fast neutron therapy

17
Fast Neutron Therapy Sevil Rahnama UBC #53255097 Physics 404 December 2, 2011

Upload: kousha-talebian

Post on 14-Apr-2015

55 views

Category:

Documents


1 download

DESCRIPTION

Fast Neutron Therapy, first introduced in 1938, has emerged as an advance radiation therapy that is capable of killing very large, and radio-resistant tumors. Using high-energy neutrons, the beam is capable of producing very large secondary charged particles (electrons) that are able to cause double-stranded DNA damage that can effectively destroy the cell. Other therapy methods only damage the DNA and the cell can repair itself. The therapy causes considerable damage to the cells, and thus can sometimes cause irreversible damage to the normal tissues. Therefore, this treatment is only used when the other radiation therapies fail.In the following paper, fast neutron therapy is discussed in detail. First, the reactions creating the neutrons are covered. This is followed by the discussion of the gantry and the MLC that are used to apply the dosage on the patient. Next, the dosage used for treatment is discussed. Finally, some advantages and disadvantages of the fast neutron therapy are discussed. University of Washington, Wayne State University and FermiLab are the center of research on the therapy and much of the details are taken from these institutes.

TRANSCRIPT

Page 1: Fast Neutron Therapy

                       

Fast  Neutron  Therapy  Sevil  Rahnama  UBC  #53255097  

 Physics  404  

December  2,  2011      

Page 2: Fast Neutron Therapy

Abstract    Fast   Neutron   Therapy,   first   introduced   in   1938,   has   emerged   as   an   advance  

radiation   therapy   that   is   capable   of   killing   very   large,   and   radio-­‐resistant   tumors.  

Using  high-­‐energy  neutrons,  the  beam  is  capable  of  producing  very  large  secondary  

charged  particles   (electrons)   that   are   able   to   cause   double-­‐stranded  DNA  damage  

that   can  effectively  destroy   the  cell.  Other   therapy  methods  only  damage   the  DNA  

and  the  cell  can  repair  itself.    The  therapy  causes  considerable  damage  to  the  cells,  

and  thus  can  sometimes  cause  irreversible  damage  to  the  normal  tissues.  Therefore,  

this  treatment  is  only  used  when  the  other  radiation  therapies  fail.  

 

In   the   following   paper,   fast   neutron   therapy   is   discussed   in   detail.   First,   the  

reactions  creating  the  neutrons  are  covered.  This  is  followed  by  the  discussion  of  the  

gantry   and   the   MLC   that   are   used   to   apply   the   dosage   on   the   patient.   Next,   the  

dosage  used  for  treatment  is  discussed.  Finally,  some  advantages  and  disadvantages  

of   the   fast   neutron   therapy   are   discussed.   University   of  Washington,  Wayne   State  

University  and  FermiLab  are  the  center  of  research  on  the  therapy  and  much  of  the  

details  are  taken  from  these  institutes.    

 

Page 3: Fast Neutron Therapy

List  of  Figures    Figure  1:  A  cyclotron  a  device  that  rotates  and  accelerates  a  particle  by  changing  the  

gradient  of  the  magnetic  field,  thus  making  the  particle  speed  up  spirally.  Image  taken  from  (Gagnon)  ......................................................................................................................  7  

Figure  2:  The  icon  conical  flattening  filter  used  to  bring  the  proton  beam  to  the  beryllium  sample  and  the  parallel-­‐sided  aperture  used  to  collect  the  neutrons.  Image  is  courtesy  of  (Kiger,  Sakamoto,  &  Harling)  ...........................................................  8  

Figure  3:  The  drawing  of  an  MLC  system  showing  (with  the  filter  and  the  aperture  located  inside  it)  is  shown  on  the  left.  The  University  of  Washington  Clinical  Neutron  Therapy  System  (CNTS)  is  shown  on  the  right.  ................................................  8  

Figure  4:  A  tumor  cell  targeted  by  the  CNTS  system.  Note  the  high  resolution  of  isolating  the  tumorous  cell  from  the  skin  around.  Image  is  courtesy  of  University  of  Washington.  ............................................................................................................  9  

Figure  5:  The  gantry  system  holding  the  MLC  ...........................................................................  10  Figure  6:FNT  vs  X-­‐ray  or  proton  therapy.  The  FNT  produces  high-­‐LET  electrons  

capable  of  performing  double-­‐stranded  DNA  damage  while  the  X-­‐ray  therapy  only  does  single-­‐stranded  DNA  damage.  ............................................................................  11  

Figure  7:  The  comparison  of  X-­‐ray,  neutron  and  proton  therapy.  The  table  is  courtesy  of  (Jones,  2008).  ..........................................................................................................  11  

Figure  8:  The  correlation  of  LET  and  the  RBE.  The  higher  the  LET  generally  represents  a  higher  RBE  value.  ...............................................................................................  12  

Figure  9:  A  salivary  gland  tumor  treated  with  NFT.  Picture  courtesy  of  (Lennox).  ..  14  

Page 4: Fast Neutron Therapy

List  of  Abbreviation    CNTS       Clinical  Neutron  Therapy  System  FNT       Fast  Neutron  Therapy  LET       Linear  Energy  Transfer  RBE       Relative  Biological  Effect    RT       Radiation  Therapy  

Page 5: Fast Neutron Therapy

Table  of  Content    Abstract  ..........................................................................................................................................................  2  List  of  Figures  ..............................................................................................................................................  3  List  of  Abbreviation  ..................................................................................................................................  4    1.   Introduction  ........................................................................................................................................  6  Fast  Neutron  Therapy  ..............................................................................................................................  6  1.1.   Producing  the  beam  of  neutrons  .......................................................................................  7  1.2.   Neutron  bombardment  ..........................................................................................................  8  1.3.   Neutron  treatment  and  the  dosage  amount  ...............................................................  10  

2.   Comparison  of  neutron  vs.  other  radiation  therapies  ....................................................  13  2.1.   Advantages  of  FNT  ................................................................................................................  13  2.2.   Disadvantages  of  FNT  ..........................................................................................................  13  

3.   Conclusion  .........................................................................................................................................  15    Bibliography  ..............................................................................................................................................  16    

   

Page 6: Fast Neutron Therapy

1. Introduction  and  Background    

Radiation  Therapy  (RT)  is  the  medical  use  of  a  beam  to   ionize  a  cancerous  and/or  

tumor  cell  and  cause  DNA  breakdown  to  kill  it.  To  protect  the  normal  tissue,  shape-­‐

shifting  masks   are   used   to   reshape   the   beam  onto   the   targeted   cell.   Fast  Neutron  

Therapy  (FNT)  is  a  specific  type  of  RT.  It  is  classified  as  high-­‐linear-­‐energy-­‐transfer  

(high-­‐LET)   beam   therapy,   in  which   the   targeted   cells   go   under   single-­‐hit   double-­‐

stranded  DNA  damage   that  effectively  kills   the  cell.  This   is   in  contrast   to  other  RT  

(such  as  X-­‐ray)  that  is  classified  low-­‐linear-­‐energy-­‐transfer  (low-­‐LET)  in  which  the  

targeted  cells  undergo  single-­‐stranded  DNA  damage,  which  can  readily  be  repaired,  

thus  limiting  the  destruction  of  the  cell.  The  damage  is  simply  done  by  ionizing  the  

DNA   chain   and   causing   them   to   break   apart.   In   laboratory   environment,   killing  

cancerous  cells  is  significantly  easier  than  curing  them.    

 

 

Page 7: Fast Neutron Therapy

2. Fast  Neutron  Therapy  2.1. Producing  the  beam  of  neutrons  

A   line   of   high-­‐energy   beam   of   protons   is   created   using   a   cyclotron,   shown   in  

Figure   1.   Deuterons   and   helium   atoms   may   also   be   used,   however,   with   the  

current  cyclotrons  can  create  a  beam  of  proton  with  energy  as  high  as  50.5MeV  

(Risler,   Emery,   &   Laramore);   in   practice,   a   beam   of   26MeV   protons   is   used  

(Goodhead,  Berry,  Bance,  &  Gray,  1978).    

 

 Figure  1:  A  cyclotron  a  device  that  rotates  and  accelerates  a  particle  by  changing  the  gradient  of  the  magnetic  field,  thus  making  the  particle  speed  up  spirally.  Image  taken  from  (Gagnon)  

This   beam   is   then   passed   through   an   iron   conical   flattening   filter,   towards   a  

thick  beryllium  target  of  thickness  3.8cm  (Bewley,  Meulders,  Octave-­‐Prignot,  &  

Page,   1980)   using   very   high   magnetic   field   gradient.   The   beryllium-­‐proton  

reaction   creates   a   scattering   of   fast   neutrons   that   are   then   collimated   by   a  

parallel-­‐sided   aperture.   This   system   is   known   as   MLC.   The   filter   and   the  

aperture  is  shown  in  the  figure  below.  

 

Page 8: Fast Neutron Therapy

 Figure  2:  The  icon  conical  flattening  filter  used  to  bring  the  proton  beam  to  the  beryllium  sample  and  the  parallel-­‐sided  aperture  used  to  collect  the  neutrons.  Image  is  courtesy  of  (Kiger,  Sakamoto,  &  Harling)  

The   collimated   neutrons   have   a   typical   energy   of   20MeV   (Goodhead,   Berry,  

Bance,  &  Gray,  1978)  and  can  then  be  used  in  the  therapy.    The  diagram  below  

shows  an  MLC  system  along  with  its  masking  complementary  component.  

 

 Figure  3:  The  drawing  of  an  MLC  system  showing  (with  the  filter  and  the  aperture  located  inside  it)  is  shown  on  the  left.  The  University  of  Washington  Clinical  Neutron  Therapy  System  (CNTS)  is  shown  on  the  right.  

2.2. Neutron  bombardment  

The   MLC   is   assembled   on   top   of   a   gantry   to   allow   a   360˚   rotation   about   the  

patient.   The   pneumatically   controlled   wedges   shown   in   Figure   3   are   used   to  

shape  the  beam  of  the  neutron  leaving  the  head.  The  collimator  discussed  from  

Page 9: Fast Neutron Therapy

the  previous   section,   is   typically  a  multi-­‐leaf   collimator  with  40  both   steel   and  

plastic  leaves  (shown  on  Figure  3  on  the  right)  used  to  for  the  conformal  shaping  

of   the  treatment   field  (Risler,  Emery,  &  Laramore).   In  other  words,   the  parallel  

beam  of  neutron  passes  through  the  field-­‐shaping  device  (shown  on  the  right)  to  

create  the  required  shape.  On  the  image  above,  for  example,  the  final  field  would  

be  a  distorted  trapezoid.  The  resolution  of  the  system  is  therefore  dependent  on  

the  number  of  leaves  used  on  the  masking.    

 

 Figure  4:  A  tumor  cell  targeted  by  the  CNTS  system.  Note  the  high  resolution  of  isolating  the  tumorous  cell  from  the  skin  around.  Image  is  courtesy  of  University  of  Washington.  

The   head   of   the   system   would   be   as   far   as   150cm   from   the   targeted   cells,  

although   it   can   also   be   closer   as  well   (Risler,   Emery,   &   Laramore).   The   figure  

below   shows   a   typical   gantry   assembled   neutron   therapy   system.   As   a   safety  

measure,   the  treatment  room  is   isolated  with  a  240cm  thick  concrete  wall   that  

can  effectively  block  99%  of  the  particle  beams  (Risler,  Emery,  &  Laramore).  

 

Page 10: Fast Neutron Therapy

 Figure  5:  The  gantry  system  holding  the  MLC  

 

2.3. Neutron  treatment  and  the  dosage  amount  

RT  works  by  bombarding  the  targeted  cell  with  the  radiation  of  interest  (such  as  

X-­‐ray,   proton,   or   neutron).   Upon   impact,   these   particles   ionize   the   cells,   and  

cause  a  flow  of  electrons  in  a  straight  line.  These  charged  particles  (i.e.  electrons)  

then  pass   through   the  DNA  of   the   tumor   and   cause  DNA  breakdown.   Figure   6  

shows  the  procedure.    

 

X-­‐ray   therapy   has   energy   of   about   25MeV   (Johns   &   Cunningham,   1978),   and  

therefore  usually   produces  Compton   interaction  upon   falling   on  human   tissue.  

This   interaction  then  produces  relatively  high-­‐energy  secondary  electrons  with  

energy  deposit  of  1  KeV/µm  (low-­‐LET)  (Johns  &  Cunningham,  1978).  In  contract,  

the   neutrons   produces   charged   particles   with   energy   deposit   as   high   as   80  

KeV/µm  (high-­‐LET)  (Johns  &  Cunningham,  1978).    

 

Due   to   its   low   rate   of   energy   deposit,   the   electrons   from   the   X-­‐ray   therapy  

typically  only  ionize  a  few  cells,  and  only  do  single-­‐stranded  DNA  helix  damage.  

Cells  can  readily   repair   this  DNA  breakdown  and  so   the  damage   is  minimal.   In  

contrast,   the  neutrons  produce  high-­‐LET  electrons   that  can  effectively  perform  

double-­‐stranded  DNA  damage  –  i.e.  completely  destroy  the  DNA  beyond  repair.  

Page 11: Fast Neutron Therapy

These  targeted  cells  are  therefore  typically  killed.  Figure  below  shows  the  DNA  

breakdown  in  action.  

 

 Figure  6:FNT  vs  X-­‐ray  or  proton  therapy.  The  FNT  produces  high-­‐LET  electrons  capable  of  performing  double-­‐stranded  DNA  damage  while  the  X-­‐ray  therapy  only  does  single-­‐stranded  DNA  damage.  

To   compare   two   different   therapy  methods,   relative   biological   effect   (RBE)   is  

implemented.  RBE  is  defined  as  the  dosage  of  two  therapy  methods  to  obtain  the  

same  biological  effect.  The  table  below  summarizes  this  ratio  (using  the  X-­‐ray  as  

the  basis).  

 

 Figure  7:  The  comparison  of  X-­‐ray,  neutron  and  proton  therapy.  The  table  is  courtesy  of  (Jones,  2008).  

We   can   see   that  NFT   is   about  3   times  more  effective   than  X-­‐ray,  meaning   that  

you   require   one   third   of   the   dosage   of   X-­‐ray   to   achieve   the   same   effect.   This  

correlation  is  a  direct  result  of  the  property  of  high-­‐LET  property  of  the  neutron.  

The  diagram  below  shows  this  correlation.  

Page 12: Fast Neutron Therapy

 Figure  8:  The  correlation  of  LET  and  the  RBE.  The  higher  the  LET  generally  represents  a  higher  RBE  value.    

 Radiation   therapy   is   generally   drastically   enhanced   in   the   presence   of   oxygen.  

Unfortunately,   the   tumor/cancerous   cells   generally   have   lower   oxygen  

concentration   –   an   effect   commonly   known   as   tumor   hypoxia.   Under   all   other  

types  of  therapy  then,  oxygen  is  injected  into  the  area  to  increase  the  effect  of  the  

therapy.   FNT   however,   is   known   to   overcome   the   tumor   hypoxia,   thus  

simplifying   the   task   considerably.   The   table   above   also   compares   the   oxygen  

modification  factor  (the  higher  the  number,  the  more  the  treatment  is  dependent  

on  the  oxygen  level).  Once  again,  FNT  is  shown  to  have  the  lowest  factor.    

Page 13: Fast Neutron Therapy

3. Comparison  of  neutron  vs.  other  radiation  therapies  

3.1. Advantages  of  FNT  

As  discussed  in  the  previous  sections,  the  FNT’s  main  advantage  is  its  ability  to  

perform  a  double-­‐stranded  DNA  damage,   thus   they  are  more  effective  per  unit  

dose   than  other  RT  (such  as  X-­‐ray)   (Lennox).  Thus,   the  cell   survival  curves   for  

neutron  treatment  is  nearly  exponential.    

 

The  oxygen  effect,  or  tumor  hypoxia  is  also  much  smaller  for  the  NFT.  The  cell  is  

also   far   less   dependent   to   the   growth   stage   under   the   NFT   treatment.   Thus,  

patients   with   very   large   tumors,   slow-­‐growing   tumors,   large   hypoxia   tumors,  

and  tumors  resistant  to  low-­‐LET,  should  use  NFT.    

 

Some  tumors  are  labeled  radio-­‐resistant  (including  some  types  of  cancer  such  as  

leiomyosarcoma).  NFT  however,  is  known  to  be  able  to  penetrate  such  cells  and  

still  break  down  their  DNA  and  destroy  them.    

 

Thus   FNT   is   a   local   control   treatment,   meaning   the   tumor   is   completely  

destroyed  and  does  not  grow  back  in  the  future.  

3.2. Disadvantages  of  FNT  

Due  to  its  high-­‐LET,  FNT  can  cause  severe  damage  to  the  area  around  the  tumor  

cells.   Thus,   the   larger   the   tumor   is,   the   larger   the   dosage   is   required,   and   this  

inevitably  results  in  a  larger  damage  done  to  the  normal  tissues.    

 

There  are  also  late-­‐effects  (up  to  18  months  after  the  treatment  completion)  and  

they   include   vascular   changes,   scarring,   irradiated   skin   and   organs,   radiation  

injury   to   brain   and   more   –   all   of   these   effects   are   irreversible   (Cohen   &  

Awschalom,  1982).    

 

Page 14: Fast Neutron Therapy

For  cells   that  are  curable  by  alternative  RT  methods,   it   is  preferable  to  not  use  

NFT   since   the   NFT   can   cause   more   damage   to   normal   tissues.   Some   (Jones,  

2008)   also   believe   that   NFT   is   only   good   for   very   superficial,   slow-­‐growing  

cancers  with  very  little  tissue  coverage.    

 

Other  studies  have  found  a  71%  survival  rate  for  patients  with  various  different  

cancers  and  tumors  who  all  went  under  NFT  treatment  (Schartz,  Einck,  Bellon,  &  

Laramore,   2001).   Schartz   et   al.   conclude   that   FNT   is   effective   for   soft   tissues  

cartilaginous  sarcomas.    

 

 Figure  9:  A  salivary  gland  tumor  treated  with  NFT.  Picture  courtesy  of  (Lennox).  

Page 15: Fast Neutron Therapy

4. Conclusion  As  a  result  of  the  high  linear  energy  transport  of  the  neutron  beam,  the  therapy  has  

shown   to   be   superior   to   other   radiation   therapy  methods   for   treating   very   large  

tumors,   especially   those   who   are   radio-­‐resistant   and/or   the   tumor   cells   in   areas  

with  low  oxygen  concentration.  NFT  has  a  higher  BFE  (as  high  as  three  times  X-­‐ray)  

-­‐  one  can  achieve  the  same  biological  effect  with  a  lower  dosage.  This  can  lower  the  

time   of   treatment   as   well   as   the   number   of   dosages   applied.   The   treatment   has  

shown   to   have   a   success   rate   of   71%   for   the   patients   that   had   otherwise   no  

treatment.  There  have  been  cases  of  the  treatment  to  cause  irreversible  side  effects;  

there  is  still  more  research  required  to  understand  the  entire  biological  response  for  

such  rare  cases.    

 

 

 

 

Page 16: Fast Neutron Therapy

 

Bibliography  

Bewley,  D.  K.,  Meulders,  J.  P.,  Octave-­‐Prignot,  M.,  &  Page,  B.  C.  (1980).  Neutron  beams  from  protons  on  beryllium.  IOP  Science  ,  887-­‐892.    Cohen,  L.,  &  Awschalom,  M.  (1982).  Fast  Neutron  Radiation  Therapy.  Annual  Review  ,  359-­‐90.    Gagnon,  S.  (n.d.).  Cyclotron.  Retrieved  November  26,  2011,  from  Jefferson  Lab:  http://education.jlab.org/glossary/cyclotron.html    Goodhead,  D.  T.,  Berry,  R.  J.,  Bance,  D.  A.,  &  Gray,  P.  (1978).  Fast  Neutron  Therapy  Beam  Produced  by  26MeV  Protons  on  Beryllium.  IOP  Science  ,  144-­‐148.  Johns,  L.  E.,  &  Cunningham,  J.  R.  (1978).  The  Physics  of  Radiology.  Springfield:  Charles  C  Thomas.    Jones,  B.  (2008,  January  17).  The  neutron-­‐therapy  saga:  a  cautionary  tale.  Retrieved  November  25,  2010,  from  Medical  Physics  Web:  http://medicalphysicsweb.org/cws/article/opinion/32466    Kiger,  W.  S.,  Sakamoto,  S.,  &  Harling,  O.  K.  Effects  on  neutron  collimation,  beam  size,  and  spectrum  on  in-­‐phantom  performance  of  realistic  epithermal  neutron  beams  on  BNCT.  In  F.  Hawthorne,  Frontiers  in  neutron  capture  therapy.  Boston.    Lennox,  A.  J.  High-­‐energy  neutron  therapy  for  radioresistance  cancers.  Northern  Illinois  University  Institute  for  Neutron  Therapy  at  Fermilab.  Batavia:  Fermi  National  Accelerator  Laboratory.    Risler,  R.,  Emery,  R.,  &  Laramore,  G.  R.  Routine  Operation  of  the  University  of  Washington  Fast  Neutron  Therapy  Facility  and  Plan  for  Improvements.  Washington:  University  of  Washington.    Schartz,  D.  L.,  Einck,  J.,  Bellon,  J.,  &  Laramore,  G.  E.  (2001).  Fast  neutron  radiotherapy  for  soft  tissue  and  cartilaginous  sarcomas  at  high  risk  for  local  recurrence.  Elsevier  ,  449-­‐456.            

Page 17: Fast Neutron Therapy