fatcat - nanoparticlesnanoparticles.ch/archive/2019_keller_pr.pdf · ipcc, 2013: 5th assessment...

17
Stand-alone system for reliable determination of carbonaceous aerosol FATCAT Alejandro Keller, D. Heimann, P. Specht, P. Steigmeier, E. Weingartner

Upload: others

Post on 27-Jul-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: FATCAT - Nanoparticlesnanoparticles.ch/archive/2019_Keller_PR.pdf · IPCC, 2013: 5th Assessment Report (AR5) o aerosol-ons (0 9g)r s) NH 3 %) SO 2 %) s) %) g %) %) %) World Meteorological

Stand-alone system for reliable determination of carbonaceous aerosolFATCAT

Alejandro Keller, D. Heimann, P. Specht, P. Steigmeier, E. Weingartner

Page 2: FATCAT - Nanoparticlesnanoparticles.ch/archive/2019_Keller_PR.pdf · IPCC, 2013: 5th Assessment Report (AR5) o aerosol-ons (0 9g)r s) NH 3 %) SO 2 %) s) %) g %) %) %) World Meteorological

19.6.2019A. Keller, ETH-NPC 2019 2

Importance of carbonaceous aerosol

IPCC, 2013: 5th Assessment Report (AR5)

atm

osp

he

re r

ad

iative

fo

rcin

g d

ue

to

ae

roso

l-ra

dia

tio

n in

tera

ctio

ns

Total: 288 Megatons (=109 Kg) Globally per Year

Antropogenic Aerosol & Precursors Emissions

(Inventories Average)

NH3 (14.4%)

SO2 (19.2%)

NMVOCs (SOA Precursors)

(44%)

Biomass Burning

(17%)

POA (3.6%)

BC (1.7%)

World Meteorological Organization / Global Atmosphere Watch (GAW) aerosol measurement recommendations (2003 and 2016):

• “Carbonaceous species are the least understood and most difficult to characterize of all aerosol chemical components.”

• “It is recommended that [total carbon] TC, [organic carbon] OC and [elemental carbon] EC be measured in the GAW programme”

Figure: Geiser & Kreyling, 2010

https://doi.org/10.1186/1743-8977-7-2

Deposition of particles in human respiratory track

Page 3: FATCAT - Nanoparticlesnanoparticles.ch/archive/2019_Keller_PR.pdf · IPCC, 2013: 5th Assessment Report (AR5) o aerosol-ons (0 9g)r s) NH 3 %) SO 2 %) s) %) g %) %) %) World Meteorological

19.6.2019A. Keller, ETH-NPC 2019 3

Temperature-controlled thermal evolution (EC/OC)

Cavalli et al., Atmos. Meas. Tech., 3, 79-89, 2010

http://www.sunlab.com

OC

EC

TC

OC

EC

Biggest limitation: There is no

reliable field measurement

device for EC/OC analysis.

A simple and robust method is

urgently needed.

Repeatability/reproducibility

Same protocol

±10%

± 25%

TC

OC

EC

Variation due to use of

Different protocol

± 2%

Up to 113% more

See, e.g., Panteliadis et al., Atmos. Meas. Tech., 8, 779-792, 2015

«We have to move away from methods that require filter collection»Recently heard at a meeting with authorities from the Swiss meteorological organization

Page 4: FATCAT - Nanoparticlesnanoparticles.ch/archive/2019_Keller_PR.pdf · IPCC, 2013: 5th Assessment Report (AR5) o aerosol-ons (0 9g)r s) NH 3 %) SO 2 %) s) %) g %) %) %) World Meteorological

19.6.2019A. Keller, ETH-NPC 2019 4

FAst Thermal CArbon Totalizer (FATCAT)

1. Capture particles on a filter 2. Flash-heat up the filter to

~800°C (< 1 minute)

3. Catalytic converter

Organic

Compounds?

CO2

CO?

4. CO2 detection (NDIR)

C

/t

Heating time

Total Carbon

Page 5: FATCAT - Nanoparticlesnanoparticles.ch/archive/2019_Keller_PR.pdf · IPCC, 2013: 5th Assessment Report (AR5) o aerosol-ons (0 9g)r s) NH 3 %) SO 2 %) s) %) g %) %) %) World Meteorological

19.6.2019A. Keller, ETH-NPC 2019 5

Filter optimization

Iron splinters from damaged 316SS tubbing (0.32 grams)

Used vs. new filter with 316SS tubbing

Unique features:

• Heating through induction

• Direct (and efficient)

heating of the filter

• Rigid (metallic) filter

Page 6: FATCAT - Nanoparticlesnanoparticles.ch/archive/2019_Keller_PR.pdf · IPCC, 2013: 5th Assessment Report (AR5) o aerosol-ons (0 9g)r s) NH 3 %) SO 2 %) s) %) g %) %) %) World Meteorological

19.6.2019A. Keller, ETH-NPC 2019 6

Filter optimization 2

10 100

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Filt

ration E

ffic

iency

Mobility Diameter (nm)

MG0,5 @ 1 lpm

SIKA-HX3 @ 4 lpm

SIKA-HX3 @ 1 lpm

SIKA-HX5 @ 10 lpm

SIKA-HX5 @ 1 lpm

Original 5m filter @ 0.3 lpm

Detail of filter with 5μm grade (i.e. SIKA-HX5)

fmax=10 lpm

fmax=17 lpm

fmax=6 lpm

fmax=7.6 lpm

Page 7: FATCAT - Nanoparticlesnanoparticles.ch/archive/2019_Keller_PR.pdf · IPCC, 2013: 5th Assessment Report (AR5) o aerosol-ons (0 9g)r s) NH 3 %) SO 2 %) s) %) g %) %) %) World Meteorological

19.6.2019A. Keller, ETH-NPC 2019 7

Characterization: Standard Soot*

0 5 10 15 20 25

0

5

10

15

20

25

C/O=0.25 (EC>>OC)

FA

TC

AT

, T

ota

l C

arb

on

(

g-C

)

TEOM, Aerosol Mass (g)

Equation y = a + b*x

Weight No Weighting

Residual Sum of Squares

0.04152

Pearson's r 0.99992

Adj. R-Square 0.99977

Value Standard Error

FATCAT, Total Carbon

Intercept 0.00695 0.07733

Slope 0.9323 0.007

0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

5.2 g-C

T

C (

g-C

/min

ute

)

Analysis time (s)

C/O=0.25 (EC>>OC)

C/O=0.49 (EC<<OC)

5.6 g-C

200

400

600

800

Te

mp

era

ture

** (

°C)

*Synthetic aerosol generated by means of a CAST (Jing, ag) diffusion flame generator.

**Temperature measured behind sampling filter. Actual filter temperature is higher.

FWHM=5 seconds

Page 8: FATCAT - Nanoparticlesnanoparticles.ch/archive/2019_Keller_PR.pdf · IPCC, 2013: 5th Assessment Report (AR5) o aerosol-ons (0 9g)r s) NH 3 %) SO 2 %) s) %) g %) %) %) World Meteorological

19.6.2019A. Keller, ETH-NPC 2019 8

Characterization: Standard Soot*

0 5 10 15 20 25

0

5

10

15

20

25

C/O=0.25 (EC>>OC)

FA

TC

AT

, T

ota

l C

arb

on

(

g-C

)

TEOM, Aerosol Mass (g)

Equation y = a + b*x

Weight No Weighting

Residual Sum of Squares

0.04152

Pearson's r 0.99992

Adj. R-Square 0.99977

Value Standard Error

FATCAT, Total Carbon

Intercept 0.00695 0.07733

Slope 0.9323 0.007

0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

4.4 g-C

5.2 g-C

T

C (

g-C

/min

ute

)

Analysis time (s)

C/O=0.25 (EC>>OC)

C/O=0.49 (EC<<OC)

C/O=0.26 (EC>>OC)

5.6 g-C

200

400

600

800

Te

mp

era

ture

** (

°C)

Is 50 seconds heating

time too long?

*Synthetic aerosol generated by means of a CAST (Jing, ag) diffusion flame generator.

**Temperature measured behind sampling filter. Actual filter temperature is higher.

~3x longer time

inside the flame;

Larger particles

FWHM=5 secondsMainly EC4 (EUSAAR2)

Page 9: FATCAT - Nanoparticlesnanoparticles.ch/archive/2019_Keller_PR.pdf · IPCC, 2013: 5th Assessment Report (AR5) o aerosol-ons (0 9g)r s) NH 3 %) SO 2 %) s) %) g %) %) %) World Meteorological

19.6.2019A. Keller, ETH-NPC 2019 9

Characterization: Standard Soot*

0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

4.4 g-C

5.2 g-C

T

C (

g-C

/min

ute

)

Analysis time (s)

C/O=0.25 (EC>>OC)

C/O=0.49 (EC<<OC)

C/O=0.26 (EC>>OC)

5.6 g-C

200

400

600

800

Te

mp

era

ture

** (

°C)

Is 50 seconds heating

time too long?

*Synthetic aerosol generated by means of a CAST (Jing, ag) diffusion flame generator.

**Temperature measured behind sampling filter. Actual filter temperature is higher.

Mainly EC4 (EUSAAR2)

• Thermal-optical protocols like, e.g., EUSAAR

use between 800 and 940°C to combust the

EC4 fraction.

• In our instrument 550°C, less than 40

seconds of heating, seem to be enough.

• Reducing heating/analysis time improves the

limit of detection.

• Less heating also translates to faster

instrument recovery.

~3x longer time

inside the flame;

Larger particles

Page 10: FATCAT - Nanoparticlesnanoparticles.ch/archive/2019_Keller_PR.pdf · IPCC, 2013: 5th Assessment Report (AR5) o aerosol-ons (0 9g)r s) NH 3 %) SO 2 %) s) %) g %) %) %) World Meteorological

19.6.2019A. Keller, ETH-NPC 2019 10

Characterization: Zero measurements (preliminary results)

Limit of Detection

LoD = 0.19 μg-C

(Using 3σ criterium)

Page 11: FATCAT - Nanoparticlesnanoparticles.ch/archive/2019_Keller_PR.pdf · IPCC, 2013: 5th Assessment Report (AR5) o aerosol-ons (0 9g)r s) NH 3 %) SO 2 %) s) %) g %) %) %) World Meteorological

19.6.2019A. Keller, ETH-NPC 2019 11

Characterization: Ambient air at Windisch (Aargau), Switzerland

Wed 20 Thu 21 Fri 22 Sat 23 Sun 24 Mon 25 Tue 26

0

2

4

6

8

10

12 TC

eBC

TC (zero air)

Concentr

atio

n (

g-C

/m3)

DateMarch 2019

0 20 40 60 80

0

2

4

6

8

T

C (

g-C

/min

)

Analysis time (s)

0 20 40 60 80

0

2

4

6

8

T

C (

g-C

/min

)

Analysis time (s)

FATCAT Sampling Volume: 0.4 m3; Sampling Flow Rate: 8 lpm

eBC measured at λ=880nm (Aethalometer AE33, Magee Sci.)

Page 12: FATCAT - Nanoparticlesnanoparticles.ch/archive/2019_Keller_PR.pdf · IPCC, 2013: 5th Assessment Report (AR5) o aerosol-ons (0 9g)r s) NH 3 %) SO 2 %) s) %) g %) %) %) World Meteorological

19.6.2019A. Keller, ETH-NPC 2019 12

Characterization: Ambient air at Windisch (Aargau), Switzerland

Wed 20 Thu 21 Fri 22 Sat 23 Sun 24 Mon 25 Tue 26

0

2

4

6

8

10

12 TC

eBC

TC (zero air)

Concentr

atio

n (

g-C

/m3)

DateMarch 2019

*FATCAT sampled volume was 0.44 m3 for most datapoints

Page 13: FATCAT - Nanoparticlesnanoparticles.ch/archive/2019_Keller_PR.pdf · IPCC, 2013: 5th Assessment Report (AR5) o aerosol-ons (0 9g)r s) NH 3 %) SO 2 %) s) %) g %) %) %) World Meteorological

19.6.2019A. Keller, ETH-NPC 2019 13

Cloud Interface

MQTT

Broker

and

Database

Control, DAQ and Scheduling

Operation modes:

• Manual: simple local GUI.

• Unattended, offline operation: scheduled

operation, local data processing with

automated upload of analysis files.

Instrument accessible using remote terminal.

• Cloud operation: cloud interface, real time (or

cued) upload of sensor data (with local

backup), data analysis in cloud, local

scheduling (reprogrammable through cloud

broker).

Page 14: FATCAT - Nanoparticlesnanoparticles.ch/archive/2019_Keller_PR.pdf · IPCC, 2013: 5th Assessment Report (AR5) o aerosol-ons (0 9g)r s) NH 3 %) SO 2 %) s) %) g %) %) %) World Meteorological

19.6.2019A. Keller, ETH-NPC 2019 14

Operational field instrument

• Stable, robust, and simple system

• Simpler and less expensive measurement cycle

• Short analysis time (translates to better limit of detection)

• High dynamic range [0.2 to > 500 μg-C] (top limit still not stablished)

• Unique: Rigid and stable filter (no filter displacements or leaks)

• Unique: Direct and homogeneous heating of the filter (instead of using a heating filament or a furnace)

• Unique: Calibration performed using CO2 (other devices use a sugar solution) and through calibration of a mass flow

controller

The new TCA-8 from

Aerosol d.o.o. is similar,

but uses a soft quartz

filter

Page 15: FATCAT - Nanoparticlesnanoparticles.ch/archive/2019_Keller_PR.pdf · IPCC, 2013: 5th Assessment Report (AR5) o aerosol-ons (0 9g)r s) NH 3 %) SO 2 %) s) %) g %) %) %) World Meteorological

19.6.2019A. Keller, ETH-NPC 2019 15

Possible optimizations

• Further filter optimization to, e.g., increase sample flow rate (current maximum: 10lpm) [low priority]

• Improved filter temperature monitoring (shorter heating, faster recovery) [medium priority]

• Preconditioning unit for analysis air (currently using Synthetic Air) [high priority, ongoing]

• Dual sampling head to eliminate recovery time after analysis [low priority]

• Cloud software optimization for, e.g., email alarms, behavior during long network-out periods, etc

[medium priority, under evaluation]

• App development [low priority]

Page 16: FATCAT - Nanoparticlesnanoparticles.ch/archive/2019_Keller_PR.pdf · IPCC, 2013: 5th Assessment Report (AR5) o aerosol-ons (0 9g)r s) NH 3 %) SO 2 %) s) %) g %) %) %) World Meteorological

19.6.2019A. Keller, ETH-NPC 2019 16

Planned activities 2019

• Characterization of the instrument using laboratory sources and comparison against

thermal-optial methods [ongoing]

• Measurement of emissions from biomass burning appliances at a test bench

• Long time measurements to establish performance for stand-alone operation [ongoing]

(next to other aerosol instruments at Windisch and selected NABEL measurement stations)

• Publication of technical paper to describe the performance of the new instrument

• Deployment at the MeteoSwiss/NABEL measurement station in Payern, Switzerland, next to other aerosol

instruments (with PSI/EMPA)

We are looking for partners for characterization or for other areas of application of

our measurement system.

Please challenge FATCAT with interesting measurement activities!

0 100 200 300 400 500 600

0

100

200

300

400

500

600

Cooking Stove ( cold, warm)

Old Stove ( cold, warm)

TC

, F

AT

CA

T (

g)

TC, offline analysis (g)

Measurements using the

original laboratory setup

Page 17: FATCAT - Nanoparticlesnanoparticles.ch/archive/2019_Keller_PR.pdf · IPCC, 2013: 5th Assessment Report (AR5) o aerosol-ons (0 9g)r s) NH 3 %) SO 2 %) s) %) g %) %) %) World Meteorological

19.6.2019A. Keller, ETH-NPC 2019 17

Acknowledgements

Funding has been provided by the

Swiss Federal Office for the

Environment (FOEN) & MeteoSwiss

Dr. A. Mayer

Hug Engineering (oxidation catalyst)

J. Curiel (Cloud Software)