fatima deliverable d221 v2 2 0 (004)fatima-h2020.eu/wp-content/uploads/2015/07/633945... · d2.2.1:...

28
D2.2.1: Methodology for dense high resolution EO time series, gap filled WP2.2 Time Series of satellite data from multiple satellites in near real time Guido D’Urso, Carlo De Michele (Ariespace) with inputs from Francesco Vuolo, BOKU and Jesús Garrido, UCLM This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 633945. Ref. Ares(2015)5467399 - 30/11/2015

Upload: others

Post on 22-Oct-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

  •  

     

     

     

     

    D2.2.1:  Methodology  for  dense  high-‐resolution  EO  time  series,  gap  filled  WP2.2-‐  Time  Series  of  satellite  data  from  multiple  satellites  in  near  real  

    time  

    Guido  D’Urso,  Carlo  De  Michele  (Ariespace)  

    with  inputs  from  Francesco  Vuolo,  BOKU  and  Jesús  Garrido,  UCLM    

     

     

     

     

     

     

     

     

     

    This  project  has  received  funding  from  the  European  Union’s  Horizon  2020  research  and  innovation  programme  under  grant  agreement  No  633945.  

    Ref. Ares(2015)5467399 - 30/11/2015

  • D2.2.1: Methodology for dense high-resolution EO time series, gap filled  

    27/11/2015   V2.2  

     

    2  |  28  

    Document  Information  

    Grant  Agreement  Number   633945   Acronym   FATIMA  Full  Title  of  Project   Farming  Tools  for  external  nutrient  inputs  and  water  Management  Horizon  2020  Call   SFS-‐02a-‐2014:  External  nutrient  inputs  (Research  and  innovation  Action)  Start  Date   1  March  2015   Duration   36  months  Project  website   www.fatima-‐h2020.eu  Document  URL   (insert  URL  if  document  is  publicly  available  online)  REA  Project  Officer   Aneta  RYNIAK  Project  Coordinator   Anna  Osann  Deliverable   D2.2.1  Methodology  for  dense  high-‐resolution  EO  time  series,  gap  filled  

    Work  Package   WP2.2  –  EO  for  monitoring  plant  status  and  yield  

    Date  of  Delivery   Contractual   30  November  2015     Actual   30  November  2015  Nature   R  -‐  Report   Dissemination  Level   PU  Lead  Beneficiary   04_ARIESPACE  Lead  Author   Guido  D’Urso  (ARIESPACE)   Email   durso@unina,it  

    Contributions  from    

    internal  Reviewer  1   Ali  Gul  (EA-‐TEK)  Internal  Reviewer  2   Nicos  Spyropulos  (SIGMA)  Objective  of  document   To   describe   the  methodology   for   deriving   dense   time   series   from  multi-‐

    sensors   (operated  as   in  a  virtual  constellation  of  available  satellites).  E.O.  data  and  related  products   (from  Vegetation   index   to  canopy  parameters)  to   reduce   the   impact   of   noise,   cloud   cover,   missing   data   (including  Landsat7ETM+SLC-‐off)   and   to   derive   smooth   curves   at   regular   temporal  intervals    

    Readership/Distribution   All  FATIMA  Regional  Teams;    All  WP  leaders  and  other  FATIMA  team  members;    European  Commission  /  REA  

    Keywords   Forecast,  EO  time  series,  gap  filling,  remote  sensing,  monitoring  data,  crop  growth  model  

     

    Document  History  

    Version   Issue  Date   Stage   Changes   Contributor  1.0   3/8/2015   draft   Main  structure  and  contents   G.  D’Urso  

    1.1   16/9/2015   draft   New  contents   F.Vuolo  

    1.2   18/9/2015   draft   Figure  and  bibliography  adjustments  

    G.  D’Urso  

    2.0   19/11/2015   draft   Text  revise  for  crop  growth  models   G.  D’Urso  

    2.1   24/11/2015   draft   Text  revised  for  reviewers  comments  

    G.  D’Urso  

    2.2   27/11/2015   Final  draft   Contribution  from  Garrido  included   G.D’Urso  

     

  • D2.2.1: Methodology for dense high-resolution EO time series, gap filled  

    27/11/2015   V2.2  

     

    3  |  28  

    Disclaimer  

    Any  dissemination  of  results  reflects  only  the  authors’  view  and  the  European  Commission  is  not  responsible  for  any  use  that  may  be  made  of  the  information  it  contains.  

     Copyright  

    ©  FATIMA  Consortium,  2015  This  deliverable  contains  original  unpublished  work  except  where  clearly  indicated  otherwise.  Acknowledgement  of  previously  published  material  and  of  the  work  of  others  has  been  made  through  appropriate  citation,  quotation  or  

    both.  Reproduction  is  authorised  provided  the  source  is  acknowledged.  Creative  Commons  licensing  level    

    Executive  summary  

    This  Deliverable   aims   at   describing   the  methodology   for   the   derivation   of   dense   time   series   from  multi-‐

    sensors  Earth    Observation  (EO.)  data  and  related  products  (from  Vegetation  Index  to  canopy  parameters)  

    to   reduce   the   impact   of   noise,   cloud   cover,  missing   data   (including   Landsat7ETM+SLC-‐off)   and   to   derive  

    smooth  curves  at  regular  temporal  intervals.  The  procedure  to  be  implemented  in  FATIMA  should  take  into  

    account   current   (e.g.,   Landsat,   Spot,   Deimos,   RapidEye,   Formosat,   WorldView-‐2)   and   new   platforms  

    (including  Sentinel-‐2).   In  an  operational   system,  some  of   the  main  constraints  are   the  amount  of  data   to  

    deal  with  and  the  management  of  cloud-‐cover.  Previous  experience  has  shown  that  even  with  a  five-‐  days  

    period  of   return,  some  areas  won’t  will  not   receive  enough  data  to   follow  crop  development.  Gap   filling,  

    interpolation  and  above  all,  extrapolation,  while  the  system  is  waiting  for   incoming  data,  are  needed.  We  

    will  examine  the  various  aspects  of  data  lacks  and  gaps  and  implement  procedures  to  fill  them.  

  • D2.2.1: Methodology for dense high-resolution EO time series, gap filled  

    27/11/2015   V2.2  

     

    4  |  28  

    Table  of  Contents  Executive  summary  ...........................................................................................................................................  3  

    1   Problem  statement  ...................................................................................................................................  6  

    2   Methodologies  for  gap  filling  and  interpolation  of  existing  E.O.  data  and  related  products  ....................  7  

    3   Methodologies  for  the  extrapolation  of  E.O.  data  and  related  products  (forecast)  ...............................  22  

    3.1   Forecast  based  on  curve  fitting  .......................................................................................................  22  

    3.2   Forecast  based  on  crop  growth  model  ............................................................................................  23  

    References  ......................................................................................................................................................  26  

     

    List  of  Tables  Table  1  :  Summary  of  methods  considered  in  the  present  study  .....................................................................  8  Table  2    -‐  Parameters  of  Whittaker  Smoother  function  ..................................................................................  14    

    List  of  Figures  Figure  1    -‐   By   combining   data   from   different   sensors,   differently   affected   by   various   deteriorating  processes,   we   aim   at   creating   a   radiometrically   uniform   multi-‐spectral   product   with   proper   spectral  signatures  and  realistic  time  profiles.  ...............................................................................................................  7  Figure  2    -‐  Test  for  the  interpolation  procedure  in  Castilla-‐La  Mancha  [31]  ...............................................  9  Figure  3    -‐   Comparison  between  actual   and   interpolated  values  of  NDVI   for   an   irrigated   summer   crop  and  for  alfalfa  [adapted  from  31].  ...................................................................................................................  10  Figure  4    -‐  Dense  time  serie  of  NDVI  derived  with  INTERPOLA  for  an  irrigated  summer  crop  [31].  .........  10  Figure  5    -‐  Temporal  profiles  of  forest  raw  MODIS  NDVI  data  over  8-‐yeas  ...............................................  11  Figure  6  -‐  TIMESAT  software  with  sample-‐time  series  ....................................................................................  12  Figure  7  -‐  Asymmetric  Gaussian  function  ........................................................................................................  12  Figure  8  -‐  Savitzky  –  Golay  Filter  .....................................................................................................................  13  Figure  9  -‐  Number  of   iteration  for  the  upper  envelope  fitting  on  MODIS  NDVI  data  (Whittaker  filtering  by  means  of  R  package).  ......................................................................................................................................  16  Figure  10  -‐  Scatter  plots  of  Landsat  CDR  and  surface  reflectance  data  (corrected  at  BOKU)  corresponding  to  Landsat   bands   1–5   and   7   (Blue,   Green,   Red   NIR,   SWIR-‐1   and   SWIR-‐2,   respectively)   for   a   set   of   satellite  observations   acquired   over   different   seasons   over   the   Austrian   pilot   area.   The   broken   lines   show   the  ordinary  least  squares  linear  regression  fits  [26].  ...........................................................................................  17  Figure  11   -‐  Two  examples  of  pixel-‐based  Landsat   time  series   for   the  near-‐infrared  spectral  band.  The  red  dots   represent   the  high  quality   observations;   the   green   crosses   represent   the   lower  quality   observation;  the  red  line  is  the  resulting  filtered  and  gap  filled  series.  ...............................................................................  17  Figure   12   -‐   Times   series   of   smoothed   and   gap   filled   data   of  Marchfeld   (Austria)   for   the   year   2009.   The  temporal  resolution  between  gap-‐filled  output  data  is  15-‐days.  ...................................................................  18  Figure  13  -‐  Times  series  of  smoothed  and  gap  filled  data  of  Barrax  (Castilla  la  Mancha,  Spain)  for  the  year  2003.  The  temporal  resolution  between  gap-‐filled  output  data  is  15-‐days.  ...................................................  19  

  • D2.2.1: Methodology for dense high-resolution EO time series, gap filled  

    27/11/2015   V2.2  

     

    5  |  28  

    Figure  14  -‐  Example  of  a  time  series  (2009-‐2015,  15-‐days)  for  four  vegetation  indices  (left)  calculated  from  the   smoothed/gap-‐filled   reflectance   (right,   only   near-‐infrared   band   is   shown);   Austrian   pilot   area   of  Marchfeld,  one  pixel  randomly  selected  representing  a  forest  land  cover  type.  ...........................................  20  Figure  15   -‐  An  example  of  a   time  series   (2002-‐2015,  15-‐days)   for   four  vegetation   indices   (left)   calculated  from  the  smoothed/gap-‐filled  reflectance  (right,  only  near-‐infrared  band  is  shown);  Spanish  pilot  area.  one  pixel  randomly  selected  representing  agricultural  land  cover  type  ................................................................  21  Figure  16  -‐  Crop  growth  and  NDVI  for  wheat  (Calera,  presentation  at  Mammamia45  conference,  Enschede  (NL),  June  2015).  .............................................................................................................................................  22  Figure  17  –  Linear  extrapolation  of  the  crop  coefficient  Kc(NDVI)  and  prediction  of  the  reference  ET0  from  air  temperature  data  [32].  ...................................................................................................................................  23  Figure  18  -‐  Crop  growth  model  schematisation  ..............................................................................................  24  Figure  19   -‐Ensemble  LAI   forecasted  with  a   lead   time  of  5  days  compared  with  observed  values   indirectly  estimated  from  VIS-‐NIR  satellite  images  [16]  .................................................................................................  25    

       

  • D2.2.1: Methodology for dense high-resolution EO time series, gap filled  

    27/11/2015   V2.2  

     

    6  |  28  

    1 Problem  statement  This   activity   in   FATIMA   includes   the   development   of   the  methodology   to   derive   dense   time   series   from  

    multi-‐sensors  (operated  as  in  a  virtual  constellation  of  available  satellites).  E.O.  data  and  related  products  

    (from  Vegetation  Index  to  canopy  parameters)  can  be  filtered  to  reduce  the  impact  of  noise,  cloud  cover,  

    missing  data   (including  Landsat7ETM+SLC-‐off)  and   to  derive  smooth  curves  at   regular   temporal   intervals.  

    The  procedure  to  be  implemented  in  FATIMA  should  take  into  account  current  (e.g.,  Landsat,  Spot,  Deimos,  

    Geoeye,   RapidEye,   Formosat,  World   View   2)   and   new  platforms   (including   Sentinel-‐2).   In   an   operational  

    system,  some  of  the  main  constraints  are  the  amount  of  data  to  deal  with  and  the  management  of  cloud-‐

    cover.   Previous   experience   has   shown   that   even   with   a   five-‐day   period   of   return,   some   areas   will   not  

    receive   enough   data   to   follow   crop   development.   Gap   filling,   interpolation   and   above   all,   extrapolation,  

    while   the   system   is   waiting   for   incoming   data,   are   needed.   The   present   document  will   examine   various  

    aspects  of  data  lacks  and  gaps  and  implement  procedures  to  fill  them.Two  main  different  problems  can  be  

    distinguished:  

    1 gap  filling  and  interpolation  of  existing  E.O.  data  and  related  products;  

    2 extrapolation  of  E.O.  data  and  related  products  (forecast).  

    The  problem  of   type  1),   illustrated   in  Figure  1,  has  been  extensively   studied  and   there  are  several  useful  

    methodologies   that   just   need   to   be   evaluated   in   each   particular   case,   ranging   from  mosaicking   to  more  

    complex  pixel-‐based  compositing  and  data  fusion  [17,  18,  19,  20,  22,  23,  24,  25].  The  techniques  have  been  

    mainly   developed   for   smoothing   time   series   of   vegetation   indexes   such   as   NDVI,   but   they   can   be   easily  

    applied   also   to   surface   reflectance   data   and   crop   related   products,   such   as   LAI,  Kc,   fractional   vegetation  

    cover.  In  this  case,  the  same  techniques  are  applied  for  smoothing  and  for  gap-‐filling  problems.  In  addition,  

    available  techniques  do  not  differ  when  applied  to  reflectance  data  or  derived  products.  However,  most  of  

    them   have   been   tested   for   low-‐medium   spatial   resolution   data   i.e.   AVHRR,  MODIS,   Spot   Veg.,   but   few  

    applications  exist  for  finer  resolution  data  (Landsat-‐like  or  better),    

    Diversely,  the  problem  of  type  2)  needs  to  some  extent  a  forecast  of  crop  growth,  and  for  this  reason  it  can  

    be  more   easily   afforded   by   looking   at   the   possible   evolution   of   crop   parameters,   based   on   crop   growth  

    models.  Forecasting  surface  reflectance  or  vegetation  indexes  is  certainly  more  difficult  and  inaccurate.    

    One  major  output  of  these  activities  will  be  the  assessment  of  uncertainties  associated  with  the  elaboration  

    of  each  product  and  the  applicability  conditions.  

     

  • D2.2.1: Methodology for dense high-resolution EO time series, gap filled  

    27/11/2015   V2.2  

     

    7  |  28  

     

    Figure  1    -‐  By  combining  data  from  different  sensors,  differently  affected  by  various  deteriorating  processes,  we   aim   at   creating   a   radiometrically   uniform  multi-‐spectral   product  with   proper   spectral   signatures   and  realistic  time  profiles.  

    2 Methodologies  for  gap  filling  and  interpolation  of  existing  E.O.  data  and  related  products  

    There   are   several   methods   of   interpolation   for   time-‐series   of   vegetation   indexes   or   surface   reflectance  

    values.  Four  major  classes  of  methods  (Table  1)  might  be  considered:    

    1. slope  methods,  including  the  best  index  slope  extraction  technique  (BISE);    

    2. filter-‐based  methods,   including   the  Savitzky-‐Golay   filter   technique  and   its   variants,   and   the  mean  

    value  iteration  filter;    

    3. function  fitting  methods,  such  as  the  Asymmetric  Gaussian  fitting  and  the  harmonic  analysis  of  time  

    series  (HANTS);    

    4. smoothing  techniques,  i.e.  the  Whittaker  smoother.  

    Comparisons   of   these   techniques   have   been   carried   out   in   several   case-‐studies,   by   using   different  

    indicators  of  performance.  Each  method  has  its  own  advantages  and  drawbacks,  see  for  example  [12].  New  

    techniques   have   been   proposed   in   recent   years,   and   in  many   cases   there   is   not   a   rigorous   comparative  

    analysis  with  other  techniques.  Almost  all  comparisons  have  been  based  on  one  sensor.    

    Besides   the  choice  of   the  algorithm,   it   is   important   in   the  context  of  FATIMA  to  consider  which  tools  are  

    available   for   performing   these   analyses.     For   this   reason,   within   the   categories   given   in   Table   1,   the  

    following  techniques  are  considered  for  operational  implementation  in  the  context  of  FATIMA:  

  • D2.2.1: Methodology for dense high-resolution EO time series, gap filled  

    27/11/2015   V2.2  

     

    8  |  28  

    a) Filter  techniques  based  on  the  Savitzky-‐Golay  algorithm  and  its  variants  [3];  

    b) The  Whittaker  smoother  [2].  

    These  methods  can  be  implemented  in  Matlab  and  in  the  open-‐source  software  package  R;  a  software  with  

    GUI  is  also  available,  named  TIMESAT,  developed  by  Lund  University.  

    Table  1  :  Summary  of  methods  considered  in  the  present  study  

    Category   Method   Description   Reference  

    1)  Slope  Interpol.  Best-‐Index  

    slope  extraction  technique  

    Compares   the  current   term  value  with   the  previous  and   the  next   term  within   a   predefined   sliding  window,   and   replaces  these   values   with   the   mean   value   of   the   previous   and   the  next   values   if   the   percentage   difference   is   greater   than   a  predefined  threshold  (20%).  

    [13]  

    2)  Filter  based  

    Savitzky-‐Golay  and  its  variants  

    Local  polynomial  fitting  of  the  upper  envelope  of  data  series,  based  on  two  parameters:  the  length  of  the  temporal  window  used  and   the  order  of   the  polynomial.  As  proposed  by  Chen  et   al.   (2004),   the   values   of   these   parameters   have   to   be  optimized   for   each   case   to   get   the   best   match   between  observations  and  reconstructed  values.  In  newer  variants,  the  temporal  window  may  be  asymmetric  and  variable  in  length.  

    [3]  

    Mean  value  iteration  

    Iteratively  compares  each  date  with  the  average  of  the  dates  before  and  after  it,  replacing  the  date  with  this  average  if  the  difference   is   above   a   certain   threshold.   The   maximum  difference  date  value  will  be  removed  in  an  iteration  process.  Iteration   will   stop   when   all   differences   are   less   than   the  threshold.  

    [14]  

    3)  Function  

    fitting  

    Asymmetric  Gaussian  fitting  

    Fits   local,   nonlinear   functions   at   intervals   around   the   local  maxima  and  minima,  then  merges  these  into  a  global  function  describing  the  full  NDVI  time  series.  

    [10]  

    Fast  Fourier  and  Harmonic  analysis  (HANTS)  

    Time  series  are  decomposed  into  sum  of  sinusoidal  functions;  once   derived   phase   and   amplitudes,   these   parameters   are  used  for  reconstructing  and  analyzing  the  data  set.   [15]  

    4)  Smoothing   Whittaker  smoother  

    Based   on   “penalized”   least   squares   regression,   it   fits   a  discrete   series   to   discrete   data   and  penalizes   the   roughness  of  the  smooth  curve.  In  this  way,  it  balances  the  reliability  of  the  data  and  roughness  of  the  fitted  data.  

    [2]  

     

    The  procedure  “INTERPOLA”  developed  at  the  University  of  Castilla-‐La  Mancha  by  Garrido  et  al.  [31]  is  an  

    example   of   the   first   class   of   methods   “Slope   interpolation”.   The   algorithm   is   based   on   the   following  

    equation:  

  • D2.2.1: Methodology for dense high-resolution EO time series, gap filled  

    27/11/2015   V2.2  

     

    9  |  28  

    ( )( )

    ( )001

    010 xx

    xxyyyy −

    −+=  

       

    where  :    § y:  interpolated  image  pixel  value  § y0:  pixel  value  on  the  Julian  day  x0  (first  valid  acquired  image)  § y1:  pixel  value  on  the  Julian  day  x1  (second  valid  acquired  image)  § x:  Julian  day  of  the  interpolated  image  § x0:  Julian  day  of  the  first  valid  acquired  image  § x1:  Julian  day  of  the  second  valid  acquired  image.    

    This  algorithm  can  be  used  to  replace  clouds  or  shadows,  or  an  interely  missing  acquisition,  and  it  can  be  

    applied  either  to  reflectance  either  to  derived  products  (i.e.  Kc).  The  procedure  has  been  validated  by  using  

    Landsat  images  over  an  area  in  Castilla-‐La  Mancha,  falling  within  the  overlap  between  the  orbits  paths  no.  

    199  and  200  (row  33).  Hence  an  interpolated  image  has  been  generated  between  two  consecutive  Landsat  

    acquisitions   (path   199)   and   compared,   for   the   overlapping   portion,   with   the   acquisition   over   path   200  

    (fig.2);  hence  the  time  difference  (x1-‐x0)  was  16  days,  and  the  interpolated  image  was  in  the  middle  of  this  

    interval.      

     

    Figure  2    -‐  Test  for  the  interpolation  procedure  in  Castilla-‐La  Mancha  [31]  

     

    The   results   of   the   comparison   are   shown   in   the   plots   of   fig.3,   and   they   are   particularly   satisfactory   for  

    irrigated  crops  like  maize  (R2=0.90);  diversely,  cuttings  falling  between  the  two  acquisitions  on  days  x0  and  

    x1   introduce   a   large   error   in   the   interpolation.   For   crops   which   growth   follows   a   monotonic   curve,   the  

    interpolation  procedure   is  able  of  producing  series  of   images  at   interval  of  7  days  or  better,  as   shown   in  

    fig.4  for  a  typical  irrigated  summer  crop.  

     

    yoxo

    x

    x1

    Tiem

    po

    y1

    Análisis y evaluación

    y

    Imagen real -- (199-033)Imagen real -- (199-033)Imagen interpolada -- (199-033)Imagen real -- (200-033)Zona de solape y validación

    yoyoyoxo

    x

    x1

    Tiem

    po

    xo

    x

    x1

    Tiem

    po

    y1y1

    Análisis y evaluación

    yyy

    Imagen real -- (199-033)Imagen real -- (199-033)Imagen interpolada -- (199-033)Imagen real -- (200-033)Zona de solape y validación

  • D2.2.1: Methodology for dense high-resolution EO time series, gap filled  

    27/11/2015   V2.2  

     

    10  |  28  

     Figure  3    -‐  Comparison  between  actual  and  interpolated  values  of  NDVI  for  an  irrigated  summer  crop  and  for  alfalfa  [adapted  from  31].    

     

    Figure  4    -‐  Dense  time  serie  of  NDVI  derived  with  INTERPOLA  for  an  irrigated  summer  crop  [31].  

     

    In  the  case  of  long  time  series,  or  for  crop  growth  curves  which  may  divert  from  a  monotonic  behaviour  it  is  

    needed  to  adopt  more  complex  procedures,  included  in  the  categories  2)  to  4)  of  Tab.1.  

    To  this  aim,  considering  the  complexity  of  operations  to  be  performed,  two  different  software  packages  

    can  be  considered  as  candidates  for  utilization  in  FATIMA.    

    The  first  one   is  TIMESAT,  software  originally   intended  for  handling  noisy  time-‐series  of  AVHRR  NDVI  data  

    and  to  extract  seasonality  information  from  the  data.  The  current  version  of  the  program  has  the  capability  

    of  handling  different   types  of   remotely   sensed   time-‐series,  e.g.  data   from  Terra/MODIS  at  different   time  

    resolutions.  The  data  analysis  can  be  carried  out  by  means  of  Savitzky-‐Golay  filter  (Chen  et  al.,  2004).  The  

    link  for  downloading  the  software  (registration  required)  and  further  descriptions  can  be  found  at:  

    0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

    0,1

    0,2

    0,3

    0,4

    0,5

    0,6

    0,7

    0,8

    0,9

    Regadío de Verano

    Med

    ia N

    DV

    I, Im

    agen

    Inte

    rpol

    ada

    para

    el 0

    1-07

    -04,

    en

    tre la

    s im

    ágen

    es d

    el 2

    6-06

    -04

    y 10

    -07-

    04

    Media NDVI, Imagen Real del 01-07-04Media NDVI, Imagen Real

    Med

    ia N

    DV

    I, Im

    agen

    Inte

    rpol

    ada

    0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

    0,1

    0,2

    0,3

    0,4

    0,5

    0,6

    0,7

    0,8

    0,9

    Regadío de Verano

    Med

    ia N

    DV

    I, Im

    agen

    Inte

    rpol

    ada

    para

    el 0

    1-07

    -04,

    en

    tre la

    s im

    ágen

    es d

    el 2

    6-06

    -04

    y 10

    -07-

    04

    Media NDVI, Imagen Real del 01-07-04Media NDVI, Imagen Real

    Med

    ia N

    DV

    I, Im

    agen

    Inte

    rpol

    ada

    0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

    0,1

    0,2

    0,3

    0,4

    0,5

    0,6

    0,7

    0,8

    0,9

    Alfalfa

    Med

    ia N

    DV

    I, Im

    agen

    Inte

    rpol

    ada

    para

    el 0

    1-07

    -04,

    en

    tre la

    s im

    ágen

    es d

    el 2

    6-06

    -04

    y 10

    -07-

    04

    Media NDVI, Imagen Real del 01-07-04Media NDVI, Imagen Real

    Med

    ia N

    DV

    I, Im

    agen

    Inte

    rpol

    ada

    0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

    0,1

    0,2

    0,3

    0,4

    0,5

    0,6

    0,7

    0,8

    0,9

    Alfalfa

    Med

    ia N

    DV

    I, Im

    agen

    Inte

    rpol

    ada

    para

    el 0

    1-07

    -04,

    en

    tre la

    s im

    ágen

    es d

    el 2

    6-06

    -04

    y 10

    -07-

    04

    Media NDVI, Imagen Real del 01-07-04Media NDVI, Imagen Real

    Med

    ia N

    DV

    I, Im

    agen

    Inte

    rpol

    ada

    0

    0,1

    0,2

    0,3

    0,4

    0,5

    0,6

    0,7

    0,8

    0,9

    0 50 100 150 200 250 300 350DoY

    Val

    ores

    de

    ND

    VI

    NDVI Real - R.VeranoNDVI Interpolado - R.Verano

  • D2.2.1: Methodology for dense high-resolution EO time series, gap filled  

    27/11/2015   V2.2  

     

    11  |  28  

    http://web.nateko.lu.se/timesat/timesat.asp  

    It   is  possible   to   load   into  TIMESAT  time  series  of   image  data  and  plot   temporal  profiles  pixel  by  pixels  as  

    shown  in  Figure  5.  

     

    Figure  5    -‐  Temporal  profiles  of  forest  raw  MODIS  NDVI  data  over  8-‐yeas  

     

    The  interface  of  TIMESAT  appears  as  follows;  the  first  step  is  the  removal  of  cutoffs  (spikes)  has  shown  in  

    the  Figure  6.  Spikes  and  outliers  removal  is  important  to  avoid  seriously  degrading  in  the  final  function  fits.  

    In   the   interface   box,   the   low   amplitudes   means   that   only   time   series   with   an   amplitude   higher   than   a  

    certain   value   are   processed.   This  makes   sure   that   uninteresting   time   series  with   low   variation  were   not  

    processed.    

    The   Seasonal   fit   means   the   choice   of   the   function   or   filter   technique.   They   are   the   Double   Logistic   or  

    asymmetric  Gaussian  (AG)  functions  (Figure  7)  and  the  Savitzky-‐Golay  (SG)  filter  (Figure  8).    

     

  • D2.2.1: Methodology for dense high-resolution EO time series, gap filled  

    27/11/2015   V2.2  

     

    12  |  28  

     

    Figure  6  -‐  TIMESAT  software  with  sample-‐time  series  

     

     

    Figure  7  -‐  Asymmetric  Gaussian  function  

     

     

  • D2.2.1: Methodology for dense high-resolution EO time series, gap filled  

    27/11/2015   V2.2  

     

    13  |  28  

     

    Figure  8  -‐  Savitzky  –  Golay  Filter  

     

    Envelope   adaption   involves   the   fitting   of   the   data.  No.   of   fitting   steps  means   the   adaption   to   the   upper  

    envelope,  which  is  realistic  because  most  noise  in  NDVI  data  is,  even  for  clear  data,  negatively  biased.  It  was  

    set  to  ‘3’.  Adaption  strength  is  set  to  ‘1’  and  the  SG  window  size:  ‘4  5  6’  (the  higher  the  numbers  the  greater  

    the  gliding  window,  meaning  an  increased  smoothing  but  probably  less  accuracy).    

    It  should  be  noted  that  the  filtering  parameters,  once  defined,  are  fixed  for  the  entire  image.  

     

    The   second   procedure   is   based   on   the   R   software   package,   which   is   a   programming   environment   for  

    statistical   computing   and   graphics,   providing   also   a   wide   variety   of   techniques,   including   filtering   and  

    smoothing.  R  is  available  as  Free  Software  under  the  terms  of  the  Free  Software  Foundation’s  GNU  General  

    Public  License  in  source  code  form.  The  installation  package  can  be  downloaded  from  the  following  link:  

    http://www.inside-‐r.org/download/cran  

    R  includes  among  others  the  Whittaker  smoother.  Reference  and  sample  script  can  be  found  at:  

    http://www.inside-‐r.org/packages/cran/pracma/docs/whittaker  

    It  has  been   shown   that  Whittaker  performs  well   against   a  number  of  other   filters  based  either  on   curve  

    fitting   or   Fast   Fourier   transform   (FFT)   [5]   and   it   can   be   considered   as   the   method   allows   filtering   data  

    without  information  on  pixel  quality  [1,2].  In  [1],  it  was  shown  that  this  filter  permits  a  significant  increase  

    in  the  signal-‐to-‐noise  ratio  (SNR)  of  coarse  resolution  VI  time  series.  Besides  VI  usefulness  information,  the  

    smoother  also  takes  into  account  land/water  mask  layers  of  the  VI  Quality  Assessment  Science  Data  Set  [9].  

    This  method  is  based  on  two  assumptions  [3]:  

  • D2.2.1: Methodology for dense high-resolution EO time series, gap filled  

    27/11/2015   V2.2  

     

    14  |  28  

    i. that  the  time-‐series  of  vegetation  index  follows  an  annual  cycle  of  growth  and  decline  as  the  index  

    is  primarily  related  to  vegetation  density  and  plant  vigor;  

    ii. that   clouds   and   poor   atmospheric   conditions   produce   a   negative   bias   in   the   vegetation   index  

    values,  requiring  that  sudden  drops  in  vegetation  index,  which  are  not  compatible  with  the  gradual  

    process  of  vegetation  change,  are  regarded  as  noise  and  will  be  removed.    

    The   Whittaker   smoother   family   was   firstly   presented   by   Whittaker   in   1923   for   life   tables,   based   on  

    penalized  least  squares.  These  ideas  were  revived  by  Paul  Eilers,  Leiden  University,  in  2003.  This  approach  is  

    also  known  as  Whittaker-‐Henderson  smoothing.    

    Whittaker  smoother  is  based  on  penalized  least  squares,  fits  a  discrete  series  to  discrete  data  and  penalizes  

    the  roughness  of  the  smooth  curve.  In  this  way,  it  balances  the  reliability  of  the  data  and  roughness  of  the  

    fitted  data.  The  smoother  takes  a  time  series  of  observations  together  with  some  parameters  and  outputs  

    the  filtered  time  series.  Whittaker  filter  for  smoothing  multi-‐temporal  satellite  sensor  observations  with  the  

    ultimate  purpose  of  deriving  an  appropriate  annual   vegetation  growth  cycle  and  estimating  phenological  

    parameters  reliably.    

    Diversely   from  other  methods,   the  Whittaker  adapt   the   filtering   to  each   single  pixel  within   the   image,  

    thus  providing  the  maximum  adaptability  to  image  itself.  

     

    Table  2    -‐  Parameters  of  Whittaker  Smoother  function  

    Lambda  smoothing   parameter.   Allowed   are   (non-‐integer)   values   >   0  (scalar)  

    Weights   weights  (0  ...  1)  used  for  weighting  the  time  series  to  be  filtered  

    n°iter   scalar,  indicating  the  number  of  iterations  to  be  performed  

    Order   scalar  (integer)  order  of  differences  (default  =  2).  

    min  val   scalar,  indicating  which  values  in  the  input  time  series  are  valid  

    max  val   scalar,  indicating  which  values  in  the  input  time  series  are  valid  

    min  length  

    minimum   number   of   valid   observations   in   for   that   a   filtering   is  performed  

    miss  val  scalar,  used   to   indicate  which  values   in   the   input   time   series  are  invalid  

     

       

  • D2.2.1: Methodology for dense high-resolution EO time series, gap filled  

    27/11/2015   V2.2  

     

    15  |  28  

     

    BOX  1:  Main  Parameters  of  the  Whittaker  Smoother  in  R  

     

    The  smoothing  parameter  (λ)    

    The   smoothing   parameter   (λ)   of   the   Whittaker   smoother   determines   the  roughness   of   the   smoothed   curve.   For   the   back-‐processing   can   be   fixed,   after  some   trial-‐and-‐error   tests,   to   a   constant   value   for   the   entire   study   region;  acceptable  considering  balancing  fidelity  to  the  input  EO  data  with  the  roughness  of  the  resulting  curve.    

     

    Quality  Flags  

    As  already  applied  with  MODIS  NDVI  data,  the  operational  filtering  procedures  of  high   spatial   resolution   data   can   take   advantage   of   the   quality   flag   during  smoothing,   since   this   information   is   available   for   Landsat   Level-‐2A   product  (Landsat  4-‐5  Thematic  Mapper   (TM),   Landsat  7  Enhanced  Thematic  Mapper  Plus  (ETM+)   and   Landsat   8  Operational   Land   Imager   (OLI))   generated   by   the   Landsat  Ecosystem   Disturbance   Adaptive   Processing   System   (LEDAPS))   and   for   Landsat  Level-‐1T  product  (Landsat  8).  Pixels  having  a  VI  usefulness  value  lower  than  three  were   considered   to   be   acceptable   and   assigned   a   weight   of   one   (very   good   to  good  quality),  while  a  VI  usefulness   larger  than  seven  was  excluded  from  further  processing  with  a  weight  of   zero   (not  acceptable).  VI  usefulness   values  between  three  and  seven  were  linearly  scaled  between  one  and  zero.    

     

    Numbers  of  Iterations  

    Indicating   the   number   of   iterations   to   be   performed.   To   further   reduce   the  possible   impact   of   undetected   clouds   and   poor   atmospheric   conditions,   three  filtering   iterations  were  performed   to   fit   the  upper   envelope  of   the  VI.  Multiple  filter  runs  were  for  example  recommended  by  [8,10].    

    Similar  to  [11],   two  filtering   iterations  can  be  performed  to  fit   the  VI  data  to  the  upper   envelope.   Iterative   filtering   to   the   upper   envelope   is   recommended,   as  undetected  clouds  and  poor  atmospheric  conditions  decrease  the  observed  VI.  

     

    Order  difference    

    This   parameter   of   the  Whittaker   smoother   can   be   set   after   some   tests   to   two.  Based   on   the   order   difference,   the   smoother   calculates   the   roughness   of   the  smoothed  curve  [1].    

     

     

  • D2.2.1: Methodology for dense high-resolution EO time series, gap filled  

    27/11/2015   V2.2  

     

    16  |  28  

    An  example  of  application  of  the  Whittaker  filter  is  shown  is  fig.9  for  MODIS  NDVI  time  series.  Preliminary  

    analyses   were   also   carried   out   with   surface   reflectance   data   and   they   showed   satisfactory   results.   In  

    particular,  the  filter  was  applied  on  a  time  series  of  the  Landsat  Surface  Reflectance  Climate  Data  Record  

    archive  for  some  test  sites  in  Austria,  Spain  and  Italy.  Landsat  CDR  is  a  Landsat  Level-‐2A  product  generated  

    by   the   Landsat   Ecosystem  Disturbance   Adaptive   Processing   System   (LEDAPS)   [21].   The   data   set   includes  

    atmospherically   corrected   (BOA)   Landsat   4-‐5   Thematic   Mapper   (TM),   Landsat-‐7   Enhanced   Thematic  

    Mapper  Plus  (ETM+)  and  Landsat-‐8  Operational  Land  Imager  (OLI)  data  at  global  level.  These  sensors  have  

    identical   spatial   resolutions   and   a   comparable   spectral   resolution.   The   Landsat   CDR   data   have  

    demonstrated   to   be   as   accurate   as   a   currently   available   atmospherically   corrected   surface   reflectance  

    products  that  can  be  obtained  using  an  industrial-‐standard  radiative  transfer  model  of  the  atmosphere  (e.g.  

    ATCOR-‐2)   in   combination   with   a   detailed   study,   performed   by   a   trained   operator,   of   the   atmospheric  

    conditions   at   the   time   of   each   satellite   acquisition   [26].   In   Figure   10   a   comparison   is   shown   between  

    Landsat  CDR  and  surface  reflectance  data  independently  corrected  by  using  a  manual  fine-‐tuning  of  ATCOR-‐  

    2  parameters  to  reach  the  highest  possible  accuracy.    

    A  similar  procedure  can  be  adopted  for  other  sensors  and  for  time  series  of  different  sensors,  once  a  cross-‐

    calibration   has   been   performed   and   all   image   have   the   same   geographical   projections,   geometrical  

    resolution  and  dimensions  (number  of  rows  and  columns).    

    Training  session  might  be  organised  within  FATIMA  in  order  to  practice  the  proposed  procedures  and  to  

    standardise  them  for  the  different  datasets.  

     

    Figure  9   -‐  Number  of   iteration   for   the  upper  envelope   fitting  on  MODIS  NDVI  data   (Whittaker   filtering  by  means  of  R  package).  

  • D2.2.1: Methodology for dense high-resolution EO time series, gap filled  

    27/11/2015   V2.2  

     

    17  |  28  

     

    Figure  10  -‐  Scatter  plots  of  Landsat  CDR  and  surface  reflectance  data  (corrected  at  BOKU)  corresponding  to  Landsat   bands   1–5   and   7   (Blue,   Green,   Red   NIR,   SWIR-‐1   and   SWIR-‐2,   respectively)   for   a   set   of   satellite  observations   acquired   over   different   seasons   over   the   Austrian   pilot   area.   The   broken   lines   show   the  ordinary  least  squares  linear  regression  fits  [26].  

     

    Figure  11  shows  two  examples  of  a  pixel-‐based  filtering  of  surface  reflectance  of  Landsat  CDR  data  for  the  

    near-‐infrared  band  for  the  period  2009-‐2015.  

     

    Figure  11   -‐   Two  examples  of  pixel-‐based   Landsat   time   series   for   the  near-‐infrared   spectral   band.   The   red  dots  represent  the  high  quality  observations;  the  green  crosses  represent  the  lower  quality  observation;  the  red  line  is  the  resulting  filtered  and  gap  filled  series.    

  • D2.2.1: Methodology for dense high-resolution EO time series, gap filled  

    27/11/2015   V2.2  

     

    18  |  28  

    The   approach  was   applied   to   all   spectral   bands   to  derive  RGB   colour   composites   and   various   vegetation  

    indices.  An  example  of  RGB  (Near-‐infrared,  Red,  Green)   is  shown  in  Figure  12  for  the  Austrian  test  site  of  

    Marchfeld   for   the   year   2009   (temporal   resolution   of   gap-‐filled   data   is   15-‐days)   and   in   Figure   13   for   the  

    Spanish   test   site  of  Barrax   for   the  year  2003.  Tested  vegetation   indices   included  NDVI,  NDWI,   fAPAR  and  

    Tasselled  Cup  Transformation   (TCB).  The   temporal  profile   for   two  exemplary  pixels   is   shown   in  Figure  14  

    (from   the   Austrian   dataset)   and   Figure   15   (from   the   Spain   dataset   ),   along   with   the   correspondent  

    reflectance  (raw  and  smoothed/gap-‐filled  data)  in  the  near-‐infrared  band  only.        

     

     

    Figure   12   -‐   Times   series   of   smoothed   and   gap   filled   data   of   Marchfeld   (Austria)   for   the   year   2009.   The  temporal  resolution  between  gap-‐filled  output  data  is  15-‐days.  

     

     

  • D2.2.1: Methodology for dense high-resolution EO time series, gap filled  

    27/11/2015   V2.2  

     

    19  |  28  

     

    Figure  13  -‐  Times  series  of  smoothed  and  gap  filled  data  of  Barrax  (Castilla  la  Mancha,  Spain)  for  the  year  2003.  The  temporal  resolution  between  gap-‐filled  output  data  is  15-‐days.  

       

  • D2.2.1: Methodology for dense high-resolution EO time series, gap filled  

    27/11/2015   V2.2  

     

    20  |  28  

     

     

     

     

     

    Figure  14  -‐  Example  of  a  time  series  (2009-‐2015,  15-‐days)  for  four  vegetation  indices  (left)  calculated  from  the   smoothed/gap-‐filled   reflectance   (right,   only   near-‐infrared   band   is   shown);   Austrian   pilot   area   of  Marchfeld,  one  pixel  randomly  selected  representing  a  forest  land  cover  type.  

     

     

  • D2.2.1: Methodology for dense high-resolution EO time series, gap filled  

    27/11/2015   V2.2  

     

    21  |  28  

     

     

     

     

    Figure  15   -‐  An  example  of   a   time   series   (2002-‐2015,   15-‐days)   for   four   vegetation   indices   (left)   calculated  from  the  smoothed/gap-‐filled  reflectance  (right,  only  near-‐infrared  band  is  shown);  Spanish  pilot  area.  one  pixel  randomly  selected  representing  agricultural  land  cover  type  

     

     

       

  • D2.2.1: Methodology for dense high-resolution EO time series, gap filled  

    27/11/2015   V2.2  

     

    22  |  28  

    3 Methodologies  for  the  extrapolation  of  E.O.  data  and  related  products  (forecast)    

    3.1 Forecast  based  on  curve  fitting  

    As   mentioned   in   the   introduction,   in   the   context   of   applications   regarding   crop   management,   the  

    extrapolation   of   data   (forecast)   is   possible  with   regards   to   the   crop   parameters   i.e.   crop   coefficients  Kc,  

    fractional  vegetation  cover,  height,  Leaf  Area  Index,  based  on  crop  growth  models.  Crop  growth  is  usually  

    described  by  smooth  curves  of  known  shape  (Figure  16).  In  particular,  it  is  well  known  that  NDVI  follows  the  

    same  shape  of  the  crop  coefficient  Kc.  It  is  possible  to  establish  from  actual  EO  data  the  current  point  along  

    the  ideal  Kc  curve,  and  forecast  the  possible  evolution  for  the  considered  crop.  This  approach  can  be  used  in  

    conjunction  with  forecast  of  reference  ET0  to  predict  crop  water  requirements  for  the  incoming  5-‐7  days.    

    In   case   of   a   plant   growth   diverting   from   the   ideal   curve,   due   to   water   or   nutrient   stresses,   and   such  

    occurrence  is  evidenced  by  the  first  available  acquisition,  it  would  be  needed  to  adopt  appropriate  scaling  

    procedure   of   the   ideal   Kc   curve   in   order   to   continue   correctly   the   same   fitting   method.   Alternatively,  

    complex   growth   model   might   be   applied   (see   following   section).   In   this   case,   assimilation   or   forcing  

    techniques  to  integrate  E.O  data  products  into  the  model  should  be  adopted.  

     

     

    Figure  16  -‐  Crop  growth  and  NDVI  for  wheat  (Calera,  presentation  at  Mammamia45  conference,  Enschede  (NL),  June  2015).    

     

  • D2.2.1: Methodology for dense high-resolution EO time series, gap filled  

    27/11/2015   V2.2  

     

    23  |  28  

    The  method  of  linear  extrapolation  of  Kc(NDVI)  has  been  applied  in  a  case-‐study  in  the  Castilla  La-‐Mancha  

    region   [32].   In   this   case,   the   reference   ET0   was   predicted   by   using   forecast   air   temperature   data   for   a  

    period   of   7   days   and   the  Hargraves-‐Samani   formula.   A   reanalysis   carried   out  with   actual  meteorological  

    data   on   a   weekly   basis,   a   very   good   agreement   was   found   between   the   predicted   ET0   and   the  

    corresponding  calculated  by  means  of  the  standard  FAO  Penman-‐Monteith  equation  (Figure  17).  

     

     

    Figure  17  –  Linear  extrapolation  of  the  crop  coefficient  Kc(NDVI)  and  prediction  of  the  reference  ET0  from  air  temperature  data  [32].    

     

    3.2 Forecast  based  on  crop  growth  model  

    An  alternative  -‐  physically  based  -‐  procedure  could  be  represented  by  the  implementation  of  a  crop  model,  

    to  predict  its  growth.  A  simplified  crop  growth  model  with  the  aim  to  assess  the  biomass  and  LAI  growth  at  

    daily  time  step  scale  can  be  used  for  this  purpose.  In  this  class  of  models  the  main  biophysical  processes  are  

    conceptualized  by  a  set  of  simplified  analytical  relations.  A  typical  approach  is  the  3PG  [30]  where  the  net  

    primary  production   (NPP)   is  modeled  according  to  a   light-‐use  efficiency  approach  with  a  constant  carbon  

    use  efficiency  factor,  similarly  to  other  popular  biomass  growth  models.  In  short,  the  LAI  dynamics  is  based  

    on  temperature  and  leaf  dry  matter  supply,  driven  by  the  development  stage  of  the  crop.  The  conceptual  

    scheme   is   depicted   in   Figure   18.   In   most   crop   growth   models,   the   main   biophysical   processes   are  

    conceptualized  by  a  set  of  simplified  analytical  relations,  with  the  aim  to  assess  the  biomass  and  LAI  growth  

    with   a   given   time   step   i.e.   daily.   The   net   primary   production   (NPP)   is  modelled   according   to   a   light-‐use  

    efficiency  approach;   the  LAI  dynamics   is  based  on  temperature  and   leaf  dry  matter  supply,  driven  by   the  

    development  stage  of  the  crop.    

     

  • D2.2.1: Methodology for dense high-resolution EO time series, gap filled  

    27/11/2015   V2.2  

     

    24  |  28  

     

    Figure  18  -‐  Crop  growth  model  schematisation  

     

    Within   the   crop   growth  model,   there   is   an   uncertainty   related   the   spatial   distribution   of   soil   properties,  

    initial   soil   conditions,   crop   parameters,   meteorological   forcings.   This   uncertainty   majorly   influences   the  

    simulation  of  two  important  physiological  processes:  

    1 the   simulation   of   crop   canopy   development,   which   determines   light   interception   and  

    photosynthetic  potential;  

    2 the   simulation  of   soil  moisture   content,  which  determines   the  actual   evapotranspiration  and   the  

    reduction  of  photosynthesis  as  a  result  of  drought  stress.  

    Because   the   crop   growth   process   has   inherent   errors,   including   the   errors   on   initial   and   boundary  

    conditions,  the  forward  simulation  of  the  crop  model  would  result   in  an   increasingly  enlarged  differences  

    between  the  simulated  and  observed  results.  

    E.O.  derived  LAI  can  be  coupled  with  crop  growth  models  according  to  different  strategies,  i.e.  by  means  of  

    an   Ensemble   Kalman   Filter.   In   this   case,   a   recursive   Bayesian   ensemble-‐based   filter   estimates   the   state  

    variable   of   a   dynamic   system   from   a   series   of   noise   corrupted   measurements,   to   mitigate   modeling  

    uncertainty,  i.e.  to  update  model  state  predictions.  In  this  way  the  model  state  variables  are  continuously  

    updated  when  remote  sensing  information  is  available.    

    An  example  of   application  of   a   stochastic  model   is   shown   in   Figure  19,  where   the   assimilation  has  been  

    implemented  for  simulating  the  growth  of  the  crop  above  ground  biomass  and  LAI,  starting  from  its  seeding  

    [16].  In  Figure  19  it  is  also  possible  to  notice  that  the  uncertainty  on  LAI  decreases  when  more  observations  

    are  available,  thus  improving  the  estimates  for  the  next  5  days.  

  • D2.2.1: Methodology for dense high-resolution EO time series, gap filled  

    27/11/2015   V2.2  

     

    25  |  28  

     

    Figure   19   -‐Ensemble   LAI   forecasted  with   a   lead   time  of   5   days   compared  with   observed   values   indirectly  estimated  from  VIS-‐NIR  satellite  images  [16]  

     

    Other  more  sophisticated  model  can  be  used  while  maintaining  the  same  approach,  for  example:  

    • CGMS:  The  Crop  Growth  Monitoring  System  (operational  crop  yield  forecasting)  

    • WOFOST:  Within  CGMS  a  version  of  the  WOFOST  crop  model  is  implemented,  which  has  been  

    adapted  to  the  applications  at  European  scale  in  the  Agri4cast  EU  action.  

    • CropSyst:  A  multi-‐crop  model  for  growth  simulations,  currently  applied  e.g.  in  climate  change  

    impact  studies  

    • STICS:    internationally  recognised  as  a  dynamic,  generic  and  robust  model  aiming  to  simulate  the  

    soil-‐crop-‐atmosphere  system,  developed  by  INRA  [27,  28  29]  

    • EPICS:  crop  model  developed  by  Texas  A  &  M  Univ.  initially  to  to  estimate  soil  productivity  as  

    affected  by  erosion    and  further  on  expanded  to  predict  effects  of  management  decisions  on  soil,  

    water,  nutrient  and  pesticide  movements.  

    The  utilisation  of   these  models   is   required   to  adequately   consider   the  management  of  nutrients.   For   the  

    implementation  and  available  software,  the  reader  should  follow  the  hyperlinks  provided  above.  

       

    100 150 200 250 3000

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    DOY

    LAI

    Observation5th day forecast

  • D2.2.1: Methodology for dense high-resolution EO time series, gap filled  

    27/11/2015   V2.2  

     

    26  |  28  

    References  

    [1]  Atzberger,  C.  and  Eilers,  P.  H.  C.,  "Evaluating  the  effectiveness  of  smoothing  algorithms  in  the  absence  of  ground  reference  measurements",  International  Journal  of  Remote  Sensing,  32(13),  3689-‐3709,  2011.  

    [2]  Eilers  P.  H.  C.,  “A  perfect  smoother,”  Analytical  Chemistry,  vol.  75,  no.  14,  pp.  3631–3636,  2003.  

    [3]   Chen,   J.;   Jönsson,   P.;   Tamura,   M.;   Gu,   Z.H.;   Matsushita,   B.;   Eklundh,   L.   A   simple   method   for  reconstructing   a   high-‐quality   NDVI   time-‐series   data   set   based   on   the   Savitzky–Golay   filter.   Remote  Sens.  Environ.  2004,  91,  332–344.  

    [4]  Mattiuzzi   ,M.,   Verbesselt   ,J.,   Hengl   ,T.,   Klisch   ,   A.,   Evans,B.  &   Lobo   ,A.,   2012b:  MODIS   download   and  processing   package.   Processing   functionalities   for   (multi-‐temporal)   MODIS   grid   data.     R     package    version    0.5-‐3/r276.  http://R-‐Forge.R-‐project.org/projects/modis    (2.7.2014).  

    [5]   P.   M.   Atkinson,   C.   Jeganathan,   J.   Dash,   and   C.   Atzberger,   “Inter-‐comparison   of   four   models   for  smoothing   satellite   sensor   time-‐series   data   to   estimate   vegetation   phenology,”   Remote   Sensing   of  Environment,  vol.  123,  pp.  400–417,  Aug.  2012.  

    [6]  C.  Atzberger  and  P.  H.  C.  Eilers,  “A  time  series  for  monitoring  vegetation  activity  and  phenology  at  10-‐daily   time  steps  covering   large  parts  of  South  America,”   International   Journal  of  Digital  Earth,  vol.  4,  no.  5,  pp.  365–386,  2011.  

    [7]  Vuolo,  F.;  Mattiuzzi,  M.;  Klisch,  A.;  Atzberger,  C.  Data  service  platform  for  MODIS  vegetation  indices  time  series   processing   at   BOKU   Vienna:   Current   status   and   future   perspectives.   Proc.   SPIE   2012,   8538,  doi:10.1117/12.974857.  

    [8]   Beck   P.   S.   a.,   C.   Atzberger,   K.   A.   Høgda,   B.   Johansen,   and   A.   K.   Skidmore,   “Improved  monitoring   of  vegetation   dynamics   at   very   high   latitudes:   A   new  method   using  MODIS   NDVI,”  Remote   Sensing   of  Environment,  vol.  100,  no.  3,  pp.  321–334,  Feb.  2006.  

    [9]   Solano,   R.;   Didan,   K.;   Jacobson,   A.;   Huete,   A.  MODIS   Vegetation   Index  User’s   Guide   (MOD13   Series);  Version  2.00,  May  2010  (Collection  5);  The  University  of  Arizona:  Tucson,  AZ,  USA,  2010.  

    [10]   Jönsson,   P.K.;   Eklundh,   L.   Seasonality   extraction   by   function   fitting   to   time   series   of   satellite   sensor  data.  IEEE  Trans.  Geosci.  Remote  Sens.  2002,  40,  1824–1832.  

    [11]    Rembold,  F.;  Atzberger,  C.;  Savin,  I.;  Rojas,  O.  Using  low  resolution  satellite  imagery  for  yield  prediction  and  yield  anomaly  detection.  Remote  Sens.  2013,  5,  1704–1733  

    [12]   Hird,   J.N.,  McDermid,   G.J.   (2009):   Noise   reduction   of   NDVI   time   series:   An   empirical   comparison   of  selected  techniques.  Remote  Sensing  of  Environment  113,  248–258.  

    [13]  Viovy,  N.;  Arino,  O.;  Belward,  A.  The  Best  Index  Slope  Extraction  (BISE):  A  method  for  reducing  noise  in  NDVI  time-‐series.  Int.  J.  Remote  Sens.  1992,  13,  1585–1590  

    [14]   Ma,   M.M.;   Veroustraete,   F.   Reconstructing   pathfinder   AVHRR   land   NDVI   time-‐series   data   for   the  Northwest  of  China.  Adv.  Space  Res.  2006,  37,  835–840  

    [15]   Roerink,   G.J.;   Menenti,   M.;   Verhoef,   W.   Reconstructing   cloudfree   NDVI   composites   using   Fourier  analysis  of  time  series.  Int.  J.  Remote  Sens.  2000,  21,  1911–1917  

    [16]   Pelosi   A.,   Falanga   S.,   De  Michele   C.,  Medina  Gonzalez   H.,   Villani   P.,   D’Urso  G.,   Chirico  G.B.   2015.   A  stochastic   ensemble-‐based   model   to   predict   crop   water   requirements   from   numerical   weather  

  • D2.2.1: Methodology for dense high-resolution EO time series, gap filled  

    27/11/2015   V2.2  

     

    27  |  28  

    forecasts  and  VIS-‐NIR  high  resolution  satellite  images  in  Southern  Italy.  EGU  General  Assembly  2015   ,  Vienna  

    [17]  Bielski,  C.,  Grazzini,  J.,  &  Soille,  P.  (2007).  Automated  morphological  image  composition  for  mosaicing  large  image  data  sets.  In  International  Geoscience  and  Remote  Sensing  Symposium  (IGARSS)  (pp.  4068–4071).  doi:10.1109/IGARSS.2007.4423743  

    [18]  Eivazi,  A.,  Kolesnikov,  A.,  Junttila,  V.,  &  Kauranne,  T.  (2015).  Variance-‐preserving  mosaicing  of  multiple  satellite   images   for   forest   parameter   estimation:   Radiometric   normalization.   ISPRS   Journal   of  Photogrammetry  and  Remote  Sensing,  105,  120–127.  doi:10.1016/j.isprsjprs.2015.03.007  

    [19]  Griffiths,  P.,  van  der  Linden,  S.,  Kuemmerle,  T.,  &  Hostert,  P.  (2013).  A  Pixel-‐Based  Landsat  Compositing  Algorithm   for   Large   Area   Land   Cover   Mapping.   Selected   Topics   in   Applied   Earth   Observations   and  Remote  Sensing,  IEEE  Journal  of,  PP(99),  1–14.  doi:10.1109/JSTARS.2012.2228167  

    [20]  Hermosilla,  T.,  Wulder,  M.  a.,  White,  J.  C.,  Coops,  N.  C.,  &  Hobart,  G.  W.  (2015).  An  integrated  Landsat  time   series   protocol   for   change   detection   and   generation   of   annual   gap-‐free   surface   reflectance  composites.  Remote  Sensing  of  Environment,  158,  220–234.  doi:10.1016/j.rse.2014.11.005  

    [21]  Masek,  J.  G.,  Vermote,  E.  F.,  Saleous,  N.  E.,  Wolfe,  R.,  Hall,  F.  G.,  Huemmrich,  K.  F.,  Lim,  T.  K.  (2006).  A  landsat   surface   reflectance   dataset   for   North   America,   1990-‐2000.   IEEE   Geoscience   and   Remote  Sensing  Letters,  3(1),  68–72.  doi:10.1109/LGRS.2005.857030  

    [22]  Roy,  D.  P.,  Ju,  J.,  Kline,  K.,  Scaramuzza,  P.  L.,  Kovalskyy,  V.,  Hansen,  M.,  Zhang,  C.  (2010).  Web-‐enabled  Landsat  Data  (WELD):  Landsat  ETM+  composited  mosaics  of  the  conterminous  United  States.  Remote  Sensing  of  Environment,  114(1),  35–49.  doi:10.1016/j.rse.2009.08.011  

    [23]  Vanonckelen,  S.,  Lhermitte,  S.,  &  Van  Rompaey,  A.  (2013).  The  effect  of  atmospheric  and  topographic  correction   methods   on   land   cover   classification   accuracy.   International   Journal   of   Applied   Earth  Observation  and  Geoinformation,  24(1),  9–21.  doi:10.1016/j.jag.2013.02.003  

    [24]  Xu,  L.,  Li,  B.,  Yuan,  Y.,  Gao,  X.,  &  Zhang,  T.  (2015).  A  Temporal-‐Spatial  Iteration  Method  to  Reconstruct  NDVI  Time  Series  Datasets.  Remote  Sensing,  7(7),  8906–8924  

    [25]   Zhu,   Z.,  Wang,   S.,   &  Woodcock,   C.   E.   (2015).   Improvement   and   expansion   of   the   Fmask   algorithm:  cloud,  cloud  shadow,  and  snow  detection  for  Landsats  4–7,  8,  and  Sentinel  2  images.  Remote  Sensing  of  Environment,  159,  269–277.  doi:10.1016/j.rse.2014.12.014  

    [26]  Vuolo,  F.,  Mattiuzzi,  M.,  &  Atzberger,  C.  (2015).  International  Journal  of  Applied  Earth  Observation  and  Geoinformation   Comparison   of   the   Landsat   Surface   Reflectance   Climate   Data   Record   (   CDR   )   and  manually  atmospherically  corrected  data  in  a  semi-‐arid  European  study  area.  International  Journal  of  Applied  Earth  Observations  and  Geoinformation,  42,  1–10.  doi:10.1016/j.jag.2015.05.003  

    [27]  Brisson  N.,  Mary  B.,  Ripoche  D.,   Jeuffroy  M.H.,  Ruget  F.,  Gate  P.,  Devienne-‐Barret  F.,  Antonioletti  R.,  Durr  C.,  Nicoullaud  B.,  Richard  G.,  Beaudoin  N.,  Recous  S.,  Tayot  X.,  Plenet  D.,  Cellier  P.,  Machet  J.M.,  Meynard  J.M.,  Delecolle  R.,  1998,  STICS:  a  generic  model  for  the  simulation  of  crops  and  their  water  and  nitrogen  balance.   I.  Theory  and  parametrization  applied  to  wheat  and  corn.  Agronomie  18,  311-‐346  

  • D2.2.1: Methodology for dense high-resolution EO time series, gap filled  

    27/11/2015   V2.2  

     

    28  |  28  

    [28]  Brisson  N.,Ruget  F.,Gate  P.,  Lorgeou  J.,  Nicoullaud  B.,  Tayot  X.,  Plenet  D.,   Jeuffroy  M.H.,  Bouthier  A.,  Ripoche  D.,  Mary  B.,  Justes  E.,  2002,  STICS:  a  generic  model  for  the  simulation  of  crops  and  their  water  and  nitrogen  balances.  II.  Model  validation  for  wheat  and  corn.  Agronomie,  22,  69-‐93  

    [29]  Brisson  N.,  Gary  C.,  Justes  E.,  Roche  R.,  Mary  B.,  Ripoche  D.,  Zimmer  D.,  Sierra  J.,  Bertuzzi  P.,  Burger  P.,  Bussiere  F.,  Cabidoche  Y.M.,  Cellier  P.,  Debaeke  P.,  Gaudillere  J.P.,  Maraux  F.,  Seguin  B.,  Sinoquet  H.,  2003,  An  overview  of  the  crop  model  STICS.  Eur.  J.  Agron.  18,  309-‐332    

    [30]  Landsberg  J.J.,  Waring  R.H.,  1997.  A  generalised  model  of  forest  productivity  using  simplified  concepts  of   radiation-‐use   efficiency,   carbon   balance   and   partitioning.   Forest   Ecology   and   Management,   95:  209–228  

    [31]   Garrido-‐Rubio,   J.,   Campos,   I.,   Villa,   G.,   Plaza,   N.,   Calera,   A.,   2011.   INTERPOLA.   Herramienta   para   la  generación  de  imágenes  sintéticas  y  sustitución  de  valores  reales  con  presencia  de  nubes-‐sombras  por  valores   interpolados,   XIV   Congreso   de   la   Asociación   Española   de   Teledetección,   Mieres,   Asturias,  Spain,  p.  4  

    [32]   Garrido-‐Rubio,  J.,  González,  L.,  Madurga  del  Cura,  C.,  Arellano,  I.,  Navarro  Comalrena  de  Sobregau,  M.,  López  Tapia,  J.,  Calera,  A.,  2015.  Predicción  de  las  necesidades  hídricas  con  una  semana  de  antelación  mediante  teledetección  y  meteorología  en  la  finca  experimental  CENTER  para  cultivos  de  Maíz,  XXXIII  Congreso  Nacional  de  Riegos,  Valencia,  p.  10