far-field drag breakdown applied to the dlr-f6 configuration · 2003. 8. 27. · 4turbulence model...

12
2nd CFD Drag Prediction Workshop 21st of June 2003 Far-field drag breakdown applied to the DLR-F6 configuration In the framework of the 2nd CFD Drag Prediction Workshop 2nd CFD DPW Presented by Stéphane Amant Aerodynamic methods engineer

Upload: others

Post on 25-Jan-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

  • 2nd CFD Drag Prediction Workshop

    21st of June 2003

    Far-field drag breakdownapplied to the DLR-F6 configurationIn the framework of the 2nd CFD Drag Prediction Workshop

    2nd CFD DPW

    Presented by

    Stéphane AmantAerodynamic methods engineer

  • 21st of June 20032nd CFD Drag Prediction Workshop Page 2

    © A

    IRB

    US

    FR

    AN

    CE

    S.A

    .S. T

    ous

    droi

    ts r

    éser

    vés.

    Doc

    umen

    t con

    fiden

    tiel.

    Context of the topic

    • To tackle the issue of aircraft performance4 Optimal shape design fi

    need for reliable drag breakdown4 Cruise performance assessment fi

    need for accurate overall drag level

    • Prevailing role of CFD4 Generation of well adapted grids

    4 Need for a breakthrough in drag assessment– information provided by near-field integration insufficient

    – far-field abilities very attractive in terms of• improvement of the accuracy• physical drag breakdown• spatial distribution of drag sources

  • 21st of June 20032nd CFD Drag Prediction Workshop Page 3

    © A

    IRB

    US

    FR

    AN

    CE

    S.A

    .S. T

    ous

    droi

    ts r

    éser

    vés.

    Doc

    umen

    t con

    fiden

    tiel.

    Tools used by Airbus for the 2nd DPW

    • Structured multiblock solver : elsA4Developed by ONERA4Oriented-object structure (C++)4Turbulence model : k-w (Wilcox)4 Centred scheme4Dissipation : Jameson type scalar scheme4Implicit time integration : LU-SSOR method

    • Far-field drag analysis tool : FFD414developed by ONERA / Airbus France

    (van der Vooren / Destarac‘s theory)4industrialized by Airbus France4daily used by shape designers and aerodynamic data

    engineers4capability for dealing with patched grids (soon AMR grids)

  • 21st of June 20032nd CFD Drag Prediction Workshop Page 4

    © A

    IRB

    US

    FR

    AN

    CE

    S.A

    .S. T

    ous

    droi

    ts r

    éser

    vés.

    Doc

    umen

    t con

    fiden

    tiel.

    Comparison elsA / TAU of the drag polars(WB & WBPN configurations)

    0,10

    0,20

    0,30

    0,40

    0,50

    0,60

    180,0 230,0 280,0 330,0 380,0 430,0

    Cd (*10000.)

    Cl Cd_total_WB (wind tunnel)

    Cd_total_WB (elsA - ICEM grid)

    Cd_total_WB (elsA - Airbus grid)

    Cd_total_WB (TAU - medium)

    Cd_total_WB (TAU - fine)

    Cd_total_WBPN (wind tunnel)

    Cd_total_WBPN (elsA - ICEM grid)

    Cd_total_WBPN (TAU - medium)

    Cd_total_WBPN (TAU - fine)

    Cd_total_WBPN (elsA; -1,0°; fully turb.)

    Drag polar (near-field integration)

    10 drag counts

    with forced transition

    fully turbulent

  • 21st of June 20032nd CFD Drag Prediction Workshop Page 5

    © A

    IRB

    US

    FR

    AN

    CE

    S.A

    .S. T

    ous

    droi

    ts r

    éser

    vés.

    Doc

    umen

    t con

    fiden

    tiel.

    Cp distributions(elsA, medium ICEM grid, WBPN, CL=0.50)

    with fixed transitionfully turbulent

    Wing

    Nacelle

  • 21st of June 20032nd CFD Drag Prediction Workshop Page 6

    © A

    IRB

    US

    FR

    AN

    CE

    S.A

    .S. T

    ous

    droi

    ts r

    éser

    vés.

    Doc

    umen

    t con

    fiden

    tiel.

    Physical and numerical drag breakdown

    ( ) iwvAfp DDDDD ++=+

    ( ) spD

    spi

    appiwvAfp DDDDDDD

    i

    ++++=+43421

    VWVV

    • Exact near-field/far-field balance4no small disturbances assumption

    • Numerical considerations4production of spurious drag

    (connected to entropy variations in the flowfield)

    4decay of axial vorticity in the wing-tip vortexfi transformation of induced drag into spurious drag

  • 21st of June 20032nd CFD Drag Prediction Workshop Page 7

    © A

    IRB

    US

    FR

    AN

    CE

    S.A

    .S. T

    ous

    droi

    ts r

    éser

    vés.

    Doc

    umen

    t con

    fiden

    tiel.

    Far-field analysis

    • Comments4lower overall far-field drag fi removal of the spurious drag

    4quite high discrepancy on the viscous terms fi

    turbulence model ? role of the grid size ?

    4 good agreement on the wave drag magnitude

    4uncertainty on the induced drag : correction of the vortex decay ?

    4incremental drag better predicted than the near-field for elsA– TAU : DCD = 41,2.10-4

    – elsA : DCD = 45,9.10-4

    SolverGridCDfCDvpCDwCDiCDtotalTAU8 750 330 nodes125.363.31.389.6279.5WBelsA5 715 968 cells(ICEM)135.056.00.991.2283.5TAU12 321 068nodes149.177.24.889.6320.7WBPNelsA8 290 304 cells(ICEM)159.173.24.692.5329.4

  • 21st of June 20032nd CFD Drag Prediction Workshop Page 8

    © A

    IRB

    US

    FR

    AN

    CE

    S.A

    .S. T

    ous

    droi

    ts r

    éser

    vés.

    Doc

    umen

    t con

    fiden

    tiel.

    Wave drag distribution

    Excellent agreementon the local drag rise !

    Valuable plotfor design improvement !

  • 21st of June 20032nd CFD Drag Prediction Workshop Page 9

    © A

    IRB

    US

    FR

    AN

    CE

    S.A

    .S. T

    ous

    droi

    ts r

    éser

    vés.

    Doc

    umen

    t con

    fiden

    tiel.

    Viscous drag distribution

    The magnitude of the root separationin terms of drag is identically predicted !

    Excellent agreement on the local drag rise !

  • 21st of June 20032nd CFD Drag Prediction Workshop Page 10

    © A

    IRB

    US

    FR

    AN

    CE

    S.A

    .S. T

    ous

    droi

    ts r

    éser

    vés.

    Doc

    umen

    t con

    fiden

    tiel.

    Drag breakdown from elsA computations(WB & WBPN configurations)

    0,30

    0,35

    0,40

    0,45

    0,50

    0,55

    0,60

    0,0 20,0 40,0 60,0 80,0 100,0 120,0 140,0 160,0 180,0

    Cd (*10000.)

    Cl

    Cd_wave (WB)

    Cd_wave (WBPN)

    Cd_friction (WB)

    Cd_friction (WBPN)

    Cd_viscous_pressure (WB)

    Cd_viscous_pressure (WBPN)

    Cd_induced (WB)

    Cd_induced (WBPN)

    Drag polar breakdown (elsA computations)

    Issue withthe enforced transition ?

    Contribution of the lower side(interaction wing / pylon / nacelle)

    Low impact of the engine installationon the induced drag

  • 21st of June 20032nd CFD Drag Prediction Workshop Page 11

    © A

    IRB

    US

    FR

    AN

    CE

    S.A

    .S. T

    ous

    droi

    ts r

    éser

    vés.

    Doc

    umen

    t con

    fiden

    tiel.

    [email protected]° : an example of analysis

    Wing root separation

    Wing/Pylon separation

    AoA = -1.0° AoA = 0.0°

    Physical intuition confirmed

    by the far-field analysis

    fi very valuable information

    provided by FFD41

  • 21st of June 20032nd CFD Drag Prediction Workshop Page 12

    © A

    IRB

    US

    FR

    AN

    CE

    S.A

    .S. T

    ous

    droi

    ts r

    éser

    vés.

    Doc

    umen

    t con

    fiden

    tiel.

    Conclusions

    • Far-field drag analysis tools = an intelligent means of makingthe most of CFD4shape design improvement (including optimisation)

    4identification of CFD issues (grids, solvers, etc.)

    4New sensors for automatic refinement

    • Physical drag breakdown is available for both Airbus solvers(elsA & TAU)4discrepancies remain to be addressed

    4some obvious satisfactory trends

    • The one-drag count accuracy : a utopia4solver able to capture the flow features

    4well-built grid

    4far-field drag assessment tool

    the 1 d.c. variationis at hand