fate and behavior of pharmaceuticals ... - kompetenz-wasser.de€¦ · 1.e-08 1.e-07 1.e-06 1.e-05...

17
1 Fate and behavior of pharmaceuticals and EDCs in municipal wastewater treatment Prof. Dr. Hansruedi Siegrist, EAWAG, Switzerland 20 Years of Research in the Field of Endocrine Disruptors & Pharmaceutical Compounds Symposium, Berlin, 10 February 2010 Eawag: Das Wasserforschungs-Institut des ETH-Bereichs 2 Introduction Elimination processes in WWTP Transformation products Additional measures in WWTP Mass flux study Switzerland Conclusions Topics

Upload: others

Post on 31-Jan-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

  • 1

    Fate and behavior of pharmaceuticals and EDCs in municipal wastewater treatment

    Prof. Dr. Hansruedi Siegrist, EAWAG, Switzerland

    20 Years of Research in the Field of EndocrineDisruptors & Pharmaceutical Compounds

    Symposium, Berlin, 10 February 2010

    Eawag: Das Wasserforschungs-Institut des ETH-Bereichs

    2

    • Introduction• Elimination processes in WWTP• Transformation products• Additional measures in WWTP• Mass flux study Switzerland• Conclusions

    Topics

  • 2

    3

    Average WWTP effluent concentrationsof selected EDCs

    0.1

    1.0

    10.0

    100.0

    1000.0

    10000.0

    17b-E

    2EE

    2 E1

    17a-E

    2 E3

    Nony

    lphen

    ol

    E1-S

    ulfate

    Genis

    tein

    17b-E

    2-sulf

    ate

    Bisph

    enol

    A

    E2-G

    lucuro

    nide

    NP1E

    C

    Dibuty

    l phth

    alate

    Ave

    rage

    con

    cent

    ratio

    ns [n

    g/l]

    Desbrow et al. (1998) Environ. Sci. Technol. 32, 1549; Routledge et al. (1998) Environ. Sci. Tech., 32, 1559; Snyder et al. (2001) Env. Sci. & Technol., 35, 3620; Johnson and Sumpter (2001) Env. Sci. & Techn., 36, 1202; Johnson et al. (2005) Wat. Res., 39, 47.

    4

    Specific estrogenic potencies of important EDCs in vitro and in vivo

    1.E-08

    1.E-07

    1.E-06

    1.E-05

    1.E-04

    1.E-03

    1.E-02

    1.E-01

    1.E+00

    1.E+01

    1.E+02

    17b-E

    2EE

    2 E1

    17a-E

    2 E3

    Nony

    lphen

    ol

    E1-S

    ulfate

    Genis

    tein

    17b-E

    2-sulf

    ate

    Bisph

    enol

    A

    E2-G

    lucuro

    nide

    NP1E

    C

    Dibuty

    l phth

    alate

    Estr

    adio

    l Equ

    ival

    ente

    [ng/

    l] In vitro testsIn vivo (vitellogenin)In vivo (water snail)

    Johnson A., Sumpter J. (2001) Removal of endocrine disrupting chemicals in activated sludge treatment works. Env. Sci. & Techn., 36, 1202. Oehlmann J. et al. (2006) Bisphenol A induces superfeminization in the ramshorn snail Marisa cornuarietis (Gastropoda: Prosobranchia) at low concentrations. Environ. Health Prosp., 114 (S-1) 127-133.

  • 3

    5

    Estrogenicity of important EDCsProduct of average concentration and specific estrogenic potency

    0.00001

    0.0001

    0.001

    0.01

    0.1

    1

    10

    100

    17b-E

    2EE

    2 E1

    17a-E

    2 E3

    Nony

    lphen

    ol

    E1-S

    ulfate

    Genis

    tein

    17b-E

    2-sulf

    ate

    Bisph

    enol

    A

    E2-G

    lucuro

    nide

    NP1E

    C

    Dibuty

    l phth

    alate

    Estr

    adio

    l equ

    ival

    ents

    [ng/

    l]

    In vitroIn vivo (vitellogenin)In vivo (water snail)

    6

    Pharmaceuticals in treated wastewater

    Trim

    etho

    prim

    Sulfa

    met

    hoxa

    zole

    Rox

    ithro

    myc

    in

    Ibup

    rofe

    n

    Dic

    lofe

    nac

    Clo

    fibric

    acid

    Car

    bam

    azep

    ine

    Ate

    nolo

    l

    Sota

    lol

    Met

    opro

    lol

    Prop

    rano

    lol

    Gal

    axol

    ide

    Tona

    lide

    Iopa

    mid

    ol

    Dia

    triz

    oate

    Iom

    epro

    l0,0

    1.0

    2.0

    3.0

    4.0

    5.0

    6.0 March

    May

    September

    betablocker

    antibiotics

    diclofenac

    musk fragr.

    contrast media

    carbamazepine

    conc.in µg/L

    Ternes et al., Chemosphere 2007 360‘000 Pop. Equiv. WWTP for Nitrification/Denitrification

  • 4

    7

    EE2 0.03 ng/L < 1 ng/L (WWTPs)

    1: Suggested maximum annual average concentration

    Annual averagemeasured concentration

    in German rivers

    Diclofenac 100 ng/L 50-500 ng/L

    Environmental quality standards (EQS) of contaminants determined according to WFD

    (based on ecotoxicological data)

    1AA-EQS-S

    Source: Moltmann et al., 2007, German EPA report

    Bisphenol A 0.79 ng/L 0.5 ng/L-270 ng/L

    8

    Elimination processes in biological wastewater treatment

    • Stripping (negligible for PPCP’s)• Biological degrad./transformation

    • potential post treatment:ozonation , PAC additioncombined with filtration, (minor/no effects: UV, wetland)

    • Sorption on particulates (sludge)

    sludgedigestion

    sludgethickening

    drying, incineration,

    disposal

    screen grid / fat removal

    rawsewage

    primaryeffluent

    sludge dewatering

    second.effluent

    biogas dewateredsludge

    receivingwater

    excesssludge

    primarysludge

    post treatment: filtration, disinfection

    primaryclarifier

    second.clarifier

    biologicaltreatment

  • 5

    9

    Sorption of trace pollutants

    lipophilic cell membrane

    Bacterium

    negatively loaded surface

    HN

    N N

    F

    O O

    OH

    Adsorption of a bivalent compound(e.g. Norfloxacin) or a positevely

    loaded compound on the surfaceO

    Tonalide(AHTN)

    Absorption of a hydrophobic compound (e.g. Tonalide) in the lipophilic membrane

    10

    Compound Kd (l gSS-1) sorbed fraction (%)

    Diclofenac 0.1 3 1.5 1.5 Ethinylestradiol 0.4 11 6 6

    Tonalide 2 / 5 47 23 43

    Norfloxacin 2 / 25 38 23 79

    Sorption of micropollutants in WWTP

    Primary sludge0.15 gSS l-1

    Primary clarifier Activated sludge

    Raw wastewater0.30 gSS l-1

    Secondary sludge0.15 gSS l-1

    Sorbed concentration: Csorb = Kd · SP · CdissKd = Sorption constant [l gTSS-1] SP = sludge production [g l-1]

    =1+ Kd·SP

    Kd·SPCdiss+ Csorb

    CsorbSorbed fraction:

  • 6

    11

    Norfloxacin in WWTP Zurich (600’000 PE)mainly sorbed to sewage sludge

    51 ± 4 %Excess sludge: ca. 0.1 gTSS LWW-1

    8 ± 1 % Outlet Filter70 ± 10 %

    Primary effluent11 ± 2 %

    Second. effluent

    no biological degradation

    73 ± 11 % Digested sludgeca. 0.15 gSS L-1

    82 ± 9 % Raw sludge

    sorbeddissolved

    Inlet (~0.2 gTSS L-1)97 ±10 g d-1 = 100%

    Mechanicaltreatment

    Flocculation-filtration

    Biologicaltreatment

    Sludge treatment

    70 %30 %

    HN

    N N

    F

    O O

    OH

    +H2N

    O-

    12

    % of the equilibrium concentration in the rising gas bubble

    Stripping of volatile compounds

    0 20 40 60 80 100

    0

    1

    2

    3

    4 m

    Methane(H = 28)

    Perchlorethylen(H = 0.77)

    CO2(H = 1.07)

    Chloroform (H = 0.13)

    Fine bubble aeration

  • 7

    13

    Stripping of volatile compounds

    Stripping efficiency: ηStripping = H·qair / (1 + H·qair) ≈ H·qair

    Musk fragrance Tonalide (HTon = 0.005) => ηStripp,Ton = 10·0.005 = 0.05 (-)=> Stripping efficiency low, except for surface aeration and MBR

    Due to small Henry coefficient air bubble in equilibrium: Cair = H · Cdiss

    Mass balance: Cin = Cdiss + Cdiss·H·qair = Cdiss·(1+H·qair)

    Cair· qair = Cdiss· H · qair

    qair ≈ 6-15 m3 air m-3 wastewater

    1 m3 wastewater Aeration tank: Cdiss(fully mixed)Inlet conc. Cin

    Outlet conc. Cdiss

    14

    Pollutant is only transformed

    (no carbon source)

    Cometabolism : • Growth only with primary substrate• Enzyme system used for transformation of pollutant

    ng/lmg/l μg/lConcentration

    Pollutant is mineralized(Carbon- and

    energy source)

    Substrate growth (Pollutant = Substrate)

    Growth limitfor single substrate

    Mixed substrate• Primary substrate needed• Enzyme system used for

    degradation of pollutant

    Biological degradation or transformation

  • 8

    15

    Biological Degradation / Transformation

    Sludge age (SA)

    2 - 5 d BezafibrateSulfamethoxazoleIbuprofen

    degradable at 15°C and SAmin

    5 -15 d EthinylestradiolIopromideRoxithromycinBisphenol A

    not degradableSA < 20d Carbamazepine

    Diazepam

    Bio

    logi

    cal D

    egra

    datio

    n/Tr

    ansf

    orm

    atio

    n

    100%

    0%

    SAminimum

    16

    H O

    OO H

    H O

    Ternes et al. (1999)

    Degradation of 17β-Estradiol and Estronein batch reactor with activated sludge (0.26 g l-1)

    Time [Hours]

    C/C0 (C0 = 1μg/l)

    Kinetic 1. Order: ri = - ki·XTSS·Ci

  • 9

    17

    First order degr. constants for N-removal plants

    0.001

    0.01

    0.1

    1

    10

    100

    1000

    Azith

    romy

    cin

    Clar

    ithro

    myc

    in

    (Anh

    ydro

    -)Eryt

    hrom

    ycin

    Roxit

    hrom

    ycin

    N4-A

    cetyl

    -Sulf

    am.

    Sulfa

    meth

    oxaz

    ole(a

    )

    Sulfa

    meth

    azin

    (a)

    Diaz

    epam

    (b)

    Carb

    amaz

    epine

    (b)

    Acet

    ylsali

    cylic

    acid

    (c)

    Diclo

    fena

    c (b)

    Feno

    prof

    enIbu

    profe

    nInd

    ometa

    cine

    Napr

    oxen

    Para

    cetam

    olAT

    HDA

    MIDi

    atriz

    oate

    Iohex

    olIom

    epro

    lIop

    amido

    lIop

    rom

    ide

    Iotha

    lamic

    acid

    Ioxith

    alam

    icac

    idEs

    tradio

    l (d)

    Estro

    ne(d

    )

    Ethin

    ylestr

    adiol

    (d)

    Beza

    fibra

    teCl

    ofibr

    icac

    id

    Feno

    fibric

    acid

    Gemf

    ibroz

    ilPi

    race

    tamTo

    nalid

    e(a

    )

    Galax

    olide

    (a)

    Deg

    rada

    tion

    cons

    tant

    kbi

    o[l

    g TS

    S-1

    d-1 ]

    Antibiotics

    Antid

    epre

    ssan

    tAn

    tiepi

    lept

    ic

    Antiphlogistics Iodinated contrast agents Lipid regulators

    Noo

    tropi

    c

    Estrogens Frag

    ranc

    es

    > 90% removal

    < 10% removal

    18

    Optimal reactor konfigurationfor first order kinetic

    hydraulic retention time (HRT)

    Batch reactorCi,HRT/Ci,0 = exp (-ki·XTSS·HRT)

    First order kinetic: ri = - ki·XTSS·CiCi/Ci,0

    1.0

    0

    one fully mixed reactorCi,HRT/Ci,0 = (1+ki·XTSS·HRT)-1

    Cascade with 3 reactors Ci,HRT/Ci,0 = (1+ki·xTSS·HRT/3)-3

  • 10

    19

    Mass flux of 17α-Ethinylestradiol (g d-1)at WWTP Wiesbaden (300’000 PE)

    Primaryclarifier

    Rawwastewater

    Secondaryclarifier

    Primaryeffluent

    Secondaryeffluent

    Denit 1 Nitrification

    Primary sludge

    Digester

    Digested sludge

    Denit 2

    Secondary (excess) sludge

    dissolvedadsorbedconjugated (estimation)

    internal recirculation and return sludge

    < 0.07

  • 11

    21

    Source: Joss und Siegrist, 2005, Eawag News

    Comparison of biological degradation of biofilter and MBR with activated sludge

    SchlammalterCAS MBR11d 15d11d 30d11d >50d

    Comparison with degradation in biofilter [%]

    10 20 30 40 50 60 70 80 90 1000

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    CLAERY

    TRISMX

    0

    Sludge agecon.pl MBR11d 15d11d 30d11d >50d

    Degradation in activated sludge plant [%]For nutrient removal

    30 40 50 60 70 80 901000

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    E1

    E2

    AZI

    SPY(1)

    SPY(2)

    10 200

    Degradation in activated sludge plant [%]For nutrient removal

    Comparison with degradation in MBR [%]

    Degradation efficiency similar for plants with similar nutrient removal

    22

    reaction I/II: oxidation prim./sek. hydroxyl moietiesreaction III: cleavage of amide-methylen bond

    reaction IV: oxidative decarboxylation

    Potential aerobic degradradation pathwayof Iopromide (contrast media)

    reaction V: deacetylation

    O

    NH OHOH

    O N OHOH

    I

    NH

    OO

    I

    I O

    O

    O

    NH OHOH

    O N OHOH

    I

    NH

    OO

    I

    I

    O

    O

    NH OHOH

    O N OHOH

    I

    NH

    OO

    I

    I O

    O

    NH OHOH

    O N OHOH

    I

    NH

    OO

    I

    I

    Iopromide TP 819 (3)

    TP 805 B (2)

    TP 805 A (1)O

    NH2

    O N OHOH

    I

    NH

    OO

    I

    I O

    O

    NH OHOH

    O NH

    I

    NH

    OO

    I

    I

    O

    O

    NH OHOH

    O N OHO

    I

    NH

    OO

    I

    I O

    O

    TP 817 A (5)

    O

    NH2

    O N OHO

    I

    NH

    OO

    I

    I O

    O

    NH

    O N OHO

    I

    NH

    OO

    I

    I OOH

    O

    TP 731 B (8)

    TP 731 A (7)

    TP 729 A (4)

    TP 787 A (6)

    O

    NH2

    O N

    I

    NH

    OO

    I

    I

    OH

    O

    O

    NH

    O N

    I

    NH

    OO

    I

    IOH

    O

    OH

    O

    O

    NH

    O NH

    I

    NH

    OO

    I

    IOH

    O

    TP 701 A (11)

    TP 759 (9)

    TP 701 B (10)

    O

    NH2

    O NH

    I

    NH

    OO

    I

    I

    TP 643 (12)

    I I

    II

    III

    III

    II

    IIIV

    III

    IV

    V

    V

    V

    V

    III

    III

    IV + V

    II + IV

    II + IV

    II + IV

    IV + V

    V

    Source: Schulz et al., ES&T, 2008

  • 12

    23

    Transformation products of Iopromidein WWTP Frankfurt

    Sludge age: 20-22 d, hydraul. retention time (biol): 4-5 h, 1.3 Mill person equivalent

    Primarysludge

    Gritremoval

    Primaryclarifier sec. clarifier 1

    Return sludge

    Denitr Nitrificationsec. clarifier 2Screen

    Secondarysludge

    Secondarysludge

    2. Biological step(SA:15-20d; HRT: 4-5h)

    1. Biological step(SA: 4d; HRT: 0,5h)

    Nitrification2

    Receivingwater

    221 3

    4

    Denitr

    Iopr.TPs

    3

    0.01.02.03.04.0c [µg/L]

    Iopr.TPs

    0.01.02.03.04.0 4

    c [µg/L]

    Source: Schulz et al., ES&T, 2008

    Iopr.

    1

    0.01.02.03.04.0

    c [µg/L]Iopr.

    TPs

    2

    0.01.02.03.04.0c [µg/L]

    TPs

    24

    Transformation products of iodatedcontrast media in surface and ground water

    Conc. in µg/L

    WWTP effluent Surface water Ground water0

    2

    4

    6

    8

    Sum of 15 TPsIomeprol

    Sum of 12 TPsIopromid

    Sum of 9 TPsIopamidol

    (0.8)

    (1.7) (1.1)

    (1.2)

    (1.4) (128)

    (0.5)

    (0.7)(261)

    ( ):Conc. Σ TP Conc. ICM

    Dilution

    Transformation

    Source: Kormos et al., ES&T, in preparation

  • 13

    25

    H3C

    Transformation of CodeinTP 314, m/z 313 14-Hydroxycodeinon

    H3C

    TP 316, m/z 315 14-Hydroxycodein

    Codein

    H3C

    TP 300 (1), m/z 299 7,8-Dihydro-

    8,14-dehydrocodein

    TP 302, m/z 301 14-Hydroxy-N-

    desmethylcodein

    H3C

    TP 300(2) ?

    Dissertation: Arne Wick(ES&T in preparation)

    stabletransformationproduct

    This studies have been done in the mg/l range, in practice we have mug/l

    26

    • Cascade of reactors or SBR

    • For critical cases (low dilution in receiving water, ground water infiltration, water reuse,...) additional treatment with chemical and physical processes, e.g.:- partial ozonation, - powder activated carbon addition

    Measures at the WWTP

    • Increasing the sludge age to 10 -15 days, which meansNitrification and Denitrification

  • 14

    27

    270 20 40 60 80 100

    Atrazin

    Mecoprop

    Atenolol

    Benzotriazol

    Methylbenzotriazol

    Metoprolol

    Sulfamethoxazol

    Clarithromycin

    Carbamazepin

    Sulfapyridin

    Trimethoprim

    Diclofenac

    Eliminiation (%)

    966 +/- 271617 +/- 47396 +/- 63

    Effect of ozone concentr. on elimination efficiency (0.4-1.0 gO3/gDOC = 2-5 gO3/m3)

    Calculation: 100 – 100 *cafter ozonation/ csecondary effluent Ozone in g/kg DOC

    O

    O

    CH3

    CH3

    O

    O

    H3C

    HOOH

    O

    H3C

    CH3

    O

    O OH

    OCH3

    NHO

    O

    ONNH

    SH2N

    O

    O

    Full-scal plant Regensdorf

    28

    PAC addition to secondary effluent, contacttank and additional sedimentation

    Pilot plant EawagAll elimination rates referring to primary effluent

    0%

    20%

    40%

    60%

    80%

    100%

    Sulfamethoxazol

    Benzotriazol

    Atenolol

    Diclofenac

    Carbamazepin

    Clarithromyzin

    Mefenaminsäure

    5-Methyl-Benzotriazol

    Ranitidin

    Venlafaxin

    DHHPrimidon

    Codein

    Oxazepam

    Iopamidol

    Iopromid

    Iohexol

    Diatrizoat

    Ibuprofen

    Naproxen

    Bezafibrat

    10 mgPAC/l without PAC-recycling to biology (Pilot: 8.8 mgDOC/l; Ref: 8.4 mgDOC/l)10 mgPAC/l with PAC-recycling to biology (Pilot: 7.4 mgDOC/l; Ref: 8.9 mgDOC/l)

    withoutwith

  • 15

    29

    Mass flux model SwitzerlandModeling of Diclofenac in Swiss rivers

    Elimination in WWTP

    Load per WWTP

    25%

    Behavior in receiving waters 175 μg Ed-1

    Consumption, sales data Switzerland

    Parent compound to sewer

    Load per inhabitant

    16%

    235 μg d-1

    4000 kg a-1

    30

    Diclofenac

    In Fliessgewässerproben gemessen [g/d]

    Grö

    sse

    Ein

    zugs

    gebi

    et [E

    ]

    1 2 5 10 20 50 100 200

    1

    2

    5

    10

    20

    50

    100

    200

    10'000

    20'000

    50'000

    100'000

    200'000

    500'000

    1'000'000

    1:1

    ×2

    ÷2

    Measured loads in rivers [g/d]

    Pred

    icte

    dlo

    ads

    [g/d

    ]

    Cat

    chm

    ent s

    ize

    [# in

    hab.

    ]

    Model • Sale DCF: 4000kg/a 1 • *Excretion DCF: 16% unchanged 2• Elimination DCF WWTP: Ø 25% 3 • Degradation DCF in natural water bodies: none (rivers), full elimination (lakes) 41 IMS Health AG (2000+2004) 2 Lienert et al. (20067) 3 Ternes and Joss (2006) 4 Buser et al. (1998)

    Diclofenac Prediction versus Measurements

    **

  • 16

    31[μg/L]

    < 0.001

    0.001 - 0.01

    0.01 - 0.1

    0.1 - 1

    > 1

    no Q95% available

    discharge to lake

    downstream of125 WWTP**(15% of total pe)

    Diclofenac: Concentrations in Swiss rivers(based on consumption data and Q95% river flow)

    5 PNECDCF

    Similar results for other compounds/effects: Carbamazepin, Sulfamethoxazole, Diazinon, estrogenic activity, …(Ort et al. (2009) Environ. Sci. Technol., 43, 3214–3220)

    32

    Conclusions

    • Micropollutants are eliminated in WWTP mainly by sorption and biological degradation or transformation

    • Elimination of a lot of trace pollutants is insufficient even athigh solid retention times (sludge ages)

    • Losses to surface water by combined sewer overflows (1-2%) and exfiltration from sewer (3-8%) to groundwater

    • Additional measures are required for critical cases (low dilution of wastewater in receiving waters, substantial infiltration to groundwater and reuse of treated wastewater)

    • Advanced processes (e.g. ozone and PAC addition) have been successfully tested in pilot and full-scale and are available for an acceptable price in comparison to overall treatment cost.

  • 17

    33

    Thank you for your attention

    The results of this presentation are based on the work in:

    EU Neptune project (Contract No 036845, SUSTDEV-2005-3.II.3.2), which was financially supported by grants obtained from the EU Commission within the Energy, Global Change and Ecosystems Program of the Sixth Framework (FP6-2005-Global-4).

    EU project Poseidon (EVK1-CT-2000-00047) which was financially supported by grants obtained from the EU Commission within the Fifth Framework Programme and

    Swiss national project MicroPollSchweizerische EidgenossenschaftConfédération suisseConfederazione SvizzeraConf ederaziun svizra