fast neutron imaging for snm detection · fast neutron imaging for snm detection victor bom delft...

15
Delft University of Technology, Faculty of Applied Physics Fast Neutron Imaging for SNM Detection Victor Bom Delft University of Technology

Upload: others

Post on 29-Mar-2020

20 views

Category:

Documents


0 download

TRANSCRIPT

Delft University of Technology, Faculty of Applied Physics

Fast Neutron Imaging for SNM Detection

Victor Bom

Delft University of Technology

2/15Fast Neutron Imaging

Special Nuclear Materials

• Terrorist threat

• Detection by fast neutron emissions

• passive

• active

3/15Fast Neutron Imaging

• Plutonium n-emission (n.kg-1.s-1)

• 1 kg WGP

• 6% 240Pu + 94% 239Pu

• 6.104 n/s

• at 7 m distance

236Pu 3560238Pu 2660240Pu 920242Pu 1790244Pu 1870

01.07004

10.62

4

n cm-2 s-1

Flux from 1 kg plutonium (WGP)

4/15Fast Neutron Imaging

Neutron back ground

• Neutron back ground

• cosmic

• sun

• earth crust

• Flux

• varies

• in time -> solar activity

• with height / location

• 10-3 n cm-2 s-1 MeV-1

• for 1-10 MeV 0.01 n cm-2 s-1

• equal to Pu rate at 7 m! M.S. Gordon et al., IEEE

TNS 51, no:6 (2004)

5/15Fast Neutron Imaging

Imaging

• Back ground reduction

• angular resolution, say 10o

• reduction factor

• now 1 kg WGP detectable up to 70 m distance

above back ground

• Need direction sensitive detector for fast neutrons

( )128

1

4

10tan

4

10tan 2

2

2

==oo

r

r

π

π

6/15Fast Neutron Imaging

Back ground from cargo

• Standard detection portals?

• not direction sensitive

• Activity present in normal cargo

• p.e. Tiles

• filling fraction 10%

• fraction K 1%

• 40K fraction 0.012%

• half life 109 yr

• decay by β-emission (80%)

6x106 Bq

7/15Fast Neutron Imaging

Detection principle

• One large organic scintillator

• Two successive n-p elastic scattering

• Determine:

• interaction positions

• energy scattered neutron En’

• direction scattered neutron

• energy of the first recoil proton p1

• Determine the incident neutron energy

• Calculate scatter angle Θ

• Construct cone

Common direction on several cones points to the source

p2

p1

nΘΘΘΘ

n'

'1 npn EEE +=

n

p

E

E 1arcsin=Θ

8/15Fast Neutron Imaging

Detector schematic

• Interaction positions

• light distribution on PMTs

• Time difference tp2-tp1

• scintillation light flash timing

• Energy first proton

• light intensity

• Positions and time differencegives En’ and direction scattered

neutron

• time differences ~ ns

• track lengths ~ cm

• Fast scintillator necessary

neutrons

plastic fast scintillator

PMTs onall sides

9/15Fast Neutron Imaging

Scintillation light pulses

NE111

decay: 1.4 ns

10200 photons/MeV

LaBr like

decay 16 ns

80000 photons/MeV

Perovskite

decay: 0.4 ns

4000 photons/MeV

10/15Fast Neutron Imaging

Position determination

• Light intensity

• pos ~

• suppose linear relation

• σ of 3 mm

• Time difference of light

• Anger principle

• accuracy ?

0.8 mmsumintensity

differenceintensity

L=10 cm

x

n

xnc

x

ncxL

ncxL

tt leftright

[ns/cm] 1.02

)()(

==

−−+=−

11/15Fast Neutron Imaging

Direction determination

• Assume

• time resolution 0.4 ns

• position resolution 5 mm

• energy resolution 16%

• Calculate (fully drawn lines)

• scatter angle

• 1 σ error ~ 12o

• Disregard events (dashed lines)

• Ep1 < 200 keV

• track length < 5 mm

• time difference < 0.4 ns

⇒ offset

12/15Fast Neutron Imaging

Efficiency

• n-p and n-C interactions

• n-C interactions

• small light yield ⇒ go undetected

• but change n-direction

• only n-p interactions useable

• for hydro-carbon scintillator (10 cm cube) ⇒ 27% of all events

• other scintillators?

33% for perovskite

(n-C6H13NH3)2PbI4

13/15Fast Neutron Imaging

Efficiency

• Simulation of 2.5 MeV neutrons in10 cm3

cube scintillator

• Ep1 versus time difference tp2-tp1

• theory: flat distribution of Ep

• Some events below detection limits

• tp2-tp1 below time resolution

• Ep1 below 200 keV limit

• assuming

• 200 keV lower energy limit

• 0.4 ns time resolution

• ⇒ 70% detected

• Overall efficiency 0.7x0.27 = 19%

0

250

500

750

1000

1250

1500

1750

2000

2250

2500

0 1 2 3 4 50

20

40

60

80

100

120

Neutron ToF (ns)

Epro

ton (

keV

)

Neutron ToF (ns)

0

500

1000

1500

2000

2500

3000

3500

4000

0 1

0

250

500

750

1000

1250

1500

1750

2000

2250

2500

0 1 2 3 4 50

20

40

60

80

100

120

Neutron ToF (ns)

Epro

ton (

keV

)

Neutron ToF (ns)

0

500

1000

1500

2000

2500

3000

3500

4000

0 1 2 3 4 5

14/15Fast Neutron Imaging

TEUs

15/15Fast Neutron Imaging

Application

• Port of Rotterdam

• Container stack

• 50 x 50 m2 ~ 2500/(2.5x12) ~ 80 TEUs

• stacked 4 layers ⇒ over 300 containers

• 1 kg Pu, 10 cm3 cube detector at 25 m, rate:

• back ground rate:

• in 10 minutes:

⇒ 90 Pu counts on a background of 14 counts

( )n/s cm 2 076.0100

25004

10.62

4

( )n/s cm 2 011.010001.0

4

12tan2

2

=×r

r

π

π o

50 m

50 m