provide necessary feedback 

for proper operation of  the  treatment works. Office  areas will be provided  for meetings,  conducting 

paper work, and for the wastewater superintendent. 

 

Page 22: Fairburn, GA Wastewater Treatment Plant Project

City of Fairburn, Georgia  Water Reclamation Facility 

 

JVMS Engineering Group  Page 21 of 21  July 20. 2015 

6.0‐REFERENCES1. ASCE (1959), Manual of Practice No. 36, Sewage Treatment Plant Design, A.S.C.E., NY, NY. 

2. Davis, M. (2010). Water and wastewater engineering design principles and practice. New York, New York: McGraw‐Hill. 

3. Davis, M., & Cornwell, D. (2013). Introduction to environmental engineering (5th ed.). New York: McGraw‐Hill. 

4. Droste, Donald L  (1997), Theory and Practice of Water and Wastewater Treatment,  John Wiley & 

Sons, Inc., NY, NY. 

5. EPA (1974), Process Design Manual for Sludge Treatment and Disposal, EPA 625/1‐74‐006. 

6. EPA (1978), Sludge Treatment and Disposal, EPA 625/4‐78‐012. 

7. EPA (1989), Handbook Retrofitting POTW’s, EPA 625/6‐89/020. 

8. EPA  (1995), Process Design Manual  for Surface Disposal of Sewage Sludge and Domestic Septage, EPA/625/R‐95/002 

9. Great Lakes – Upper Mississippi River Board of State and Provincial Public Health and Environmental Managers, Recommended Standards  for Wastewater Facilities, Health Education Services, Albany, NY. 

10. Gupta, R. (2008). Hydrology and hydraulic systems (3rd ed.). Long Grove, Ill.: Waveland Press. 11. Haaken, D., Schmalz, V., Dittmar, T., & Worch, E. (n.d.). Limits of UV disinfection: UV/electrolysis 

hybrid technology as a promising alternative for direct reuse of biologically treated wastewater. Journal of Water Supply: Research and Technology—AQUA, 442‐442. 

12. Metcalf and Eddy,  Inc. (1991), Wastewater Engineering Treatment, Disposal, and Reuse 3rd Edition, 

McGraw‐Hill, NY, NY. 

13. State  of  Georgia,  Department  of  Natural  Resources,  Environmental  Protection  Division,  Water 

Protection Branch  (1996), Criteria  for Slow Rate Land Treatment and Urban Water Reuse, Atlanta 

GA. 

14. State  of  Georgia,  Department  of  Natural  Resources,  Environmental  Protection  Division,  Water 

Protection Branch (1996), Planning for Domestic Wastewater Systems, Atlanta GA. 

15. State  of  Georgia,  Department  of  Natural  Resources,  Environmental  Protection  Division(2000), 

Chapter 391‐3‐6 Water Quality Control, Atlanta GA. 

16. Vesilind,  P.  Aarne  (1975),  Treatment  and  Disposal  of  Wastewater  Sludges,  Ann  Arbor  Science 

Publishers, Inc., Ann Arbor, MICH. 

17. Water Pollution Control Federation (1977), Wastewater Treatment Plant Design, Manual of Practice, 

Lancaster Press, Inc., Lancaster, PA. 

 

 

Page 23: Fairburn, GA Wastewater Treatment Plant Project

Sheet #

Sheet 1

Sheet 2

Sheet 3

Sheet 4

Sheet 5 

Sheet 6

Wastewater Treatment Plant Flow Chart

2055 Average and Peak Flow Rate Analysis

2015 Average and Peak Flow Rate Analysis

Sedimentation Tank and Weir Design

Aeration and Digester Tank Design

Design Parameter

Brennan D. Jones, P.E.

Benjamin L. Moss

Charleston Simmons

Dr. M.A. Karim

Darrel Vaughan

Project Given's & Effluent Guidelines

Table of Contents

Fairburn, Georgia Wastewater Treatment Plant DesignKennesaw State University

Atlanta, Georgia 

Environmental Engineering DesignPrepared For: 

Prepared By:

Page 24: Fairburn, GA Wastewater Treatment Plant Project

Sheet 1 ‐ 

Project Givens and Effluent Parameters

Fairburn, GA Wastewater Treatment

Plant Design

Kennesaw State University

Department of Civil Engineering

Receiving Water Line Creek

Final River Flow to Flint River

Parameter Averaging Period Effluent Limitations

Incoming 

Parameters

(Given For Project)

2015 Calculated Loading

Fairburn, GA Plant

2055 Calculated Loading

Fairburn, GA Plant Comments

Monthly Average 114 232Daily Max 6 14

Monthly Average 30 261 248,212 480,023,088

Daily Average 40 261 31.66 64.39

Monthly Average 20

Daily Average 25

Monthly Average 30 512 486,915 941,654,488

Weekly Average 45 512 22,632 51,127

Minimum 6 7 7Maximum 9 7 7

Monthly Average 0.5 30 28,530 55,175,068Daily Max 0.5 30 1,578 3,565

Monthly Average 20 20

Minimum 20 20Maximum 20 20

N/A

Not given, assumed based on typical conditions will 

adjust as necessary.

Total Suspended Solids (TSS) (mg/L)

Monitor & Report

Not given, assumed based on typical conditions will 

adjust as necessary.

N/A

N/A

Monitor & ReportFlow (MGD)

BOD5 (mg/L)

CBOD5 (mg/L)

pH

Temperature (F)

Ammonia (Total as N) (mg/L)

Page 2 of 9

Page 25: Fairburn, GA Wastewater Treatment Plant Project

Sheet 2 ‐ 

Project Givens and Effluent Parameters

Fairburn, GA Wastewater Treatment

Plant Design

Kennesaw State University

Department of Civil Engineering

Page 3 of 9

Page 26: Fairburn, GA Wastewater Treatment Plant Project

Sheet 3 ‐ 

2055 Average Peak Flow Rate

Fairburn, GA Wastewater Treatment

Plant Design

Kennesaw State University

Department of Civil Engineering

Parameter Value Units

Design Population: 55,000 person Based on population from 2055 used by the group.

Q Factor  102 gal/day‐person

Population Q 5,610,000 gal/day

Reducton Factor 0.95 None(1)

Final Pop. QP 5.33 MGD

Peaking Factor (PF) 2.23 gal/day(2)

Peak Flow (QPPF) 11.87 MGD

Industry Value Units Value Units

Pet Food 0.6 MGD 600,000 gal/day

Potato Processing 1.1 MGD 1,100,000 gal/day

Cheese 0.7 MGD 700,000 gal/day

Industry Total (QI): 2.4

Design Flow (QT) 7.73 MGD

Peak Flow (Qpeak) 14.27 MGD

Additional Flow Sources:

Design Flows

2055 Design Flow Rates

+

+

Page 4 of 9

Page 27: Fairburn, GA Wastewater Treatment Plant Project

Sheet 4 ‐ 

2015 Average Peak Flow Rate

Fairburn, GA Wastewater Treatment

Plant Design

Kennesaw State University

Department of Civil Engineering

Parameter Value Units

Design Population: 14,458 person Based on decreasing rate of increase population for 2015

Q Factor  102 gal/day‐person

Population Q 1,474,716 gal/day

Reducton Factor 0.95 None(1)

Final Pop. QP 1.40 MGD

Peaking Factor (PF) 2.79 gal/day(2)

Peak Flow (QPPF) 3.91 MGD

Industry Value Units Value Units

Pet Food 0.6 MGD 600,000 gal/day

Potato Processing 1.1 MGD 1,100,000 gal/day

Cheese 0.7 MGD 700,000 gal/day

Industry Total (QI): 2.4

Design Flow (QT) 3.80 MGD

Peak Flow (Qpeak) 6.31 MGD

Additional Flow Sources:

Design Flows

2012 Design Flow Rates

+

+

Page 5 of 9

Page 28: Fairburn, GA Wastewater Treatment Plant Project

Sheet 5 ‐ 

Sedimentation Tank Weir DesignFairburn, GA Wastewater Treatment

Plant Design

Kennesaw State University

Department of Civil Engineering

Givens:  Value Units

Design Flow (QT) 7.73 MGD

Peak Flow (Qpeak) 14.27 MGD

DTavg (based on average) 2 hr

DTpeak (based on peak) 1.5 hr

ADF Overflow Rate 1,000 g/ft2‐day

Peak Overflow Rate 2,500 g/ft2‐day

Weir Loading Range Min 10,000 g/ft‐day

Weir Loading Range Max 40,000 g/ft‐day

Conversion Factors Value

seconds/minute 60

minute/hour 60

hours/day 24

days/week 7

days/month 31

days/year 365

gal/ft3

7.48

Parameter Value Units

DTavg Volume Required (ft3) 86,113 ft3

DTpeak Volume Required (ft3) 119,195 ft3

Volume DTdesign (max of above) 119,195 ft3

Suface Overflow Rate (avg) 7,730 ft2

Surface Overflow Rate (peak) 5,706 ft2

Surface Overflow Rate (Design) 7,730 ft2

Assumed Number of Tanks 3 tanks

Tank Suface Area (per tank) 2,577 ft2

Circular Tank (Diameter) 57 ft

Design Diameter 60 ft

Design Surface Area 2,826 ft2

Volume Per Tank 39,732 ft3

Required Depth 14 ft

Design Depth Per Tank 15 ft

Design Volume Per Tank 42,390 ft3

Design Volume Total 127,170 ft3

Design Volume Total 951,232 gallons

Check DTavg 0.123 days

Check DTavg 2.954 hours

Check GOOD Check GOOD or ‐‐> ADJUST

Check DTpeak 0.067 days

Check DTpeak 1.600 hours

Check GOOD Check GOOD or ‐‐> ADJUST

Primary Clarifier Calculations

Page 6 of 9

Page 29: Fairburn, GA Wastewater Treatment Plant Project

Sheet 5 ‐ 

Sedimentation Tank Weir DesignFairburn, GA Wastewater Treatment

Plant Design

Kennesaw State University

Department of Civil Engineering

Parameter Value Unit

Weir Length 60 ft

Circumferance 188.4 ft

How many tanks 3 tanks

Total Weir Length 565 ft

Qavg Weir Loading 13,676 g/day‐ft

Weir Loading Range Check? GOOD g/day‐ft GOOD or ‐‐> ADJUST

Qpeak Weir Loading 25,239 g/day‐ft

Weir Loading Range Check? GOOD g/day‐ft GOOD or ‐‐> ADJUST

Parameter Value Unit

Weir Length 56 ft

Circumferance 175.84 ft

How many tanks 3 tanks

Total Weir Length 528 ft

Qavg Weir Loading 14,653 g/day‐ft

Weir Loading Range Check? GOOD g/day‐ft GOOD or ‐‐> ADJUST

Qpeak Weir Loading 27,042 g/day‐ft

Weir Loading Range Check? GOOD g/day‐ft GOOD or ‐‐> ADJUST

Parameter Value Unit

Est. Sludge Wasted Min 0.25 %

Est. Sludge Wasted Max 0.35 %

Est. Primary Sludge Volume 2,705,325 g/d

Primary Clar. Sludge Conc. 0.02 %

Thickener Sludge Conc. 0.07 %

BOD Removal Rate 0.33 %

SS Removal 0.53 %

BOD5 Influent 261 mg/L

SS Influent 512 mg/L

BOD5 ‐ Eff Sed Tank 175 mg/L

SSEff Sed Tank 241 mg/L

Ammoniaeff sed tank 30 mg/L

Weir Loading Check

Design Weir Loading Calculations

Sludge & Effluent Parameters

Page 7 of 9

Page 30: Fairburn, GA Wastewater Treatment Plant Project

Sheet 6

Aeration Tank and Digester Design

Fairburn, GA Wastewater Treatment

Plant Design

Kennesaw State University

Department of Civil Engineering

Parameter Value Units

BOD5 30 mg/L

SS 30 mg/L

Parameter Value Units

BOD5 of SS 50% %

L 4 Ratio

W 1 Ratio

Depthmax 5 m

Lengthmax 25 m

Parameter Value Units

Q 14,653 gal/day

S0 (BOD5) 175 mg/L

Ks  60 mg/L BOD

μm  3.0 d‐1

kd  0.1 d‐1

Y 0.6 mg VSS/mg BODX (MLVSS) 2,000 mg/L Adjust

Cf (MLSS correction factor) 1.20 MLVSS

T (Temperature) 25 °C

Parameter Value Units

S (BOD5 in aeration tank) 15.00 mg/L

Oc (SRT) 2.00 days

Adjust Oc (SRT) until ‐‐‐> 0.00 = Zero

to 0.080 days

to 1.92 hours

Vrequired 157 ft3

Parameter Value Units

Lengthdesign (Aeration Tank) 10 ft  Req. >= X

Widthdesign (Aeration Tank) 3 ft No Req.

Depthdesign (Aeration Tank) 4 ft  Req. <= X

Number of Tanksdesign 2 tank

Vdesign 200 ft OK

Parameter Value Units

F/M 0.86 mg/mg*days IN RANGE

Red Cells ‐ Value out of range [Further Adjustments Are Needed]

Adjust Oc until 

bottom cell =0

 Food To Organism Ratio (F/M) Calcuation

Aeration Tank Design

Adjust these 

values as needed. 

These are 

assumed using 

the text book

Primary Effluent Concentrations

 Tank Sizing Calcuations

 Tank Sizing Calcuations

Effluent Standards

Completely Mixed Activated Sludge System

Directions: This spreadsheet has been compiled to assist in the 

determination of aeration and sludge handling parameters for the 

design of actived sludge secondary treatment.

Yellow Cells ‐ Update Numbers as needed with design parameters

Green Cells ‐ Important Values for Treatment Construction (checks)

Page 8 of 9

Page 31: Fairburn, GA Wastewater Treatment Plant Project

Sheet 6

Aeration Tank and Digester Design

Fairburn, GA Wastewater Treatment

Plant Design

Kennesaw State University

Department of Civil Engineering

Parameter Value Units

Q 14,653 gal/day

Q 1,959 ft3/day

(X) MLVSS 2.00 g/L

Cf (MLSS Fraction) 1.20 None

(X') MLSS 1.67 g/L

Vdesign 200 ft3

Oc (SRT) 2.0 days

Xe 0.03 g/L

SVI 210 g/L Use Table

T 25 °C

Xr' (estimated) 4.76 g/L

Xr (estimated) 3.97 g/L

Qw (waste flow) 42 ft3/day

Qr (recycle flow) 972 ft3/day

Qw (waste flow) 315 gal/day

Qr (recycle flow) 7,268 gal/day

Yobs (observed yield) 0.50 kg VSS/kg BOD5

Px (sludge produced) 1,173 kg/d of VSS

MLSS Increase 1,408 kg/d 

SSlost in effluent 1.00 kg/d

Mw 1,407 kg/d

Parameter Value Units

ƒ (BOD5/BODu) 68% %

 η (O2 transfer efficienty) 10% %

Mo2 (mass of oxygen) 1,782 kg/day of O2

ρ(air) 1.185 kg/m3

ρ(air) 0.033 kg/ft3

O2 in air 23.2 %

V(air) 23,294 ft3/d

Sludge Calculations & Design

Oxygen Demand Calcuations

Page 9 of 9

Page 32: Fairburn, GA Wastewater Treatment Plant Project

WATER RECLAMATIONFACILITY

FOR

CITY OF FAIRBURN, GEORGIANPDES NO. GA0000000

JULY 21, 2015

1100 SOUTH MARIETTA PARKWAY, MARIETTA, GEORGIA 30060

( P ) 678-915-3026 ( F ) 678-915-5527

JVMS ENGINEERING GROUP

1

G-001

X

Page 33: Fairburn, GA Wastewater Treatment Plant Project

SITE LOCATION MAP

C-002

C-001PROCESS FLOW DIAGRAM & HYDRAULIC PROFILE

CIVIL

006

004

PROJECT LOCATION MAP, INDEX OF DRAWINGS AND GENERAL NOTES G-002002

G-001COVER SHEET001

GENERAL

DWG. NO.DRAWING TITLESHEET NO.

VICINITY MAP

STATE MAP

PLANT LAYOUT

SITE PLAN C-003

005

IF YOU DIG GEORGIA...

CALL US FIRST!

1-800-282-7411

UTILITIES PROTECTION CENTER

IT'S THE LAW

GENERAL ABBREVIATIONS G-003003

013

008

007

010

012

011

009

ARCHITECTURAL

MECHANICAL

M-002

M-001

M-003

PLANT HEADWORKS

PRIMARY CLARIFIERS

CROM EQUALIZATION TANKS

AERATION BASINS M-004

M-006

M-005

M-007

SECONDARY CLARIFIERS

RAS / WAS PUMP STATION & DETAILS

DIGESTERS

DETAILS

STRUCTURAL

ELECTRICAL

FAIRBURN, GA

PROPOSED WATERRECLAMATION FACILITY SITE

CITY OF FAIRBURN, GEORGIA

2 OF 17

VIC

INIT

Y M

AP

AN

D S

HEE

T IN

DEX

G-002

FAIR

BU

RN

, FU

LTO

N C

O.,

GEO

RG

IA

CIT

Y O

F FA

IRB

UR

NW

ATE

R R

ECLA

MA

TIO

N F

AC

ILIT

Y1100 SO

UTH

M

ARIETTA PARKW

AY

MARIETTA, G

EO

RG

IA 30060

( P ) 678-915-3026 ( F ) 678-915-5527

JVM

S EN

GIN

EERIN

G

GRO

UP

GRO

UP #

1

7/20/15

1 2 3 4 5

A

B

C

D

JVM

S

JVM

S

JVM

S

JVM

S

M-008

M-009

014

015

FILTERS

THICKENERS

D-001016 SITE DETAILS

D-002017 PLANT DRAIN PUMP STATION DETAILS

Page 34: Fairburn, GA Wastewater Treatment Plant Project

IF YOU DIG GEORGIA...

CALL US FIRST!

1-800-282-7411

UTILITIES PROTECTION CENTER

IT'S THE LAW

FAIR

BU

RN

, FU

LTO

N C

O.,

GEO

RG

IA

CIT

Y O

F FA

IRB

UR

NW

ATE

R R

ECLA

MA

TIO

N F

AC

ILIT

Y1100 SO

UTH

M

ARIETTA PARKW

AY

MARIETTA, G

EO

RG

IA 30060

( P ) 678-915-3026 ( F ) 678-915-5527

JVM

S EN

GIN

EERIN

G

GRO

UP

GRO

UP #

1

7/20/15

1 2 3 4 5

A

B

C

D

JVM

S

JVM

S

JVM

S

JVM

S

3 OF 17

GEN

ERA

LA

BB

REV

IATI

ON

S

G-003

Page 35: Fairburn, GA Wastewater Treatment Plant Project

FAIR

BU

RN

, FU

LTO

N C

O.,

GEO

RG

IA

CIT

Y O

F FA

IRB

UR

NW

ATE

R R

ECLA

MA

TIO

N F

AC

ILIT

Y1100 SO

UTH

M

ARIETTA PARKW

AY

MARIETTA, G

EO

RG

IA 30060

( P ) 678-915-3026 ( F ) 678-915-5527

JVM

S EN

GIN

EERIN

G

GRO

UP

GRO

UP #

1

7/20/15

1 2 3 4 5

A

B

C

D

JVM

S

JVM

S

JVM

S

JVM

S

4 OF 17

PRO

CES

S FL

OW

DIA

GR

AM

AN

D H

YD

RA

ULI

C P

RO

FILE

C-001

Page 36: Fairburn, GA Wastewater Treatment Plant Project

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

⅊⅊

⅊⅊

R

/

W

R

/W

R

/W

R

/W

R

/W

R

/W

R

/W

R

/W

R

/W

R/W

R

/W

R

/W

R

/W

R/W

R

/W

R

/W

R

/W

R

/W

R

/W

R/W

R/W

R

/W

R

/W

R

/W

R

/W

R

/W

R

/W

R

/W

R

/

W

R

/

W

60' DIAMETER PRIMARY CLARIFIERS

(2 TYPICAL; 1 FUTURE)

SPLITTER BOX

100' X 25' AERATION BASINS

(6 TYPICAL; 2 FUTURE)

DIGESTERS

SPLITTER BOX

100' DIAMETER SECONDARY CLARIFIERS

(3 TYPICAL; 1 FUTURE)

RAS/WAS PUMP STATION

FILTERS

EFFLUENT METERING CHANNEL

WITH PARSHALL FLUME

AND CASCADE AERATOR

150' CROM EQUALIZATION TANKS

(2 TYPICAL)

RAS PUMP STATION

BLOWER BUILDING FOR AERATION BASINS

WITH BELT PRESS THICKENER ROOM

EXISTING BUILDINGS ON CITY PROPERTY

TO BE DEMOLISHED AND REMOVED

CONTROL BUILDING AND

LABORATORY

EQ TANK BLOWER BUILDING

42-INCH Ø RCP

OUTFALL PIPE

HEADWORKS:

INFLUENT METERING CHANNEL

PERFORATED CHANNEL SCREENS

VORTEX GRIT CHAMBERS

FAIR

BU

RN

, FU

LTO

N C

O.,

GEO

RG

IA

CIT

Y O

F FA

IRB

UR

NW

ATE

R R

ECLA

MA

TIO

N F

AC

ILIT

Y1100 SO

UTH

M

ARIETTA PARKW

AY

MARIETTA, G

EO

RG

IA 30060

( P ) 678-915-3026 ( F ) 678-915-5527

JVM

S EN

GIN

EERIN

G

GRO

UP

GRO

UP #

1

7/20/15

1 2 3 4 5

A

B

C

D

JVM

S

JVM

S

JVM

S

JVM

S

060' 120'

5 OF 17

PLA

NT

LAY

OU

T

C-002

Page 37: Fairburn, GA Wastewater Treatment Plant Project

S

S

S

S

S

S

S

S

S

S

S

S

S

S

60' DIAMETER PRIMARY CLARIFIERS

(2 TYPICAL; 1 FUTURE)

SPLITTER BOX

SPLITTER BOX

EFFLUENT METERING CHANNEL

WITH PARSHALL FLUME

AND CASCADE AERATOR

42-INCH Ø RCP

OUTFALL PIPE

INFLUENT FORCEMAIN

FROM OFFSITE PUMP STATION

HEADWORKS:

INFLUENT METERING CHANNEL

PERFORATED CHANNEL SCREENS

VORTEX GRIT CHAMBERS

6 OF 17

SITE

PLA

N

C-003

FAIR

BU

RN

, FU

LTO

N C

O.,

GEO

RG

IA

CIT

Y O

F FA

IRB

UR

NW

ATE

R R

ECLA

MA

TIO

N F

AC

ILIT

Y1100 SO

UTH

M

ARIETTA PARKW

AY

MARIETTA, G

EO

RG

IA 30060

( P ) 678-915-3026 ( F ) 678-915-5527

JVM

S EN

GIN

EERIN

G

GRO

UP

GRO

UP #

1

7/20/15

1 2 3 4 5

A

B

C

D

JVM

S

JVM

S

JVM

S

JVM

S

0 40' 80'

Page 38: Fairburn, GA Wastewater Treatment Plant Project

HEADWORKS (PLAN VIEW)

SCALE 1/4" = 1'

HEADWORKS (SECTION CUT)

SCALE 1/4" = 1'

INFLUENT METERING CHANNEL

INFLUENT FORCEMAIN DISCHARGE

FROM OFFSITE PUMP STATION

PARSHALL FLUME

SCREENING CHANNEL(S)

UPSTREAM SLUICE GATE

W/ ELECTRONIC ACTUATORS

(TYPICAL 2)

PARKSON AQUA-GUARD PF

PERFORATED PLATE CHANNEL SCREEN

(TYPICAL 2)

SCREENINGS CONVEYOR

DOWNSTREAM SLUICE GATE

W/ ELECTRONIC ACTUATORS

(TYPICAL 5)

VORTEX GRIT CHAMBER

(TYPICAL 2)

PARKSON AQUA-GUARD PF

PERFORATED PLATE CHANNEL SCREEN

(TYPICAL 2)

SCREENINGS

CONVEYOR

PARSHALL FLUME

UPSTREAM SLUICE GATE

W/ ELECTRONIC ACTUATORS

(TYPICAL 2)

DOWNSTREAM SLUICE GATE

W/ ELECTRONIC ACTUATORS

(TYPICAL 5)

VORTEX GRIT CHAMBER

(TYPICAL 2)

CONTROL WEIR

FAIR

BU

RN

, FU

LTO

N C

O.,

GEO

RG

IA

CIT

Y O

F FA

IRB

UR

NW

ATE

R R

ECLA

MA

TIO

N F

AC

ILIT

Y1100 SO

UTH

M

ARIETTA PARKW

AY

MARIETTA, G

EO

RG

IA 30060

( P ) 678-915-3026 ( F ) 678-915-5527

JVM

S EN

GIN

EERIN

G

GRO

UP

GRO

UP #

1

7/20/15

1 2 3 4 5

A

B

C

D

JVM

S

JVM

S

JVM

S

JVM

S

7 OF 17

M-001

Page 39: Fairburn, GA Wastewater Treatment Plant Project

8 OF 17

PRIM

AR

Y C

LAR

IFIE

RS

M-002

FAIR

BU

RN

, FU

LTO

N C

O.,

GEO

RG

IA

CIT

Y O

F FA

IRB

UR

NW

ATE

R R

ECLA

MA

TIO

N F

AC

ILIT

Y1100 SO

UTH

M

ARIETTA PARKW

AY

MARIETTA, G

EO

RG

IA 30060

( P ) 678-915-3026 ( F ) 678-915-5527

JVM

S EN

GIN

EERIN

G

GRO

UP

GRO

UP #

1

7/20/15

1 2 3 4 5

A

B

C

D

JVM

S

JVM

S

JVM

S

JVM

S

Page 40: Fairburn, GA Wastewater Treatment Plant Project

9 OF 17

CR

OM

EQ

TA

NK

S (T

YPI

CA

L 2)

M-003

FAIR

BU

RN

, FU

LTO

N C

O.,

GEO

RG

IA

CIT

Y O

F FA

IRB

UR

NW

ATE

R R

ECLA

MA

TIO

N F

AC

ILIT

Y1100 SO

UTH

M

ARIETTA PARKW

AY

MARIETTA, G

EO

RG

IA 30060

( P ) 678-915-3026 ( F ) 678-915-5527

JVM

S EN

GIN

EERIN

G

GRO

UP

GRO

UP #

1

7/20/15

1 2 3 4 5

A

B

C

D

JVM

S

JVM

S

JVM

S

JVM

S

Page 41: Fairburn, GA Wastewater Treatment Plant Project

10 OF 17

AER

ATI

ON

BA

SIN

PLA

N/S

ECTI

ON

M-004

FAIR

BU

RN

, FU

LTO

N C

O.,

GEO

RG

IA

CIT

Y O

F FA

IRB

UR

NW

ATE

R R

ECLA

MA

TIO

N F

AC

ILIT

Y1100 SO

UTH

M

ARIETTA PARKW

AY

MARIETTA, G

EO

RG

IA 30060

( P ) 678-915-3026 ( F ) 678-915-5527

JVM

S EN

GIN

EERIN

G

GRO

UP

GRO

UP #

1

7/20/15

1 2 3 4 5

A

B

C

D

JVM

S

JVM

S

JVM

S

JVM

S

Page 42: Fairburn, GA Wastewater Treatment Plant Project

11 OF 17

SEC

ON

DA

RY

CLA

RIF

IER

S

M-005

FAIR

BU

RN

, FU

LTO

N C

O.,

GEO

RG

IA

CIT

Y O

F FA

IRB

UR

NW

ATE

R R

ECLA

MA

TIO

N F

AC

ILIT

Y1100 SO

UTH

M

ARIETTA PARKW

AY

MARIETTA, G

EO

RG

IA 30060

( P ) 678-915-3026 ( F ) 678-915-5527

JVM

S EN

GIN

EERIN

G

GRO

UP

GRO

UP #

1

7/20/15

1 2 3 4 5

A

B

C

D

JVM

S

JVM

S

JVM

S

JVM

S

Page 43: Fairburn, GA Wastewater Treatment Plant Project

12 OF 17

RET

UR

N A

CTI

VA

TED

SLU

DG

EW

AST

E A

CTI

VA

TED

SLU

DG

E

M-006

FAIR

BU

RN

, FU

LTO

N C

O.,

GEO

RG

IA

CIT

Y O

F FA

IRB

UR

NW

ATE

R R

ECLA

MA

TIO

N F

AC

ILIT

Y1100 SO

UTH

M

ARIETTA PARKW

AY

MARIETTA, G

EO

RG

IA 30060

( P ) 678-915-3026 ( F ) 678-915-5527

JVM

S EN

GIN

EERIN

G

GRO

UP

GRO

UP #

1

7/20/15

1 2 3 4 5

A

B

C

D

JVM

S

JVM

S

JVM

S

JVM

S

Page 44: Fairburn, GA Wastewater Treatment Plant Project

13 OF 17

DIG

ESTE

RS

M-007

FAIR

BU

RN

, FU

LTO

N C

O.,

GEO

RG

IA

CIT

Y O

F FA

IRB

UR

NW

ATE

R R

ECLA

MA

TIO

N F

AC

ILIT

Y1100 SO

UTH

M

ARIETTA PARKW

AY

MARIETTA, G

EO

RG

IA 30060

( P ) 678-915-3026 ( F ) 678-915-5527

JVM

S EN

GIN

EERIN

G

GRO

UP

GRO

UP #

1

7/20/15

1 2 3 4 5

A

B

C

D

JVM

S

JVM

S

JVM

S

JVM

S

Page 45: Fairburn, GA Wastewater Treatment Plant Project

14 OF 17

FILT

ERS

M-008

FAIR

BU

RN

, FU

LTO

N C

O.,

GEO

RG

IA

CIT

Y O

F FA

IRB

UR

NW

ATE

R R

ECLA

MA

TIO

N F

AC

ILIT

Y1100 SO

UTH

M

ARIETTA PARKW

AY

MARIETTA, G

EO

RG

IA 30060

( P ) 678-915-3026 ( F ) 678-915-5527

JVM

S EN

GIN

EERIN

G

GRO

UP

GRO

UP #

1

7/20/15

1 2 3 4 5

A

B

C

D

JVM

S

JVM

S

JVM

S

JVM

S

Page 46: Fairburn, GA Wastewater Treatment Plant Project

15 OF 17

THIC

KEN

ER

M-009

FAIR

BU

RN

, FU

LTO

N C

O.,

GEO

RG

IA

CIT

Y O

F FA

IRB

UR

NW

ATE

R R

ECLA

MA

TIO

N F

AC

ILIT

Y1100 SO

UTH

M

ARIETTA PARKW

AY

MARIETTA, G

EO

RG

IA 30060

( P ) 678-915-3026 ( F ) 678-915-5527

JVM

S EN

GIN

EERIN

G

GRO

UP

GRO

UP #

1

7/20/15

1 2 3 4 5

A

B

C

D

JVM

S

JVM

S

JVM

S

JVM

S

Page 47: Fairburn, GA Wastewater Treatment Plant Project

FAIR

BU

RN

, FU

LTO

N C

O.,

GEO

RG

IA

CIT

Y O

F FA

IRB

UR

NW

ATE

R R

ECLA

MA

TIO

N F

AC

ILIT

Y1100 SO

UTH

M

ARIETTA PARKW

AY

MARIETTA, G

EO

RG

IA 30060

( P ) 678-915-3026 ( F ) 678-915-5527

JVM

S EN

GIN

EERIN

G

GRO

UP

GRO

UP #

1

7/20/15

1 2 3 4 5

A

B

C

D

JVM

S

JVM

S

JVM

S

JVM

S

16 OF 17

SITE

DET

AIL

S

D-001

Page 48: Fairburn, GA Wastewater Treatment Plant Project

17 OF 17

PLA

NT

DR

AIN

PU

MP

STA

TIO

ND

ETA

ILS

AN

D S

ECTI

ON

S

D-002

FAIR

BU

RN

, FU

LTO

N C

O.,

GEO

RG

IA

CIT

Y O

F FA

IRB

UR

NW

ATE

R R

ECLA

MA

TIO

N F

AC

ILIT

Y1100 SO

UTH

M

ARIETTA PARKW

AY

MARIETTA, G

EO

RG

IA 30060

( P ) 678-915-3026 ( F ) 678-915-5527

JVM

S EN

GIN

EERIN

G

GRO

UP

GRO

UP #

1

7/20/15

1 2 3 4 5

A

B

C

D

JVM

S

JVM

S

JVM

S

JVM

S

Page 49: Fairburn, GA Wastewater Treatment Plant Project

Environmental Informational Document City of Fairburn, Georgia

2015

WASTEWATER TREAMENT AND REUSE FACILITY PREPARED BY: JVMS ENGINEERING GROUP

JVMS ENGINEERING GROUP | 1100 South Marietta Parkway, Marietta, Georgia

Page 50: Fairburn, GA Wastewater Treatment Plant Project

City of Fairburn, Georgia Water Reclamation Facility

JVMS Engineering Group Page 1 of 10 July 20, 2015

Table of Contents 1.0 - PURPOSE AND SCOPE ............................................................................................................................................ 2 2.0 - ENVIRONMENTAL CATEGORY REVIEW .................................................................................................................. 3

2.1 Wetlands: ..................................................................................................................................................... 3 2.2 Flood Plain/River Corridor ............................................................................................................................ 3 2.3 Water Supply: ............................................................................................................................................... 3 2.4 Water Resources: ......................................................................................................................................... 4 2.5 Groundwater Recharge Area: ...................................................................................................................... 4 2.6 Storm Water: ................................................................................................................................................ 4 2.7 Waste Water: ............................................................................................................................................... 4 2.8 Air Quality: ................................................................................................................................................... 4 2.9 Solid Wastes: ................................................................................................................................................ 4 2.10 Soil Stability/Erodibility: ........................................................................................................................... 4 2.11 Protected Mountains: .............................................................................................................................. 4 2.12 Protected Species: ................................................................................................................................... 5 2.13 Critical Habitats: ........................................................................................................................................... 5 2.14 Historical: ..................................................................................................................................................... 5 2.15 Archeological: ............................................................................................................................................... 5 2.16 Parks/Recreation: .................................................................................................................................... 5 2.17 Energy Supplies: ........................................................................................................................................... 5 2.18 Beaches: ................................................................................................................................................... 5 2.19 Dunes: ...................................................................................................................................................... 5 2.20 Shoreline: ..................................................................................................................................................... 5 2.21 Estuary: .................................................................................................................................................... 5 2.22 Forest Land: ............................................................................................................................................. 5 2.23 Barrier Island ................................................................................................................................................ 5 2.24 Aquatic Life/Trout Streams: ..................................................................................................................... 6 22.5 Noise: ....................................................................................................................................................... 6 2.26 Farm Land: ............................................................................................................................................... 6 2.27 Site Safety: ................................................................................................................................................... 6 2.28 Energy Use: .............................................................................................................................................. 6 2.29 Historical & Wetland Studies............................................................................................................................. 6 TABLE 2-1 .................................................................................................................................................................. 7

3.0 - FINANCIAL IMPACT ............................................................................................................................................... 8 4.0 - ALTERNATIVES TO THE PROJECT .......................................................................................................................... 9 5.0 - MINIMIZING ADVERSE IMPACTS ......................................................................................................................... 10

5.1 - Wetlands: ........................................................................................................................................................ 10 5.2 - Flood Plain/River Corridor: .............................................................................................................................. 10 5.3 - Groundwater Recharge Area: ......................................................................................................................... 10 5.4 - Solid Waste: .................................................................................................................................................... 10 5.5 - Soil Stability/Erodibility: .................................................................................................................................. 10 5.6 - Farm Land: ....................................................................................................................................................... 10

Appendixes: Appendix A Initial Findings of Ecological Studies Appendix B Initial Finding of Cultural Resources Studies

Page 51: Fairburn, GA Wastewater Treatment Plant Project

City of Fairburn, Georgia Water Reclamation Facility

JVMS Engineering Group Page 2 of 10 July 20, 2015

1.0 - PURPOSE AND SCOPE The City of Fairburn is preparing to construct a 7.8 million gallon per day (mgd), wastewater treatment and reuse facility to serve the City of Fairburn. As part of the planning for the project, it is necessary to consider the environmental impact of the proposed project. This document is intended to discuss the environmental considerations of the project and explain alternatives or mitigation measures that may minimize the adverse impact of the project.

The project consists of a wastewater treatment and disposal works on a ±300 acre site located southwest of the City of Fairburn, south of I-85. The proposed site is located in unincorporated Fulton and Fayette County. Approximately 2 acres or the site is located in Fayette County and will remain undeveloped. The remaining area of 298 acres is located in Fulton County. The site is adjacent to Creekwood Road on the west, Johnson/Bohanan Road to the south and the Fulton/Fayette County line to the east. Location and site maps are provided in Appendix A depicting the site and surrounding areas. (Present land use of the site is unmanaged forest area and agricultural/pasture lands.) Line Creek Runs through the selected site and poses various environmental concerns. Treatment of the wastewater will be to the limits established by Georgia Environmental Protection Division.

Page 52: Fairburn, GA Wastewater Treatment Plant Project

City of Fairburn, Georgia Water Reclamation Facility

JVMS Engineering Group Page 3 of 10 July 20, 2015

2.0 - ENVIRONMENTAL CATEGORY REVIEW There are numerous environmental considerations that may affect a project and each area’s impact from the specific project must be evaluated. Wetlands mitigation and drainage channel improvements will be an integral portion of this project to insure minimal long-term impact. The environmental areas on the attached Table 1, Environmental Check List, have been reviewed for the project and affected areas to be impacted are as follows:

• Wetlands

• Flood Plain/River Corridor

• Waste Water

• Groundwater Recharge Area

• Solid Waste

• Soil Stability/Erodibility

• Farm Land

• Energy Supplies

• Energy Use

2.1 Wetlands: Wetlands will be disturbed during the construction period for the installation of the irrigation system. Also various small farm ponds and intermittent streams will be drained or diverted due to this project. Long-term effects of the project will be to retain an equal or greater area of wetlands than currently exist at the site. Refer to Appendix C for a description of impacts. Wetland permitting through the Corps of Engineers is being prepared.

2.2 Flood Plain/River Corridor:

Project construction will occur within the 100-year flood plain. No permanent structures, treatment works, or irrigation equipment will be located within the 100-year flood plain. Long-term effects will be to provide channel improvements for the streams that are affected either by relocation or consolidation, as well as retain adequate flood plain area. Stream buffer variances will be applied for as needed based on final facility design.

2.3 Water Supply: There will be no effect to the existing water supply in the area other than to provide potable water service for use by the employees at the control building. Internal reuse water will be used for all non-potable purposes.

Page 53: Fairburn, GA Wastewater Treatment Plant Project

City of Fairburn, Georgia Water Reclamation Facility

JVMS Engineering Group Page 4 of 10 July 20, 2015

2.4 Water Resources: There will be no effect to the surrounding water resources other than the removal of cattle from the site, where they currently have access to the Line Creek.

2.5 Groundwater Recharge Area: This project will have a long-term impact on the Groundwater Recharge Area directly within the selected site. The affect of the project will be to increase the groundwater recharge rate directly within the selected site. Groundwater quality will not be adversely affected.

2.6 Storm Water: Gravel roads and open basins will be used such as to limit the amount of storm water runoff. No irrigation will occur along with a precipitation event that would cause water runoff of irrigation water. As mentioned previously the existing cattle will be removed from the site, these cattle have an adverse effect on storm water runoff quality.

2.7 Waste Water: Since all of Fairburn’s wastewater is presently treated by Fulton County, this project will in effect direct up to 1 mgd of wastewater away from the Fulton County, Camp Creek WWTP. The Camp Creek facility currently discharges treated effluent to the Chattahoochee River. This project will therefore eliminate the direct surface water discharge of treated effluent (that is treated to a lower standard than that which is proposed) from the Chattahoochee River. This project will also provide an additional treatment capacity of 1 mgd at the Camp Creek Facility.

2.8 Air Quality: Offensive odors created at the facility headworks will be contained inside of a building. There will be no incineration of materials or use of gases that would degrade air quality.

2.9 Solid Wastes: Solid Wastes will be increased due to the project. Solids will be treated and removed from the wastewater stream and disposed of at an EPD approved sanitary landfill. Solid waste created by the proposed wastewater treatment facility will be from the sludge stabilization and dewatering process, as well as screenings from the raw wastewater influent. Solid waste created is estimated at approximately 1,500 tons per year.

2.10 Soil Stability/Erodibility: Soil stability and erodibility will be influenced by the project only during the construction activity for the facilities. Total site area is estimated at 300 acres with approximately 15 acres being disturbed for the construction of the treatment works, and approximately 70,000 ft of trenched irrigation piping being installed for the irrigation system. Long-term effects of the project will be channel improvements along Line Creek and it’s tributaries, and improved permanent vegetative soil stabilization.

2.11 Protected Mountains: There are no protected mountains in the vicinity of this project.

Page 54: Fairburn, GA Wastewater Treatment Plant Project

City of Fairburn, Georgia Water Reclamation Facility

JVMS Engineering Group Page 5 of 10 July 20, 2015

2.12 Protected Species: No protected species were identified on the project site. Refer to Appendix A for findings of the ecological studies.

2.13 Critical Habitats: No critical habitats were identified on the project site. Refer to Appendix A for findings of the ecological studies.

2.14 Historical: No historical areas of significance were identified in the vicinity of the project site. Refer to Appendix B for findings of the cultural resources studies.

2.15 Archeological: The site does not contain any significant archeological ruins or artifacts. Refer to Appendix B for findings of the cultural resources studies.

2.16 Parks/Recreation: There area no parks or recreational areas in the vicinity of this project. Portions of the facility may be used as recreational facilities dependent on final design.

2.17 Energy Supplies: Electrical power consumption will be increased due to this project. Electrical power is required to run the mechanical components of the treatment and irrigation works.

2.18 Beaches: There are no beaches in the vicinity of this project.

2.19 Dunes: There are no dunes in the vicinity of this project.

2.20 Shoreline: There is no shoreline in the vicinity of this project.

2.21 Estuary: There are no estuaries in the vicinity of this project.

2.22 Forest Land: Existing forests on the site will remain except for limited clearing of lanes for installation of irrigation systems. Successional forest growth will then be allowed to continue following construction.

2.23 Barrier Island:

There are no barrier islands in the vicinity of the project.

Page 55: Fairburn, GA Wastewater Treatment Plant Project

City of Fairburn, Georgia Water Reclamation Facility

JVMS Engineering Group Page 6 of 10 July 20, 2015

2.24 Aquatic Life/Trout Streams: There will be no effect to aquatic life or trout streams since there will be no runoff of irrigation water from the site. As mentioned previously the existing cattle will be removed from the site, these cattle have an adverse effect on down stream surface water quality.

22.5 Noise: Noise on the site will be limited. The majority of noise causing mechanical equipment associated with the project is blowers to provide process air for wastewater treatment. These blowers will be housed inside of a weather and sound insulated control building. Additional noises created by the project would be the additional traffic created by the project and usual noise created by the manpower required for facility operations.

2.26 Farm Land: Existing farmland will be displaced due to this project. Existing farmland consists of pasturelands and farm ponds for the grazing and watering of beef cattle. Farmland usage of the site consists of approximately 110 acres, which abut Line Creek. Long-term effects of the farmland displacement will be the improvement of the Line Creek surface water quality by removing the cattle (which currently have access to the creek and impact the storm water runoff quality to the creek) from the site.

2.27 Site Safety: The treatment works and storage basins will be fenced off and access limited to operations staff and visitors under direct supervision of the staff. All treatment works and buildings will be constructed to OSHA standards.

2.28 Energy Use: Electrical power consumption will be increased due to this project. Electrical power is required to run the mechanical components of the treatment and irrigation works.

2.29 Historical & Wetland Studies In conjunction with U.S. Army Corps of Engineers wetland permitting, wetlands and protected species surveys of the site have been conducted to determine if any impact exists. In addition, historic and archeological surveys and studies have also been conducted for the site. Any impacts to the wetlands, protected species, critical habitats, historical sites, and archeological sites addressed in the attached Appendixes A and B, Initial Findings of Ecological Studies and Initial Findings of Cultural Resources Studies.

Page 56: Fairburn, GA Wastewater Treatment Plant Project

City of Fairburn, Georgia Water Reclamation Facility

JVMS Engineering Group Page 7 of 10 July 20, 2015

TABLE 2-1 ENVIRONMENTAL CHECKLIST

GEORGIA IS AREA AFFECTED? IF AFFECTED, HOW SEVERE?

AREA/CATEGORY NO YES UNKNOWN MINOR MEDIAN MAJOR UNKNOWN

1. Wetlands X X

2. Flood Plain/River Corridor X X

3. Water Supply X

4. Water Resources X

5. Groundwater Recharge Area X X

6. Storm Water X

7. Waste Water X X

8. Air Quality X

9. Solid Wastes X X

10. Soil Stability/Erodibility X X

11. Protected Mountains X

12. Protected Species X

13. Critical Habitats X

14. Historical X

15. Archeological X

16. Parks/Recreation X

17. Energy Supplies X X

18. Beaches X

19. Dunes X

20. Shoreline X

21. Estuary X

22. Forest Land X

23. Barrier Island X

24. Aquatic Life/Trout Streams X

25. Noise X

26. Farm Land X X

27. Site Safety X

28. Energy Use X X

Page 57: Fairburn, GA Wastewater Treatment Plant Project

City of Fairburn, Georgia Water Reclamation Facility

JVMS Engineering Group Page 8 of 10 July 20, 2015

3.0 - FINANCIAL IMPACT The project capital cost for construction at startup will be approximately $XX,000,000. This cost will be offset by the expanded opportunity for residential and commercial development in the surrounding communities of Fairburn. Wastewater treatment will provide an opportunity for the City of Fairburn to keep pace with the growth seen throughout the metro Atlanta area. Without the ability to provide adequate sewerage service and wastewater treatment at a reasonable cost, development in these communities would be limited. This project will be a positive method of attaining community growth while retaining over 100 acres of “green space” on the site.

The project will be funded using revenue bonds from the City of Fairburn. Annual operation and maintenance costs for the facility is expected to be in the range of $1,500,000. The wastewater treatment facility will employ approximately 5 full time operators and 16 support staff employees.

The actual cost of wastewater treatment at the proposed facility will be less than the cost to treat the wastewater by Fulton County.

Page 58: Fairburn, GA Wastewater Treatment Plant Project

City of Fairburn, Georgia Water Reclamation Facility

JVMS Engineering Group Page 9 of 10 July 20, 2015

4.0 - ALTERNATIVES TO THE PROJECT The project generally consists of properly treating and disposing of 7.8 MGD wastewater flow that is currently created regardless of the proposed project.

If the City elects to take no action on the project, wastewater treatment of the 7.8 MGD will still continue at the Fulton County Camp Creek wastewater treatment facility. However, the City of Fairburn will potentially be paying excessive rates for wastewater treatment and may not be able to expand discharge capacity to Fulton County if no more treatment capacity remains. It is estimated that the annual treatment costs would be higher if the wastewater were treated by Fulton County rather than treated by Fairburn.

Alternatives for the proposed project are as follows:

1. Do nothing and continue to pay Fulton County for treatment of wastewater. This option is not financially favorable for the City of Fairburn since treatment fees would be higher than a City owned and operated facility, as well as limiting the potential for City development due to uncertainties of having adequate future wastewater disposal capacity.

2. Provide a surface water discharge facility. Unfortunately no assimilative capacity remains in Line Creek for the permitting of a surface water discharge. The only other nearby surface water that has potential for surface water discharge is Whitewater Creek. This option cannot be fully evaluated by EPD until such time as a determination of Total Maximum Daily Limits (TMDL) has been conducted. Due to time constraints and uncertainties related to the allowable TMDL in Whitewater Creek, this alternative is not a feasible alternative at this time.

3. Provide an alternative site for wastewater disposal. The option of an alternative discharge site is made extremely difficult due to the fact that very little contiguous undeveloped land exists within the area. The proposed facility is located such that it is located along an existing sewerage collection system that presently serves Fairburn and unincorporated Fulton County south of Fairburn. Very little wastewater collection infrastructure (i.e. pipelines, pump stations, etc.) would be required in addition to construction of the facility at the proposed location. The wastewater collection system is served by two wastewater pump stations that ultimately transfer the wastewater to the Fulton County Camp Creek WWTF. No other contiguous undeveloped area exists near the City that would have adequate wastewater flows.

Page 59: Fairburn, GA Wastewater Treatment Plant Project

City of Fairburn, Georgia Water Reclamation Facility

JVMS Engineering Group Page 10 of 10 July 20, 2015

5.0 - MINIMIZING ADVERSE IMPACTS The environmental considerations presented in this report show multiple categories that will impact the environment. The following practices and construction techniques will be imposed such that environmental impacts are minimized:

5.1 - Wetlands: A qualified consultant will conduct wetlands delineation, protected species studies, and cultural resources studies for the proposed site. Wetland permitting documents will be submitted to the U.S. Army Corps of Engineers for review and approval prior to construction.

5.2 - Flood Plain/River Corridor: No permanent alteration of the 100-year flood plan will occur as a result of the proposed project. No permanent structure or equipment will remain within the 100-year flood plain.

5.3 - Groundwater Recharge Area: Quality of the increased groundwater will not be adversely affected due to the quality of effluent treatment that is proposed as well as the natural improvements to the water due to atmospheric spray irrigation, topsoil interaction, and relatively long detention time prior to water reaching a stabilized groundwater table.

5.4 - Solid Waste: The estimated amount of solid waste created can be adequately disposed of at an EPD approved sanitary landfill.

5.5 - Soil Stability/Erodibility: While construction will disturb the soils in the area, the work will include temporary erosion control, BMP’s, and restoration and stabilization of completed surfaces at the end of construction. The mitigation measures proposed to reduce the impact of the soil stability consist of requiring the construction contractor to comply with the Georgia Erosion and Sedimentation Control Act and to provide the site with permanent vegetation upon completion of the work. The contractor must install erosion control measures as necessary to prevent soils being displaced from the site. Such measures typically include silt control fences, construction exit pads, temporary mulching, temporary vegetation, and stone check dams.

5.6 - Farm Land: Approximately 100 acres of the site presently being used for agriculture (beef cattle) will be eliminated by the proposed project. This will have a positive impact on Line Creek by removing the cattle (and their fecal matter) from the site and Line Creek. Adequate financial reimbursement has been given for the displacement of the existing pasturelands. Also the landowner has been given an extended period of time in which the livestock can be transferred to another pasture area.