fdp aiman j [january 2011]

Upload: sry-thearith

Post on 06-Jul-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/17/2019 FDP Aiman J [January 2011]

    1/287

    PAB4034 FIELD DEVELOPMENT PROJECT (FDP)

    GELAMA MERAH, OFFSHORE SABAH

    PREPARED BY: GROUP 4

    Muhammad Aiman Bin Jamaluddin 10022

    Muhamad Ridzuan Bin Shaedin 10210

    Izzuddin Bin Jamaludin 9686

    Muhammad Hafizzudin Bin Abdul Wahid 11725

    Wan Mohd Shafie Bin Wan Ibrahim 11736

     Nurul Fathiah Binti Mohammad 11729

    Hudzaifah Bin Zol Hamidy 10076

     Nurul Syafiqa Binti Abdul Wahab 10062

    Zairul Zahha Bin Zabidi 10272

    Faridzul Rusyidee Bin Ibrahim 10283

    Final Report submitted in partial fulfillment of

    the requirements for the

    Bachelor of Engineering (Hons)

    Petroleum Engineering

    JANUARY 2011 

    Universiti Teknologi PETRONASBandar Seri Iskandar

    31750 TronohPerak Darul Ridzuan

  • 8/17/2019 FDP Aiman J [January 2011]

    2/287

    i

    CERTIFICATION OF APPROVAL

    GELAMA MERAH, OFFSHORE SABAH

    PREPARED BY: GROUP 4

    Muhammad Aiman Bin Jamaluddin 10022

    Muhamad Ridzuan Bin Shaedin 10210

    Izzuddin Bin Jamaludin 9686

    Muhammad Hafizzudin Bin Abdul Wahid 11725

    Wan Mohd Shafie Bin Wan Ibrahim 11736

     Nurul Fathiah Binti Mohammad 11729

    Hudzaifah Bin Zol Hamidy 10076

     Nurul Syafiqa Binti Abdul Wahab 10062

    Zairul Zahha Bin Zabidi 10272

    Faridzul Rusyidee Bin Ibrahim 10283

    A project dissertation submitted to the

    Universiti Teknologi PETRONAS

    in partial fulfillment of the requirement for the

    Bachelor of Engineering (Hons)

    Petroleum Engineering

    Approved by,

    UNIVERSITI TEKNOLOGI PETRONAS

    TRONOH, PERAK

    JANUARY 2011

     _____________________

    (AP DR ISMAIL MSAAID)

    FDP Supervisor

     _____________________

    (ALI FIKRET MANGIALTA‟EE) 

    FDP Supervisor

     _____________________

    (AP DR EASWARANPADMANABHAN)

    FDP Supervisor

  • 8/17/2019 FDP Aiman J [January 2011]

    3/287

    ii

    CERTIFICATION OF ORIGINALITY

    This is to certify that we are responsible for the work submitted in this project, that theoriginal work is our own except as specified in the references and acknowledgements, and

    that the original work contained herein have not been undertaken or done by unspecified

    sources or persons.

     _______________________________

    MUHAMMAD AIMAN BIN JAMALUDDIN

     _________________________________

     NURUL FATHIAH BINTI MOHAMMAD

     _______________________________MUHAMAD RIDZUAN BIN SHAEDIN

     _________________________________HUDZAIFAH BIN ZOL HAMIDY

     _______________________________IZZUDDIN BIN JAMALUDIN

     _________________________________ NURUL SYAFIQA BINTI ABDUL WAHAB

     _______________________________MUHAMMAD HAFIZZUDIN BIN ABDUL

    WAHID

     _________________________________ZAIRUL ZAHHA BIN ZABIDI

     _______________________________WAN MOHD SHAFIE BIN WAN IBRAHIM

     _________________________________FARIDZUL RUSYIDEE BIN IBRAHIM

  • 8/17/2019 FDP Aiman J [January 2011]

    4/287

    iii

    ACKNOWLEDGEMENT

    We would like to express our sincere gratitude and deep appreciation to the following people

    for their support, patience and guidance. Without them, this project wouldn‟t have been made

     possible. It is to them that we owe our gratitude.

      AP Dr Ismail M Saaid, Mr. Ali Fikre t Mangi Alta’ee and AP Dr Eswaran

    Padmanabhan   for the continuous advice, guidance, constructive criticism and

    support to the team. Despite their heavy workload, they spared their precious time to

    discuss the project. 

      Pn Mazli n I dress, FDP Coordinator   for her constant assistance, encouragement,

    guidance and excellent advice throughout this research project. We also acknowledge

    her dedication for inviting lecturers and industry speakers to conduct presentation

    which are very helpful in the completion of the project.

    Finally, above all, we would also like to thank our family, friends, and Geoscience and

    Petroleum Engineering Department lecturers for their unwavering love, support and

    assistance throughout the project. 

  • 8/17/2019 FDP Aiman J [January 2011]

    5/287

    iv

    EXECUTIVE SUMMARY

    The objective of this project is to develop the optimum plan for the management of the

    natural resources in the Gelama Merah field. Significant reserves of hydrocarbons have been

    confirmed in it, by GM-1 and GM-1 ST1 appraisal wells. The estimated Stock Tank Oil

    Initially in Place (STOIIP) of Gelama Merah Field is 85.74 MMstb  while the estimated Gas

    Initially in Place (GIIP) is 111.91 Bscf.

    Simulation modeling was carried out using RMS software with different scenarios considered

    such as natural depletion, gas and water injection. Reservoir and economic simulations

    conclude the best strategy to develop the field is via natural depletion. Six horizontal wells

    and one WAG injector well are proposed with maximum recovery factor of 27.8%.

    Drilling engineering and well construction of Gelama Merah were performed utilizing data

    from GM-1 and GM-1 ST1 appraisal wells and results from reservoir engineering simulation

    for drainage plan and reservoir management. A jack-up drilling rig is proposed for the

    drilling campaign. All six wells are proposed to be completed as single oil producer with

    stand alone wire wrapped screen as a sand control.

    Surface development plan is to install jacket platform at Gelama Merah field. It is decided to

    tie in the platform into nearby existing infrastructure at Semarang Central Processing Plant

    (CPP) which is both technically and economically viable.

    The development strategies have been evaluated in terms of Internal Rate Return (IRR) and

     Net Present Value (NPV). The CAPEX is about 165.69 Mil USD and the OPEX is estimatedabout 3.909 Mil USD/year. The calculated NPV at 10% is 55.78 MM USD with IRR at 37%;

    the breakeven is estimated in 3.7 years from the first year of production.

  • 8/17/2019 FDP Aiman J [January 2011]

    6/287

    i

    Table of Contents 

    ACKNOWLEDGEMENT ..................................................................................................... iii 

    EXECUTIVE SUMMARY .................................................................................................... iv 

    ABBREVIATIONS ................................................................................................................ xv 

    NOMENCLATURES .......................................................................................................... xvii 

    Chapter 1  : INTRODUCTION ........................................................................................... 1 

    1.1  Background of Project ................................................................................................. 1 

    1.2  Problem Statement ...................................................................................................... 2 

    1.3  Objectives .................................................................................................................... 3 

    1.4  Scope of Work ............................................................................................................. 3 

    1.5  Gantt Chart .................................................................................................................. 4 

    1.6  Project Team ............................................................................................................... 5 

    Chapter 2  : DATA INVENTORY AND QUALITY CONTROL .................................... 7 

    2.1  Introduction ................................................................................................................. 7 

    2.2  Workflow .................................................................................................................... 7 

    2.2.1  Data Acquisition and Sorting ............................................................................... 7 

    2.2.2  Data Checklist and Inventory Setup .................................................................... 8 

    2.2.3  Data Digitizing ..................................................................................................... 9 

    2.2.4  Data Quality Check ............................................................................................ 10 

    Chapter 3  : GEOLOGY & GEOPHYSICS ..................................................................... 12 

    3.1  2-Dimensional Cross Imaging ................................................................................... 12 

    3.2  Stratigraphic Correlation ........................................................................................... 18 

    3.3  Regional Setting ........................................................................................................ 21 3.4  Hydrocarbon Petroleum System ............................................................................... 23 

    3.5  Depositional Environment and Facies Analysis........................................................ 25 

    3.6  3-Dimensional (3D) Static Model (Roxar‟s IRAP RMS) ......................................... 29 

    3.6.1  General Description ........................................................................................... 29 

    3.6.2  Surface Contour Map Digitizing ........................................................................ 30 

    3.6.3  Import Well Data ............................................................................................... 31 

    3.6.4  Horizon Modeling .............................................................................................. 31 

    3.6.5  Petrophysical Modelling .................................................................................... 31 3.7  Volumetric Calculation ............................................................................................. 32 

  • 8/17/2019 FDP Aiman J [January 2011]

    7/287

    ii

    3.7.1  Reservoir Evaluation .......................................................................................... 32 

    3.7.2  Gross Rock Volume ........................................................................................... 32 

    3.7.3  Volumetric Estimation Approach ...................................................................... 36 

    3.7.4  Hydrocarbon in Place (HIP) Calculation ........................................................... 36 

    3.7.5  Hydrocarbon Contribution ................................................................................. 39 

    3.7.6  Static Model Volumetric Estimation ................................................................. 40 

    3.7.7  Hydrocarbon in Place by Static Model .............................................................. 41 

    3.8  Risk Analysis and Uncertainties ............................................................................... 42 

    3.8.1  2-Dimensional Cross Imaging ........................................................................... 42 

    3.8.2  Stratigraphic Correlation .................................................................................... 44 

    3.8.3  Volumetric Estimation Approach ...................................................................... 46 

    3.9  Summary ................................................................................................................... 46 

    Chapter 4  : PETROPHYSICS .......................................................................................... 47 

    4.1  Introduction ............................................................................................................... 47 

    4.2  Data Availability ....................................................................................................... 47 

    4.3  Quality Check (QC) For Log Data ............................................................................ 47 

    4.4  Petrophysical Evaluation ........................................................................................... 49 

    4.4.1  Lithology Study ................................................................................................. 49 

    4.4.2  Interpretation of Log Data ................................................................................. 51 

    4.4.3  Identification of Permeable and Non-Permeable Zones .................................... 53 

    4.4.4  Determination of the water and hydrocarbon bearing zones ............................. 54 

    4.5  Fluid Types ................................................................................................................ 56 

    4.6  Shale Volume () ................................................................................................. 57 4.7  Porosity (φ) ............................................................................................................... 58 

    4.7.1  Effect of Shale on Porosity Determination from Density Log .......................... 58 

    4.7.2  Effect of Shale on Porosity Determination from Neutron Log .......................... 59 

    4.7.3  Effective Porosity Calculation ........................................................................... 60 

    4.8  Water Saturation ()............................................................................................... 60 4.9  The Cut-off Values .................................................................................................... 62 

    4.10   Net to Gross Ration (NTG) ................................................................................... 63 

    Chapter 5  : RESERVOIR ENGINEERING ................................................................... 64 

    5.1  Introduction ............................................................................................................... 64 

    5.2  Reservoir Data and Analyses .................................................................................... 65 

    5.2.1  Reservoir Pressure and Fluid Contacts .............................................................. 65 

    5.2.2  Reservoir Temperature....................................................................................... 66 

  • 8/17/2019 FDP Aiman J [January 2011]

    8/287

    iii

    5.2.3  Reservoir Fluid Studies ...................................................................................... 67 

    5.2.4  Reservoir Fluid Study (PVT) Using PVTi Software ......................................... 74 

    5.2.5  Rock Compressibility......................................................................................... 77 

    5.2.6  Routine Core and Special Core Analysis (SCAL) ............................................. 79 

    5.3  Reservoir Simulation Study ...................................................................................... 93 

    5.3.1  Preliminary Studies of Reservoir Drive Mechanisms ........................................ 94 

    5.3.2  3D Geological Static Model Export ................................................................... 98 

    5.3.3  Simulator Data Input .......................................................................................... 99 

    5.3.4  Dynamic Initialization ..................................................................................... 100 

    5.3.5  Sensitivity Analysis ......................................................................................... 102 

    5.4  Enhanced Oil Recovery (EOR) ............................................................................... 115 

    5.5  Reservoir Surveillance ............................................................................................ 120 

    5.6  Uncertainty Analysis ............................................................................................... 121 

    Chapter 6  : PRODUCTION TECHNOLOGY .............................................................. 123 

    6.1  Introduction ............................................................................................................. 123 

    6.2   Nodal Analysis ........................................................................................................ 123 

    6.3  Inflow Performance Relationship (IPR) and PVT Correlation ............................... 124 

    6.3.1  Inflow Performance Prediction ........................................................................ 124 

    6.3.2  Outflow Performance Prediction ..................................................................... 125 

    6.4  Tubing Size ............................................................................................................. 127 

    6.5  Artificial Lift ........................................................................................................... 127 

    6.5.1  Gas Lift Method Justifications ......................................................................... 127 

    6.5.2  Gas Lift Design ................................................................................................ 129 

    6.6  Sand Control ............................................................................................................ 132 

    6.6.1  Sand Control Design ........................................................................................ 133 

    6.7  Well Completion Design ......................................................................................... 136 

    6.7.1  Summary .......................................................................................................... 136 

    6.7.2  Well Completion Matrix .................................................................................. 136 

    6.7.3  Completion string Design and Accessories ..................................................... 137 

    6.7.4  Wellhead and Christmas tree ........................................................................... 139 

    6.7.5  Material Selection ............................................................................................ 140 

    6.7.6  Packer and Completion Fluid........................................................................... 140 

    6.8  Potential Production Problem.................................................................................. 141 

    6.8.1  Wax Deposition ............................................................................................... 141 

    6.8.2  Corrosion.......................................................................................................... 141 

    6.8.3  Scale Formation ............................................................................................... 141 

  • 8/17/2019 FDP Aiman J [January 2011]

    9/287

    iv

    6.8.4  Emulsion formation ......................................................................................... 142 

    Chapter 7  : DRILLING ENGINEERING ..................................................................... 143 

    7.1  Introduction ............................................................................................................. 143 

    7.2  Drilling History ....................................................................................................... 143 

    7.3  Platform Location .................................................................................................... 143 

    7.4  Design Framework .................................................................................................. 143 

    7.5  Rig Selection ........................................................................................................... 144 

    7.6  Subsurface Environment ......................................................................................... 145 

    7.7  Potential Drilling Problem ...................................................................................... 145 

    7.8  Planning Well Profile (Well Trajectory) ................................................................. 146 

    7.8.1  Parameters of Well Path................................................................................... 147 

    7.8.2  Well Type......................................................................................................... 147 

    7.9  Casing Design ......................................................................................................... 148 

    7.9.1  Casing Configuration ....................................................................................... 148 

    7.9.2  Casing Setting Depth ....................................................................................... 150 

    7.10  Drilling Fluids and Cementing Design ................................................................ 151 

    7.10.1  Drilling Fluids Design...................................................................................... 151 

    7.10.2  Cementing Design ............................................................................................ 152 

    7.11  Bit Selection ........................................................................................................ 154 

    7.12  Well Control ........................................................................................................ 154 

    7.12.1  Blow Out Preventer (BOP) .............................................................................. 154 

    7.12.2  Actuator / SSV ................................................................................................. 154 

    7.12.3  Wellhead .......................................................................................................... 155 

    7.13  Drilling Time and Cost Estimation ...................................................................... 155 

    7.14  Drilling Optimization .......................................................................................... 158 

    7.14.1  Monobore Completion ..................................................................................... 158 

    7.14.2  Casing While Drilling (CWD) ......................................................................... 158 

    7.14.3  Multilateral Completion ................................................................................... 158 

    7.14.4  Rotary Steerable System (RSS) ....................................................................... 159 

    7.14.5  Pile Driven Conductor ..................................................................................... 159 

    7.14.6  Cement Assessment Tool (CAT) ..................................................................... 159 

    Chapter 8  : FACILITIES ENGINEERING .................................................................. 160 

    8.1  Introduction ............................................................................................................. 160 

    8.1.1  Overview of Facilities ...................................................................................... 160 

    8.1.2  Design Philosophy ........................................................................................... 160 

  • 8/17/2019 FDP Aiman J [January 2011]

    10/287

    v

    8.1.3  Types of Development Platform Option .......................................................... 161 

    8.2  Design Features and Basis....................................................................................... 162 

    8.2.1  Facilities Design Concept ................................................................................ 162 

    8.2.2  Top Structure ................................................................................................... 163 

    8.2.3  Substructure ..................................................................................................... 163 

    8.3  Operation Facilities and Equipments ...................................................................... 164 

    8.3.1  Production Flowlines, Flow Control and Manifold ......................................... 164 

    8.3.2  Wellhead .......................................................................................................... 164 

    8.3.3  Gas Metering and Measurement ...................................................................... 164 

    8.3.4  3-Phase Separator............................................................................................. 165 

    8.3.5  Gas Injection .................................................................................................... 165 

    8.3.6  Gas Lift Surfaces Facilities .............................................................................. 165 

    8.3.7  Electrical Power and Lighting ......................................................................... 165 

    8.3.8  Drain System .................................................................................................... 165 

    8.3.9  Flare Boom / Vent System ............................................................................... 166 

    8.3.10  Instrument Air System ..................................................................................... 166 

    8.4  Safety Facilities System .......................................................................................... 166 

    8.4.1  Safety Shutdown System ................................................................................. 166 

    8.4.2  Automatic Fire Detection and Alarm System .................................................. 167 

    8.4.3  Life Saving Appliances .................................................................................... 168 

    8.4.4  Platform Data and Communication System ..................................................... 168 

    8.5  Pipelines and Host Tie-Ins to Existing Platform ..................................................... 168 

    8.5.1  Pipeline Tie-Ins ................................................................................................ 168 

    8.5.2  Pipeline Optimum Sizing using PIPESim ....................................................... 169 

    8.5.3  Wax Mitigation ................................................................................................ 175 

    8.5.4  Slug Suppression System (Sss) ........................................................................ 176 

    8.6  Pipeline Corrosion Management ............................................................................. 176 

    8.6.1  Corrosion Inhibitor Injection ........................................................................... 176 

    8.6.2  Corrosion Allowance ....................................................................................... 176 

    8.6.3  Pipeline Pigging ............................................................................................... 177 

    8.6.4  Corrosion Monitoring ...................................................................................... 177 

    8.7  Operation and Maintenance .................................................................................... 178 

    8.7.1  Operations ........................................................................................................ 178 

    8.7.2  Operating Philosophy....................................................................................... 178 

    8.7.3  Pipeline Operation Philosophy ........................................................................ 179 

    8.7.4 

    Process Control ................................................................................................ 179 

    8.7.5  Pigging ............................................................................................................. 179 

  • 8/17/2019 FDP Aiman J [January 2011]

    11/287

    vi

    8.7.6  Maintenance Philosophy .................................................................................. 179 

    8.8  Abandonment .......................................................................................................... 180 

    8.9  Facilities CAPEX, Decommission and OPEX ........................................................ 180 

    8.9.1  Capital Expenditure (CAPEX) ......................................................................... 180 

    8.9.2  Decommissioning Cost .................................................................................... 181 

    8.9.3  Operating Expenditure (OPEX) ....................................................................... 182 

    Chapter 9  : ECONOMIC ANALYSES .......................................................................... 184 

    9.1  Introduction and Objective ...................................................................................... 184 

    9.2  Development Options and Total Expenditures ....................................................... 185 

    9.3  Fiscal Terms ............................................................................................................ 187 

    9.4  Economic Assumptions ........................................................................................... 188 

    9.5  Economic Analysis and Results .............................................................................. 189 

    9.5.1   Net Cash Flow Profile ...................................................................................... 190 

    9.5.2  Sensitivity Analysis ......................................................................................... 191 

    9.6  Discussion and Recommendation ........................................................................... 193 

    Chapter 10  : HEALTH, SAFETY & ENVIRONMENT ................................................ 195 

    10.1  HSE Management Policy..................................................................................... 195 

    10.2  Risk Acceptance Criteria ..................................................................................... 195 

    10.3  Project HSE Objectives and Program .................................................................. 195 10.4  HSE Hold Points .................................................................................................. 196 

    10.5  Safety Awareness ................................................................................................ 197 

    10.6  Emergency Response Plan (ERP) ........................................................................ 197 

    10.7  Environment Concerns ........................................................................................ 197 

    10.7.1  Drilling Waste .................................................................................................. 197 

    10.7.2  Produced Water ................................................................................................ 198 

    10.7.3  Associated Waste ............................................................................................. 198 

    10.7.4  Gas Venting and Flaring .................................................................................. 198 

    10.8  Safety System ...................................................................................................... 199 

    10.8.1  Safety Shutdown System ................................................................................. 199 

    10.8.2  Flare and Emergency Relief System ................................................................ 199 

    10.8.3  Ventilation........................................................................................................ 200 

    10.9  Transportation ...................................................................................................... 200 

    10.10  HSE for Abandonment ........................................................................................ 201 

    Chapter 11  : FUTURE PLANS ......................................................................................... 203 

    11.1  Introduction ......................................................................................................... 203 

  • 8/17/2019 FDP Aiman J [January 2011]

    12/287

    vii

    11.2  Geology ............................................................................................................... 203 

    11.3  Reserves ............................................................................................................... 204 

    11.4  Reservoir Engineering ......................................................................................... 204 

    11.5  Drilling Engineering ............................................................................................ 204 

    11.6  Production Engineering ....................................................................................... 205 

    11.7  Facilities Engineering .......................................................................................... 205 

    11.8  Economic and HSE .............................................................................................. 205 

    11.9  CO₂ Sequestration................................................................................................ 205 

    11.9.1  Character of Underground Structure and Rock Layers Desired ...................... 206 

    11.9.2  Geologic Site Characterization ........................................................................ 207 

    11.9.3  Costing Methodology....................................................................................... 207 

    11.9.4  Monitoring ....................................................................................................... 208 

    11.9.5  Monitoring ....................................................................................................... 209 

    11.9.6  Raw Cost Estimation........................................................................................ 209 

    11.10  Conclusion ........................................................................................................... 210 

    Chapter 12  : REFERENCES ............................................................................................ 211 

     Appendix A  Geology and Geophysics ........................................................................ 212 

     Appendix B  Petrophysics ............................................................................................ 213 

     Appendix C  Reservoir Engineering............................................................................ 216 

     Appendix D  Production Technology .......................................................................... 225 

     Appendix E  Drilling Engineering ............................................................................... 234 

    E.1  Well Profiles and Trajectories for Six Horizontal Wells ........................................ 234 

    E.2  Pressure Plot and Casing Setting Depth for the Proposed Wells ............................ 238 

    E.3  Casing Design Configuration for the Proposed Wells ............................................ 240 

    E.4  Cementing Calculations .......................................................................................... 251 

    E.5  Drilling Time and Cost Estimation ......................................................................... 258 

     Appendix F  Facilities Engineering ............................................................................. 260 

  • 8/17/2019 FDP Aiman J [January 2011]

    13/287

    viii

    List of Figures

    Figure 1.1 - Location of the Block 6S-18 .................................................................................. 1 

    Figure 1.2 - The work schedule of Gelama Merah Field Development Project ........................ 4 

    Figure 1.3 –  Organization chart of Group 4 ............................................................................... 6 

    Figure 2.1 - Workflow ............................................................................................................... 7 

    Figure 3.1 - Surface map for Unit U3.2 ................................................................................... 12 

    Figure 3.2 - Possible geological features ................................................................................. 13 

    Figure 3.3 - Spreadsheet of horizontal cross section for Gelama Merah 1 and ST-1 .............. 15 

    Figure 3.4 - OWC and GOC determination using pressure gradient plot ................................ 16 

    Figure 3.5 - 3-Dimensional (3-D) Static Model....................................................................... 17 

    Figure 3.6 - The anticline structure with eroded surfaces (unconformity) structure ............... 18 

    Figure 3.7 - Well top correlations using Gamma ray log for GM-1 and GM-1 ST1 ............... 19 

    Figure 3.8 - Stratigraphic correlation for GM-1 and GM-1 ST1 ............................................. 20 

    Figure 3.9 - Regional aerial view of Gelama Merah field ....................................................... 21 

    Figure 3.10 - Regional location of Northern and Southern Inboard Belt with major anticline

    and syncline structure .............................................................................................................. 22 

    Figure 3.11 - Regional cross-section of Southern Inboard Belt............................................... 23 

    Figure 3.12 - Gelama Merah depositional environment model ............................................... 25 

    Figure 3.13 - Sand deposition is from high energy storm generated breaker bar at upper shore

    face on top, moderate energy lower shoreface at middle and low energy environment at base

    sand shows trending coarsening upward sequence .................................................................. 26 

    Figure 3.14 - Depositional environment is shallow marine with wave influence of lower

    coastal plain –  high stand, prograding delta to coastal sediment. ............................................ 28 

    Figure 3.15 - Procedures in developing Gelama Merah static model ...................................... 30 

    Figure 3.16 - Digitized contour points and 3D contour map ................................................... 30 

    Figure 3.17 - Well picks and 3D contour map ......................................................................... 31 

    Figure 3.18 - Area calculated by planimeter and grid square counting ................................... 33 

    Figure 3.19 - Summary Results of Simulation......................................................................... 38 

    Figure 3.20 - OIIP contribution for each sand unit .................................................................. 39 

    Figure 3.21 - GIIP contribution for each sand unit .................................................................. 39 

    Figure 3.22 - Anticline structure with eroded surfaces (unconformity) structure and fault .... 42 

    Figure 3.23 - Anticline structure .............................................................................................. 43 Figure 3.24 - Stratigraphic correlation for heavily faulted formation ..................................... 44 

    http://c/Users/Zairul%20Zahha%20Zabidi/Desktop/Group%204%20-%20FDP%20Final%20Report.docx%23_Toc291427688http://c/Users/Zairul%20Zahha%20Zabidi/Desktop/Group%204%20-%20FDP%20Final%20Report.docx%23_Toc291427688http://c/Users/Zairul%20Zahha%20Zabidi/Desktop/Group%204%20-%20FDP%20Final%20Report.docx%23_Toc291427690http://c/Users/Zairul%20Zahha%20Zabidi/Desktop/Group%204%20-%20FDP%20Final%20Report.docx%23_Toc291427690http://c/Users/Zairul%20Zahha%20Zabidi/Desktop/Group%204%20-%20FDP%20Final%20Report.docx%23_Toc291427693http://c/Users/Zairul%20Zahha%20Zabidi/Desktop/Group%204%20-%20FDP%20Final%20Report.docx%23_Toc291427693http://c/Users/Zairul%20Zahha%20Zabidi/Desktop/Group%204%20-%20FDP%20Final%20Report.docx%23_Toc291427693http://c/Users/Zairul%20Zahha%20Zabidi/Desktop/Group%204%20-%20FDP%20Final%20Report.docx%23_Toc291427690http://c/Users/Zairul%20Zahha%20Zabidi/Desktop/Group%204%20-%20FDP%20Final%20Report.docx%23_Toc291427688

  • 8/17/2019 FDP Aiman J [January 2011]

    14/287

    ix

    Figure 3.25 - Stratigraphic correlation for sand pocket existence ........................................... 45 

    Figure 4.1 - Caliper log ............................................................................................................ 48 

    Figure 4.2 - Highest average value of gamma ray log ............................................................. 53 

    Figure 4.3 - Lowest average value of gamma ray log.............................................................. 53 

    Figure 4.4 - The identified permeable and non-permeable zones ............................................ 54 

    Figure 4.5 - Water and hydrocarbon bearing zone identification using resistivity log and

     porosity log for GM-1 .............................................................................................................. 55 

    Figure 4.6 - Water and hydrocarbon bearing zone identification using resistivity log and

     porosity log for GM-1 ST1 ...................................................................................................... 55 

    Figure 4.7 - Pressure plot for Gelama Merah-1 ....................................................................... 56 

    Figure 4.8 - Sand and shale distribution from the log.............................................................. 58 

    Figure 4.9 - The porosity cut off for Gelama Merah field ....................................................... 62 

    Figure 5.1 - Gelama Merah field pressure data from Gelama Merah-1 well ........................... 65 

    Figure 5.2 - Gelama Merah field temperature data from Gelama Merah-1 well ..................... 66 

    Figure 5.3 - Phase plot for Gelama Merah ST-1 DST#1 generated by EOS ........................... 74 

    Figure 5.4 - PVT matching ...................................................................................................... 76 

    Figure 5.5 - Rock compressibility measurements from eight core samples ............................ 78 

    Figure 5.6 - Porosity-Permeability Model ............................................................................... 81 

    Figure 5.7 - Capillary pressure curve classification based on J-function vs Swnormalized .... 86 

    Figure 5.8 - Normalized relative permeability curve for gas-oil and oil-water ....................... 90 

    Figure 5.9 - Corey fitted curve with de-normalized curve for Oil-Water System ................... 91 

    Figure 5.10 - End-points correlation with porosity and permeability ...................................... 92 

    Figure 5.11 - Drive mechanism of Gelama Merah .................................................................. 96 

    Figure 5.12 - Cumulative production without aquifer support. ............................................... 97 

    Figure 5.13 - Cumulative oil Production (MM stb) and Oil Recovery Factor ........................ 98 

    Figure 5.14 - Porosity Distribution of Gelama Merah reservoir model ................................... 99 

    Figure 5.15 - Simulation results showing different well types (Horizontal and Vertical)

    against well counts ................................................................................................................. 104 

    Figure 5.16 - Simulation results showing optimized performance between vertical and

    horizontal wells ...................................................................................................................... 106 

    Figure 5.17 - Simulation results showing optimized performance for limiting liquid and gas

    rate production ....................................................................................................................... 107 

    Figure 5.18 - Simulation results of production profile, pressure decline and water cut for

    water injector to the aquifer, oil zone, and gas cap ................................................................ 109 

    http://c/Users/Zairul%20Zahha%20Zabidi/Desktop/Group%204%20-%20FDP%20Final%20Report.docx%23_Toc291427721http://c/Users/Zairul%20Zahha%20Zabidi/Desktop/Group%204%20-%20FDP%20Final%20Report.docx%23_Toc291427721http://c/Users/Zairul%20Zahha%20Zabidi/Desktop/Group%204%20-%20FDP%20Final%20Report.docx%23_Toc291427722http://c/Users/Zairul%20Zahha%20Zabidi/Desktop/Group%204%20-%20FDP%20Final%20Report.docx%23_Toc291427722http://c/Users/Zairul%20Zahha%20Zabidi/Desktop/Group%204%20-%20FDP%20Final%20Report.docx%23_Toc291427726http://c/Users/Zairul%20Zahha%20Zabidi/Desktop/Group%204%20-%20FDP%20Final%20Report.docx%23_Toc291427726http://c/Users/Zairul%20Zahha%20Zabidi/Desktop/Group%204%20-%20FDP%20Final%20Report.docx%23_Toc291427726http://c/Users/Zairul%20Zahha%20Zabidi/Desktop/Group%204%20-%20FDP%20Final%20Report.docx%23_Toc291427722http://c/Users/Zairul%20Zahha%20Zabidi/Desktop/Group%204%20-%20FDP%20Final%20Report.docx%23_Toc291427721

  • 8/17/2019 FDP Aiman J [January 2011]

    15/287

    x

    Figure 5.19 - Simulation results of production profile for gas injector to the aquifer, oil zone,

    and gas cap ............................................................................................................................. 110 

    Figure 5.20 - Simulation results of pressure decline and water cut for gas injector to the

    aquifer, oil zone, and gas cap ................................................................................................. 111 

    Figure 5.21 - Simulation results of WAG production profile, pressure decline and water cut

    ................................................................................................................................................ 113 

    Figure 6.1 - Horizontal data for GM-A .................................................................................. 125 

    Figure 6.2 - Gas lift valves design by simulation .................................................................. 129 

    Figure 6.3 - Depth vs. sonic transit time for Gelama Merah-1 .............................................. 133 

    Figure 7.1 - Casing configuration for GM-A ......................................................................... 149 

    Figure 7.2 - Gelama Merah drilling and completion cost vs. time ........................................ 157 

    Figure 8.1 - Types of platform used in field development .................................................... 161 

    Figure 8.2 - Tie-in from GMJT-A to SMP-B diagram .......................................................... 169 

    Figure 9.1 - Production profile for Gelama Merah ................................................................ 185 

    Figure 9.2 Fiscal structure of Gelama Merah field ................................................................ 188 

    Figure 9.3 Net cash flow for Gelama Merah with decommissioning in year 2031 (graph

    changed) ................................................................................................................................. 190 

    Figure 9.4 Spider plot for NPV @ 10% ................................................................................. 191 

    Figure 9.5 Spider plot for IRR ............................................................................................... 192 

    Figure 11.1 - The geological structure of Gelama Merah ...................................................... 203 

    Figure 11.2 - GIIP contribution for each sand unit ................................................................ 204 

    Figure A.1 - Cumulative probability of the total STOIIP for sand unit 5.0 to 9.2................. 212 

    Figure A.2 - Cumulative probability of the total GIIP for sand unit 5.0 to 9.2 ..................... 212 

    Figure B.1 - Non-corrected Neutron-Density crossplot ......................................................... 213 

    Figure B.2 - Corrected Neutron-Density crossplot ................................................................ 214 

    Figure B.3 - M-N crossplot .................................................................................................... 215 

    Figure C.1 - Sand pocket structure ........................................................................................ 216 

    Figure C.2 - Fault structure .................................................................................................... 217 

    Figure C.3 - PVTi output for dynamic model; PVTO –  live oil with dissolved gas ............. 217 

    Figure C.4 - PVTi output for dynamic model; PVDG –  dry gas ........................................... 218 

    Figure C.5 - Un-normalized gas-oil relative Permeability Curve .......................................... 219 

    Figure C.6 - Normalized gas oil Relative permeability curve .............................................. 220 

    Figure C.7 - Sand Facies type 1 –  Gas Oil Relative Permeability Curve .............................. 221 Figure C.8 - Sand Facies Type 2: Gas Oil Relative Permeability curve................................ 222 

  • 8/17/2019 FDP Aiman J [January 2011]

    16/287

    xi

    Figure D.1 - IPR matching for vertical well, Gelama Merah Well Test ................................ 225 

    Figure D.2 - IPR for horizontal GM-A .................................................................................. 225 

    Figure D.3 - Tubing performance at different wellhead pressure .......................................... 226 

    Figure D.4 - Tubing performance with increasing water cut @ WHP of 390 psi ................. 226 

    Figure D.5 - Tubing performance with varying GOR ........................................................... 227 

    Figure D.6 - Tubing performance with pressure depletion .................................................... 227 

    Figure D.7 - Gas lift design for GM-A .................................................................................. 228 

    Figure D.8 - Tubing performance at different wellhead pressure with GLI .......................... 228 

    Figure D.9 - Tubing performance with increasing water cut @ WHP of 390 psi with GLI . 229  

    Figure D.10 - Tubing performance with varying GOR with GLI .......................................... 229 

    Figure D.11 - Tubing performance with pressure depletion with GLI .................................. 230 

    Figure D.12 - Kawasaki and Sumitomo materials selection process ..................................... 231 

    Figure D.13 - Typical horizontal completion configuration for oil producers ...................... 232 

    Figure D.14 - Typical vertical completion configuration for WAG injector ......................... 233 

    Figure E.1 - Plan view for six horizontal wells ..................................................................... 234 

    Figure E.2 - Well trajectory for GM-A .................................................................................. 235 

    Figure E.3 - Well trajectory for GM-B .................................................................................. 235 

    Figure E.4 - Well trajectory for GM-C .................................................................................. 236 

    Figure E.5 - Well trajectory for GM-D .................................................................................. 236 

    Figure E.6 - Well trajectory for GM-E .................................................................................. 237 

    Figure E.7 - Well trajectory for GM-F................................................................................... 237 

    Figure E.8 - Casing setting depth ........................................................................................... 239 

    Figure E.9 - Time-depth curve ............................................................................................... 258 

    Figure F.1 - Pipeline Sizing using PIPESim .......................................................................... 260 

    Figure F.2 - Option 1: A production platform tie-in to the nearby Samarang Mother Platform-

    B (SMP-B) Central Processing Platform (CPP) .................................................................... 260 

    Figure F.3 - A production platform tie-in directly to Labuan Crude Oil Terminal (LCOT) . 261 

    Figure F.4 - Production using floating, production, storage and offloading (FPSO) ............ 261 

  • 8/17/2019 FDP Aiman J [January 2011]

    17/287

    xii

    List of Tables

    Table 2.1 - Data Checklist ......................................................................................................... 8 

    Table 3.1 - Measured area using planimeter and grid square counting for gas zone ............... 34 

    Table 3.2 - Measured area using planimeter and grid square counting for oil zone ................ 35 

    Table 3.3 - Minimum, median and maximum values of N/G, porosity, So and Bo ................ 37 

    Table 3.4 - Minimum, median and maximum values of N/G, porosity, Sg and Bg ................ 37 

    Table 3.5 - Total OIIP and GIIP .............................................................................................. 37 

    Table 3.6 - Sum of OIIP and GIIP ........................................................................................... 41 

    Table 4.1 - Recorded depth from log and well report .............................................................. 48 

    Table 4.2 - Recorded hole and casing size ............................................................................... 48 

    Table 4.3 - Summary of fluid contact ...................................................................................... 56 

    Table 4.4 - Average volume of shale in each sand unit ........................................................... 57 

    Table 4.5 - Average porosity for each sand unit ...................................................................... 60 

    Table 5.1 - Quality check of separator samples ....................................................................... 68 

    Table 5.2 - Compositional analysis of stock tank oil, stock tank gas and calculated wellstream

    composition (adjusted bubble point pressure to 2014 Psig) .................................................... 69 

    Table 5.3 - Constant composition expansion test results at 155°F .......................................... 70 Table 5.4 - Differential vaporization test at 155°F* ................................................................ 72 

    Table 5.5 - Oil and gas viscosity @ 155°F .............................................................................. 73 

    Table 5.6 - Components grouping for regression .................................................................... 75 

    Table 5.7 - Rock compressibility correlations ......................................................................... 78 

    Table 5.8 - Porosity and permeability according to core sample ............................................. 81 

    Table 5.9 - Rock Facies Classification .................................................................................... 81 

    Table 5.10 - Laboratory-reservoir fluid properties for capillary conversion ........................... 82 

    Table 5.11 - Core sample 1-01 properties ................................................................................ 84 

    Table 5.12 - Injected mercury pressure with respect to saturation .......................................... 84 

    Table 5.13 - Capillary Pressure classification according to sand facies .................................. 86 

    Table 5.14 - Core samples for relative permeability curve measurements .............................. 87 

    Table 5.15 - Relative Permeability Measurement.................................................................... 89 

    Table 5.16 - R-Squared error for end-points correlations ........................................................ 93 

    Table 5.17 - Base case results simulation .............................................................................. 103 

    Table 5.18 - Simulation results for Water Injection scheme ................................................. 109 

  • 8/17/2019 FDP Aiman J [January 2011]

    18/287

    xiii

    Table 5.19 - Simulation results for VRR = 1 sensitivity analyses ......................................... 112 

    Table 5.20 - Recovery factor comparison for different geological model ............................. 115 

    Table 5.21 - Screening criteria for EOR ................................................................................ 118 

    Table 5.22 - CO2 technical screening guides ........................................................................ 119 

    Table 5.23 - CO2-miscible/immiscible flooding ................................................................... 119 

    Table 6.1 - Tubing performance at different wellhead pressure (0% water cut) ................... 125 

    Table 6.2 - Tubing performance with increasing water cut @ WHP of 390 psi ................... 126 

    Table 6.3 - Tubing performance with varying GOR.............................................................. 126 

    Table 6.4 - Tubing performance with pressure depletion ...................................................... 126 

    Table 6.5 - ESP and gas lift comparisons .............................................................................. 127 

    Table 6.6 - Production profile natural flow vs. gas lift injection (WHP) .............................. 130 

    Table 6.7 - Production profile natural flow vs. gas lift injection (water cut) ........................ 130 

    Table 6.8 - Production profile natural flow vs. gas lift injection (GOR) ............................... 131 

    Table 6.9 - Production profile natural flow vs. gas lift injection (reservoir pressure depletion)

    ................................................................................................................................................ 131 

    Table 6.10 - Comparison of different options available for sand exclusion .......................... 135 

    Table 6.11 - Well completion matrix ..................................................................................... 137 

    Table 6.12 - Basic data for material selection ........................................................................ 140 

    Table 7.1 - Water depth and average daily rate for several types of MODUs (Source:

    www.rigzone.com) ................................................................................................................. 144 

    Table 7.2 - Well profiles ........................................................................................................ 147 

    Table 7.3 - Well survey and logging ...................................................................................... 148 

    Table 7.4 - PCSB casing design safety factors ...................................................................... 148 

    Table 7.5 - Casing design configuration for the seven proposed wells ................................. 149 

    Table 7.6 - PCSB standard drilling fluid system ................................................................... 152 

    Table 7.7 - Drilling fluid properties ....................................................................................... 152 

    Table 7.8 - Required cement volume ..................................................................................... 153 

    Table 7.9 - BOP standard (surface stack) .............................................................................. 154 

    Table 7.10 - Drilling time and cost summary ........................................................................ 156 

    Table 8.1 - Production forecast for Gelama Merah ............................................................... 162 

    Table 8.2 - Reservoir fluid properties for Gelama Merah ..................................................... 163 

    Table 8.3 - CAPEX for jacket facilities for Gelama Merah .................................................. 181 

    Table 8.4 - Comparison of CAPEX for different options ...................................................... 182 

    Table 8.5 - Operating cost for Gelama Merah platform ........................................................ 182 

  • 8/17/2019 FDP Aiman J [January 2011]

    19/287

    xiv

    Table 9.1 - Proposed Gelama Merah production scenario ..................................................... 184 

    Table 9.2 - Summary of development costs........................................................................... 186 

    Table 9.3 - Fiscal terms for PSC 1985 ................................................................................... 187 

    Table 9.4 Sensitivity manipulation (+/- 40%) results for four main parameters (USD million)

    ................................................................................................................................................ 192 

    Table 9.5 summary of economic analysis of Gelama Merah field ........................................ 193 

    Table 10.1 - Risk comparison between installation and decommissioning process .............. 201 

    Table C.1 - Summary of case studies..................................................................................... 223 

    Table C.2 - Case study for WAG ........................................................................................... 224 

    Table D.1 - Advantages and disadvantages of cased hole and open hole completion........... 230 

    Table E.1 - Prognosed formation pressure and plan mud weight .......................................... 238 

    Table E.2 - Drilling Days ....................................................................................................... 258 

    Table E.3 - Drilling cost......................................................................................................... 259 

  • 8/17/2019 FDP Aiman J [January 2011]

    20/287

    xv

    ABBREVIATIONS

    API American Petroleum InstituteASP alkaline surfactant polymer

    BHP bottom hole pressure

    BOP blowout preventer

    BUR build up rate

    CAPEX capital expenditure

    CCE constant composition expension

    CPP central processing platform

    CWD casing while drilling

    DLL Deep lateral logDST Drill stem test

    DV differential vaporization test

    EMW equivalent mud weight

    EOR enhanced oil recovery

    EUR expected ultimate recovery

    FBU flowing and build up

    FPSO floating, production, storage and offloading vessel

    FSO floating, storage and offloading vessel

    GIIP gas initial in place

    GOC gas oil contact

    GOR gas oil ratio

    GR gamma ray

    GRV gross rock volume

    HSE health, safety and environment

    HTGC high temperature gas chromatography

    ID inner diameter

    IFT interfacial tension

    IPR inflow performance relationship

    KCl potassium chlorideKOP kick off point

    LCOT Labuan Crude Oil Terminal

    LWD logging while drilling

    MD measured depth

    MDT modular formation dynamic tester

    MLL Micro lateral log

    MOPU mobile offshore production unit

    MWD measurement while drilling

     NGA natural gas analyzerOBM oil based mud

  • 8/17/2019 FDP Aiman J [January 2011]

    21/287

    xvi

    OD outer diameter

    OIIP oil initial in place

    OPEX operating expenditure

    PDC polycrystalline diamond compact

    PDO PETRONAS Procedures for Drilling OperationPHPA partially hydrolysed polyacrylamide

    PRSS PETRONAS Research & Scientific Services Sdn. Bhd.

    PTS PETRONAS Technical Standard

    PV pore volume

    PVT pressure, volume and temperature

    QC quality check

    RF recovery factor

    RFT repeat formation tester

    SBM synthetic based mud

    SCAL special core analysis

    STOIIP stock tank oil in place

    TAPR tender assisted platform

    THP tubing head pressure

    TOL top of lead

    TOT top of tail

    TVD true vertical depth

    TVDRKB true vertical depth rotary kelly busher

    UBD underbalance drilling

    VRR voidage replacement rateWAG water alternating gas

    WOC water oil contact

    WWR wire wrapped screens

  • 8/17/2019 FDP Aiman J [January 2011]

    22/287

    xvii

    NOMENCLATURES

    ρ b  bulk density (g/cc)

    ϕd density porosityϕeff effective porosity

    ϕn  neutron porosity (v/v)

    VSH shale volume

    Swirr irreducible water saturation

    R w water saturation

    m cementation factor

    n saturation factor

    R t  true resistivity

    Vclay  clay volumePcr capillary pressure in reservoir condition

    Pcl capillary pressure in laboratory condition

    σr   interfacial tension in reservoir system (dyne/cm)

    σl interfacial tension in laboratory system (dyne/cm)

    Swn normalized drainage water saturation

    Swc  connate water saturation

  • 8/17/2019 FDP Aiman J [January 2011]

    23/287

    1

    Chapter 1 : INTRODUCTION

    1.1  Background of Project

    Gelama Merah is located in Sub-Block 6S-18 of Sabah Basin at the North-West region. This

    field is located at Latitude: 050  33‟ 49.98”N and Longitude: 1140  59‟ 06.34”E which is

    approximately 10.5 km East to Semarang field. Gelama Merah is operated by PETRONAS

    Carigali Sdn Bhd. Two exploration wells had been drilled in Gelama Merah structure which

    is GM-1 and GM 1ST-1 to collect geological, petrophysical and reservoir data for the field

    development. The water depth is 42.8 meter (from the mean sea level to the sea bed).

    The depositional environment was interpreted as Shallow Marine Lower Coastal Plain to

    Coastal Plain with average porosity of 20-30%. The target reservoir is below Stage IVC

    Middle Miocene Unconformity to the top of 9.3 unit sand. The depositional is from South-

    East to North-West and the age is Middle Miocene. The source rock in this region is vicinity

    with large N-trending Labuan –  Paisley Syncline.

    Figure 1.1 - Location of the Block 6S-18

  • 8/17/2019 FDP Aiman J [January 2011]

    24/287

    2

    1.2  Problem Statement

    The Gelama Merah field was discovered in 2002. There are two exploration wells that

     provide the information about the field. With the time constraint, limited data and largenumber of uncertainties, the determination of the best field development plan has been

    considered a challenging task. Further information is required in order to reduce risk.  

    The FDP report should cover all aspects of field development which are as following:

    Phase I : Geology & Geophysics and Petrophysics

    Phase II : Reservoir Engineering

    Phase III : Drilling Engineering, Production Technology, Facilities Engineering

    and Project Economics 

    Phase IV : Sustainable Development and Health, Safety, & Environment

    A dataset for Gelama Merah field are given which includes:

      Well log data for GM-1 and GM-1 ST-1

      Well deviation survey for GM-1 and GM-1 ST-1

      Surface contour map for GM-1 and GM-1 ST-1

      Well marker depth for GM-1 and GM-1 ST-1

      Core data GP-1 and GM-2 ST-1

      PVT fluid data for GM-1

      MDT/RFT data for GM-1

      Well test data for GM-1

      Well drilling data for GM-1 and GM-1 ST-1

    Seismic data were not provided as part of the data acquisition. This will be one the cause of

    uncertainties especially in geology development phase as seismic control is important in

    interpreting important structural features. In addition, the core analysis data is not from GM-1

    or GM 1ST-1 well which increase the uncertainties of the project.

  • 8/17/2019 FDP Aiman J [January 2011]

    25/287

    3

    1.3  Objectives

    The objective of the Gelama Merah Field Development Project (FDP) is to carry out a

    technical and economics study of the proposed development utilizing the latest technology,economics and environmental element. Objectives in formulating the best, possible FDP will

    include the following: 

      Maximizing economic return

      Maximizing recoverable hydrocarbons

      Maximizing hydrocarbon production

      Compliance with health, safety and environment requirements

      Providing recommendations in reducing risks and uncertainties  Providing sustainable development options

    The ultimate objective to come up with technically and economically viable development

     plan to maximize return to operator within the stipulated schedule. The development strategy

    must satisfy the needs of high-level management in making decision of the proposed

    development for Gelama Merah field.

    1.4  Scope of Work

    The general scope of works for the Gelama Merah Field Development Project is:

      To determine the Gross Rock volume, Net to Gross (NTG), porosity and saturation

    distribution profile, types of fluids and their contacts, Stock Tank Oil Initially in Place

    (STOIIP) and Gas Initially in Place (GIIP).

      To develop the static model of Gelama Merah Field.

      To prepare a dynamic model and perform simulation to achieve highest recovery

    factor (RF) and economic return of the field.

      To prepare well completion design and propose a drilling program.

      To propose the most feasible and economical facilities.

      To perform economic evaluation and sensitivity analysis for all development stages

    and options.

      To ensure the FDP is in compliance with national regulation and HSE requirements. 

  • 8/17/2019 FDP Aiman J [January 2011]

    26/287

    4

    1.5  Gantt Chart

    Figure 1.2 - The work schedule of Gelama Merah Field Development Project

    1 FDP Kick-off and Data Handover 9/2/2011 9/2/2011

    2 GnG & Petrophysics 9/2/2011 3/3/2011

    3 Interim Oral Presentation 4/3/2011 4/3/2011

    5 Reservoir Engineering 4/3/2011 11/4/2011

    6 Production Technology 16/3/2011 11/4/2011

    7 Drilling & Completion 16/3/2011 11/4/2011

    8 Facilities Engineering 16/3/2011 11/4/2011

    9 Economics 1/4/2011 11/4/2011

    11 Sustainable Development 12/4/2011 19/4/2011

    12 HSE 12/4/2011 19/4/2011

    13 Final Report Submission 22/4/2011 22/4/2011

    14 Final Oral Presentation 3/5/2011 3/5/2011

    8

    Feb 2011 March 2011 April 2011 May 11No Task Name Start Finish

    27 3 10 17 24 113 20 27 6 13 20

  • 8/17/2019 FDP Aiman J [January 2011]

    27/287

    5

    1.6  Project Team

    The Group 4 team has 10 members who are assigned to come out with a final report on the

    Field Development Plan for Gelama Merah. The followings are the full name of the teammembers and the organizational structure is presented in Error! Reference source not

    found..

      Muhammad Aiman Bin Jamaluddin (Team leader)

      Muhamad Ridzuan Bin Shaedin

      Izzuddin Bin Jamaludin

      Muhammad Hafizzudin Bin Abdul Wahid  Wan Mohd Shafie Bin Wan Ibrahim

       Nurul Fathiah Binti Mohammad

      Hudzaifah Bin Zol Hamidy

       Nurul Syafiqa Binti Abdul Wahab

      Zairul Zahha Bin Zabidi

      Faridzul Rusyidee Bin Ibrahim

    A total of 11 weeks were allocated for the project. The project was initiated in 9 February

    2011 and the team managed to complete the FDP by 21 April, 2011 as shown in the work

    schedule in Figure 1.2. 

  • 8/17/2019 FDP Aiman J [January 2011]

    28/287

    6

  • 8/17/2019 FDP Aiman J [January 2011]

    29/287

    7

    Figure 1.3 –  Organization chart of Group 4

    TEAM LEADER

    PHASE I PHASE II PHASE III PHASE IV

    Geology

    EconomicsFacilities Eng

    Drilling & Completion ProductionPetrophysics Sustainable DevelopmentReservoir

    Leader:

    ShafieMembers:

    HafizzudinFathiahSyafiqa

    Aiman

    Leader:

    AimanMembers:

    RusyideeHudzaifahRidzuan

    Leader:

    ZahhaMembers:

    ShafieHafizzudin

    HSE

    Leader:

    HudzaifahMembers:

    RusyideeAiman

    Leader:

    SyafiqaMembers:

    RidzuanFathiah

    Leader:

    IzzuddinMembers:HafizzudinRidzuan

    Leader:

    RusyideeMember:

    Hafizzudin

    Leader:

    FathiahMember:

    Hafizzudin

    Leader:

    RidzuanMembers:

    IzzuddinZahhaAiman

  • 8/17/2019 FDP Aiman J [January 2011]

    30/287

    8

    Chapter 2 : DATA INVENTORY AND QUALITY CONTROL

    2.1  Introduction

    Before coming up with a strategic planning to develop Gelama Merah field, a systematic data

    inventory was created to ensure all the resources and information are fully utilized and

    maximized in each of the development phases in consideration of the uncertainties and risk

    that will be undertaken based on the data that is available.

    2.2  Workflow

    Below described the workflow in setting up the data inventory undertaken by the

    development team:

    Figure 2.1 - Workflow 

    2.2.1  Data Acquisition and Sorting

    All the data that were given are coming from the exploration and appraisal wells of Gelama

    Merah Field; Gelama Merah-1, Gelama Merah-1 ST-1, Gelama Putih-1, and Gelama Merah-2

  • 8/17/2019 FDP Aiman J [January 2011]

    31/287

    9

    ST-1. Data were sorted according to the wells and sand units for checklist and inventory

    setup. Raw and processed data are separated for quality checking and development team‟s

    interpretation and processing.

    2.2.2  Data Checklist and Inventory Setup

    Table 2.1 - Data Checklist

    Gelama

    Merah-1

    Gelama

    Merah 1ST-1

    Gelama

    Putih-1

    Gelama Merah

    2ST-1

    Seismic Data

    Well Log Data ✓  ✓ 

    Well Deviation Survey✓

     ✓

     Surface Contour Map ✓  ✓ 

    Well Marker Depth ✓  ✓ 

    Core Data ✓  ✓ 

    PVT Fluid Data ✓ 

    MDT/RFT Data ✓ 

    Well Test Data ✓ 

    Well Drilling Data ✓  ✓ 

    Seismic data were not provided as part of the data acquisition. This will be one the cause ofuncertainties especially in Geology development phase as seismic control is important in

    interpreting important structural features for instance fault, unconformity, and anticline

    features. Nevertheless, these uncertainties will be further discussed later.

    Since the team was provided with very limited data, risk and uncertainties are heavily

    focused throughout the development phase, by considering the worst case scenario, and at the

    same coming up with the proposed geological structure and anticipated production profile

    which are solely based on the information that were given at present time.

    In detail, data that were obtained from the acquisition phase are as followed:

      Well Log Data

    Gamma Ray, SP Log, Neutron Log, Neutron Density Log, Resistivity Log,

    Caliper Log

  • 8/17/2019 FDP Aiman J [January 2011]

    32/287

    10

      Deviation Survey

    Well Trajectories, Well Coordinates

      Surface Contour Map

    Well Marker, Well Position, Sand Area and Thickness, Contour Lines  Core Data (Special Core Analysis SCAL)

    Horizontal Porosity and Permeability, Capillary Pressure (Mercury Capillary

    Injection Pressure), Formation Resistivity Measurement, Relative Permeability,

    Rock Compressibility

      PVT Fluid Studies

    Constant Compaction Experiment, Differential Liberation Experiment, Multi-

    stage Separator Test, Gas Chromatography

      Modular Dynamic Tester/Repeat Formation Test Data

    Fluid Pressure Gradient, Fluid Contacts

      Well Test Data

    Zonal Permeability, Boundary/ Drive Mechanism Identification, Hydrocarbon

    Fluid Contacts, Skin Factor

      Well Drilling Data

    Rock Cuttings, Mud Program, Casing Setup, Drill Stem Test, Well Completion

    Diagram

    The list above only described in general the data that were available for interpretation and

    integration for Gelama Merah field development. Each development phases will be

    describing further how the data is processed and utilized.

    2.2.3  Data Digitizing

    Data which is useful in the development phases which are either in written report and

    important images are digitized and extracted as part of the data inventory. From the data

    acquisition, the written reports contain valuable information regarding Gelama Merah field

    thus it is digitized to help the development team in further reducing the uncertainties as well

    as constructing the model that best describe Gelama Merah reservoir by taking into

    consideration all the data that were available.

  • 8/17/2019 FDP Aiman J [January 2011]

    33/287

    11

    2.2.4  Data Quality Check

    Data accuracy and reliability are important to ensure all the interpretation are done correctly,

    truthfully, because in field development , data transfer between development phases happens

    frequently, thus if the data is initially wrong or inaccurate, thus it will jeopardize the whole

    development planning. The goal of quality assurance and quality control (QA/QC) is to

    identify and implement sampling and analytical methodologies which limit the introduction

    of error into analytical data for instance logging data where later in petro physical modeling;

    an intensive interpretation will be carried out. This is one of the important stages in reducing

    the uncertainties which will be carried forward in the development phases. These two

    methods below are used for Gelama Merah field data quality control.

      Data Verification

    Data verification ensures that the requirements stated in the planned data

    acquisition are implemented as prescribed. This means that deficiencies or

     problems that occur during implementation should be documented and reported to

    show the degree of errors or uncertainties and doubt related to the data being

    obtained. Corrective actions undertaken should be reviewed for adequacy and

    appropriateness and documented in response to the data acquisition. These

    assessments may include but are not limited to inspections, QC checks,

    surveillance, technical reviews, performance evaluations, and audits. To ensure

    that conditions requiring corrective actions are identified and addressed promptly,

    data verification activities should be initiated as part of data collection.

      Data Validation

    Validation activities ensure that the results of data collection fulfils the

    requirement as per needed. The data once validated, the data usability is checked

    where it is process of ensuring or determining whether the quality of the data produced meets the intended use of the data. Corrective actions may improve data

    quality and reduce uncertainty, and may eliminate the need to qualify or reject

    data.

    All in all, the key criteria that our development team focused on the data being obtained:

      Accuracy

      Precision  Completeness

  • 8/17/2019 FDP Aiman J [January 2011]

    34/287

    12

      Portability

      Credibility

    Specific data quality control will be explained in details according to each development phases that will be discussed in this report. This to ensure that the risk and uncertainties

    involved in the data are inter-related and well described and illustrated in any of the

    interpretation and findings that has been made.

  • 8/17/2019 FDP Aiman J [January 2011]

    35/287

    13

    Chapter 3 : GEOLOGY & GEOPHYSICS

    3.1  2-Dimensional Cross Imaging

    Surface map consist of contour line which indicate the depth of the area from top view.

    Contour lines connect a series of points of equal elevation and are used to illustrate relief on a

    map. For instance, numerous contour lines which are close to one another show hilly or

    mountainous terrain while in apart, they indicate a gentler slope. The depth range that plotted

    on the top map is within 1300-1800 m. There are a total of 10 layers of surface map which

    are U3.2, U4.0, U5.0, U6.0, U7.0, U8.0, U9.0, U9.1, U9.2 and U10.0. The maps were scaled

    as 1:233 m which is in A4 sizes. For conventional cross section imaging, an identical scale of

    horizontal and vertical are recommended (where the vertical exaggeration is 1) as shown

     below.

    Vertical Exaggeration (VE) = the value of one unit of measurement on the Horizontal (Map) Scale

    the value of the same unit of measurement on the Vertical z

    = 1:233 m = 1

    1:233 m

    Figure 3.1 - Surface map for Unit U3.2 

  • 8/17/2019 FDP Aiman J [January 2011]

    36/287

    14

    From the surface map, the depth cross section was drawn to visualize the contour line in two

    dimensional views. The horizontal and vertical cross sections were both plotted using

    Microsoft Excel spreadsheet. On the x-axis is given for the width (horizontal and vertical)

    while the y-axis indicates the thickness of each zone.

    There are 3 possible geological features that had been done during structural correlation

    workflow before drawing the depth of the cross section. This method was done by drawing

    the initial predictions. Theses geological features are based on the contour map and

    geological information that had been interpreted in two dimensions (2-D). Figure 3.2 below

    shows the possible geological features.

    In Figure 3.3,  the well trajectory was developed using the Measurement While Drilling(MWD) data, where the angle, direction, true vertical depth (TVD), N/S departure and E/W

    departure were already given. The Water Oil Contact (WOC) is found to be at 1502 m TVDss

    while the Gas Oil Contact (GOC) is at 1468 m TVDss. The two points of well given in the

    surface maps are constant in scale for every maps, indicating that the points given are in TVD

    for both the wells.

    The distance between both of the wells are calculated to be approximately 600 m, calculated

    using simple Pythagoras rule where the hypotenuse of the curve should be lesser than 1774.6

    Anticline with eroded surfaces (Unconformity) structure 

    Anticline structure

    Anticline with faultstructure 

    Figure 3.2 - Possible geological features 

  • 8/17/2019 FDP Aiman J [January 2011]

    37/287

    15

    m (as this is a curved, not a straight line) and having the TVD value of 1580 m. Therefore,

    the x and y axis scale both indicate the coordinate of the location in term of meters. From the

    3 plots, we can see that there is no minor or major fault detected. The zones from U3.2 to

    U.9.2 can be seen truncated as the top layers were slightly eroded. Zone U10.0 from the

    figures is set to be the base reservoir which confines the boundary of the reservoir.

    The horizontal cross section for Gelama Merah-1 and ST-1 in Figure 3.3 had been confirmed

    and approved by static model of this field. The static model had been done based on the

    contour map from each sand unit (U3.2 to U.9.2). Figure 3.5 shows the static model which is

    the same as the horizontal cross section that had been done.

  • 8/17/2019 FDP Aiman J [January 2011]

    38/287

    16

    Figure 3.3 - Spreadsheet of horizontal cross section for Gelama Merah 1 and ST-1

    Horizontal Cros s S ection GM-1 S T -1 & GM-1

    1250

    1300

    1350

    1400

    1450

    1500

    1550

    1600

    1650

    1700

    1750

    1800

    1850

    274500 275000 275500 276000 276500 277000 277500 278000 278500 279000 279500

    Length

        D   e   p    t     h

    Unit 4.0

    Unit 4.3

    Unit 5.0

    Unit 6.0

    Unit 7.0

    Unit 8.0

    Unit 9.0

    Unit 9.2

    Unit 9.1

    Unit 3.2

  • 8/17/2019 FDP Aiman J [January 2011]

    39/287

    17

    +

    Pressure Gradient

    1250.0

    1300.0

    1350.0

    1400.0

    1450.0

    1500.0

    1550.0

    1600.0

    1650.0

    1700.0

    1750.0

    1800.0

    1850.0

    2 0 80 . 0 2 1 00 . 0 2 1 20 . 0 2 1 40 . 0 2 1 60 . 0 2 1 80 . 0 2 2 00 . 0 2 2 20 . 0 2 2 40 . 0 2 2 60 . 0

    Formation Pressure (psia)

       m   T   V   D   R   K   B

       (   R   K   B  =   2   7 .   3   m   )

    OWC

    GOC

    All units

    1250

    1300

    1350

    1400

    1450

    1500

    1550

    1600

    1650

    1700

    1750

    1800

    1850

    274500 275000 275500 276000 276500 277000 277500 278000 278500 279000 279500

    Unit4.0

    Unit4.3

    Unit5.0

    Unit6.0

    Unit7.0

    Unit8.0

    Unit9.0

    Unit9.2

    Unit9.1

    Unit3.2

    All units

    1250

    1300

    1350

    1400

    1450

    1500

    1550

    1600

    1650

    1700

    1750

    1800

    1850

    274500 275000 275500 276000 276500 277000 277500 278000 278500 279000 279500

    Unit4.0

    Unit4.3

    Unit5.0

    Unit6.0

    Unit7.0

    Unit8.0

    Unit9.0

    Unit9.2

    Unit9.1

    Unit3.2

     P ress ure Gradient

    1250.0

    1300.0

    1350.0

    1400.0

    1450.0

    1500.0

    1550.0

    1600.0

    1650.0

    1700.0

    1750.0

    1800.0

    1850.0

    2080.0 2100.0 2120.0 2140.0 2160.0 2180.0 2200.0 2220.0 2240.0 2260.0

    Formation Pressure (psia)

      m   T   V   D   R   K   B   (   R

       K   B  =   2   7 .   3  m   )

    OWC

    GOC

    Figure 3.4 - OWC and GOC determination using pressure gradient plot  

  • 8/17/2019 FDP Aiman J [January 2011]

    40/287

    18

    Figure 3.5 - 3-Dimensional (3-D) Static Model

  • 8/17/2019 FDP Aiman J [January 2011]

    41/287

    19

    From the structural correlation, the structure was affected by syncline anticline regimes that

    act as hydrocarbon trap. Therefore, the geological structure was anticline structure in which

    the other limb has been eroded. There