fem 3d solid

46
1 F F inite Element inite Element Method Method FEM FOR 3D SOLIDS for readers of all backgrounds for readers of all backgrounds G. R. Liu and S. S. Quek CHAPTER 9:

Upload: harshilbhuva

Post on 12-Aug-2015

66 views

Category:

Engineering


8 download

TRANSCRIPT

Page 1: Fem 3d solid

1

FFinite Element Methodinite Element Method

FEM FOR 3D SOLIDS

for readers of all backgroundsfor readers of all backgrounds

G. R. Liu and S. S. Quek

CHAPTER 9:

Page 2: Fem 3d solid

2Finite Element Method by G. R. Liu and S. S. Quek

CONTENTSCONTENTS INTRODUCTION TETRAHEDRON ELEMENT

– Shape functions– Strain matrix– Element matrices

HEXAHEDRON ELEMENT– Shape functions– Strain matrix– Element matrices– Using tetrahedrons to form hexahedrons

HIGHER ORDER ELEMENTS ELEMENTS WITH CURVED SURFACES

Page 3: Fem 3d solid

3Finite Element Method by G. R. Liu and S. S. Quek

INTRODUCTIONINTRODUCTION

For 3D solids, all the field variables are dependent of x, y and z coordinates – most general element.

The element is often known as a 3D solid element or simply a solid element.

A 3D solid element can have a tetrahedron and hexahedron shape with flat or curved surfaces.

At any node there are three components in the x, y and z directions for the displacement as well as forces.

Page 4: Fem 3d solid

4Finite Element Method by G. R. Liu and S. S. Quek

TETRAHEDRON ELEMENTTETRAHEDRON ELEMENT

3D solid meshed with tetrahedron elements

Page 5: Fem 3d solid

5Finite Element Method by G. R. Liu and S. S. Quek

TETRAHEDRON ELEMENTTETRAHEDRON ELEMENT

z=Z

x=Xz=Z

y=Y

w 4

v4

u4

w2

u2

u2

w 1

u1

v1

w3

u3

v3 i

j

l

k 1 =

4 =

2 =

3 =

fsy

fsz

fsx

Consider a four node tetrahedron element

1

1

1

2

2

2

3

3

3

4

4

4

node 1

node 2

node 3

node 4

e

u

v

w

u

v

w

u

v

w

u

v

w

d

Page 6: Fem 3d solid

6Finite Element Method by G. R. Liu and S. S. Quek

Shape functionsShape functions

( , , ) ( , , )hex y z x y zU N d

1 2 3 4

1 2 3 4

1 2 3 4

node 1 node 2 node 3 node 4

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

N N N N

N N N N

N N N N

N

where

Use volume coordinates (Recall Area coordinates for 2D triangular element)

1234

2341 V

VL P

1=i

2=j

3=k

4=l

P

y

z

x

Page 7: Fem 3d solid

7Finite Element Method by G. R. Liu and S. S. Quek

Shape functionsShape functions

Similarly,1234

1234

1234

1243

1234

1342 , ,

V

VL

V

VL

V

VL PPP

Can also be viewed as ratio of distances

234 134 1231241 2 3 4

1 234 1 234 1 234 1 234

, , , P P PPd d ddL L L L

d d d d

1=i

2=j

3=k

4=l

P

y

z

x

1 4321 LLLL

since

1234123124134234 VVVVV PPPP

(Partition of unity)

Page 8: Fem 3d solid

8Finite Element Method by G. R. Liu and S. S. Quek

Shape functionsShape functions

jkl

iLi nodes remote theat the 0

node home at the 1

44332211

44332211

44332211

zLzLzLzLz

yLyLyLyLy

xLxLxLxLx

(Delta function property)

1 4321 LLLL

4

3

2

1

4321

4321

4321

1 1 1 11

L

L

L

L

zzzz

yyyy

xxxx

z

y

x

Page 9: Fem 3d solid

9Finite Element Method by G. R. Liu and S. S. Quek

Shape functionsShape functions

Therefore,

where

z

y

x

dcba

dcba

dcba

dcba

V

L

L

L

L 1

6

1

4444

3333

2222

1111

4

3

2

1

1

det , det 1

1

1 1

det 1 , det 1

1 1

j j j j j

i k k k i k k

l l l l l

j j j j

i k k i k k

l l l l

x y z y z

a x y z b y z

x y z y z

y z y z

c y z d y z

y z y z

(Adjoint matrix)

(Cofactors)

i

j

k

l

i= 1,2

j = 2,3

k = 3,4

l = 4,1

Page 10: Fem 3d solid

10Finite Element Method by G. R. Liu and S. S. Quek

Shape functionsShape functions

l

k

j

i

l

k

j

i

l

k

j

i

z

z

z

z

y

y

y

y

x

x

x

x

V

1

1

1

1

det6

1(Volume of tetrahedron)

)(6

1zdycxba

VLN iiiiii Therefore,

Page 11: Fem 3d solid

11Finite Element Method by G. R. Liu and S. S. Quek

Strain matrixStrain matrix

Since, ( , , ) ( , , )hex y z x y zU N d

Therefore, ee BdLNdLU where NLNB

0

0

0

00

00

00

xy

xz

yz

z

y

x

44

44

44

4

4

4

33

33

33

3

3

3

22

22

22

2

2

2

11

11

11

1

1

1

0

0

0

00

00

00

0

0

0

00

00

00

0

0

0

00

00

00

0

0

0

00

00

00

2

1

bd

cd

bc

d

c

b

bd

cd

bc

d

c

b

bd

cd

bc

d

c

b

bd

cd

bc

d

c

b

VB

(Constant strain element)

Page 12: Fem 3d solid

12Finite Element Method by G. R. Liu and S. S. Quek

Element matricesElement matrices

e

T Te eV

dV V k B cB B cB

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

d de e

Te

V V

V V

N N N N

N N N Nm N N

N N N N

N N N N

where

ji

ji

ji

ij

NN

NN

NN

00

00

00

N

Page 13: Fem 3d solid

13Finite Element Method by G. R. Liu and S. S. Quek

Element matricesElement matrices

1 2 3 4

! ! ! !d 6

( 3)!e

m n p qeV

m n p qL L L L V V

m n p q

Eisenberg and Malvern [1973] :

2 0 0 1 0 0 1 0 0 1 0 0

2 0 0 1 0 0 1 0 0 1 0

2 0 0 1 0 0 1 0 0 1

2 0 0 1 0 0 1 0 0

2 0 0 1 0 0 1 0

2 0 0 1 0 0 1

2 0 0 1 0 020

2 0 0 1 0

2 0 0 1

. 2 0 0

2 0

2

ee

V

sy

m

Page 14: Fem 3d solid

14Finite Element Method by G. R. Liu and S. S. Quek

Element matricesElement matrices

Alternative method for evaluating me: special natural coordinate system

z

x z = Z

y

i

j

l

k

1 =

4 =

2 =

3 =

= 0

= 1

= 1

= c o n s ta n t

P

Q

Page 15: Fem 3d solid

15Finite Element Method by G. R. Liu and S. S. Quek

Element matricesElement matrices

z

x z = Z

y

i

j

l

k

1 =

4 =

2 =

3 =

= 0

= 0

= 1

= c o n s ta n t

P

Page 16: Fem 3d solid

16Finite Element Method by G. R. Liu and S. S. Quek

Element matricesElement matrices

z

x z=Z

y

i

j

l

k

1 =

4 =

2 =

3 =

=1

=1

=1

=0

=constant

P

Q R

Page 17: Fem 3d solid

17Finite Element Method by G. R. Liu and S. S. Quek

Element matricesElement matrices

z

x z=Z

y

i

j

l

k

1 =

4 =

2 =

3 =

=0 =0 =1

=1 =0 =1

=1 =1 =1

=0

=constant

P [xP(x3

x2)+x2, yP(y3

y2)+y2,0]

O

B

B [xB(xP

x1)+x1, yB[(yP

y1)y1],0]

O [x=(1 )(x4 xB)xB, y=(1 )(y4

yB)yB, z=(1 )z4]

=constant

=constant

0

)(

)(

223

223

P

P

P

z

yyyy

xxxx

0

)()()(

)()()(

1122311

1122311

B

PB

PB

z

yyyyyyyyy

xxxxxxxxx

4

321214444

321214444

)1(

)()()()(

)()()()(

zz

yyyyyyyyyyy

xxxxxxxxxxx

B

B

)1(

)1(

)1(

4

3

2

1

N

N

N

N

Page 18: Fem 3d solid

18Finite Element Method by G. R. Liu and S. S. Quek

Element matricesElement matrices

Jacobian:

z

y

x

z

y

x

z

y

x

J

2

4

312141313121

312141313121

6

0 0

]det[

V

z

yyyyyy

xxxxxx

J

1 1 1

0 0 0d det d d d

e

T Te

V

V m N N N N [J]

11 12 13 14

1 1 1 21 22 23 242

0 0 031 32 33 34

41 42 43 44

6 d d de eV

N N N N

N N N Nm

N N N N

N N N N

Page 19: Fem 3d solid

19Finite Element Method by G. R. Liu and S. S. Quek

Element matricesElement matrices

l

f

f

f

l

sz

sy

sx

e d ][43

T

Nf

z=Z

x=Xz=Z

y=Y

w 4

v4

u4

w2

u2

u2

w 1

u1

v1

w3

u3

v3 i

j

l

k 1 =

4 =

2 =

3 =

fsy

fsz

fsx

For uniformly distributed load:

13

13

13

13

13

13

432

1

0

0

0

0

0

0

f

sz

sy

sx

sz

sy

sx

e

f

f

ff

f

f

l

Page 20: Fem 3d solid

20Finite Element Method by G. R. Liu and S. S. Quek

HEXAHEDRON ELEMENTHEXAHEDRON ELEMENT

3D solid meshed with hexahedron elements

P P’

P’’ P’’’

Page 21: Fem 3d solid

21Finite Element Method by G. R. Liu and S. S. Quek

Shape functionsShape functions

eNdU

1

2

3

4

5

6

7

8

displacement components at node 1

displacement components at node 2

displacement components at node 3

displacement components at node 4

displacement co

e

e

e

ee

e

e

e

e

d

d

d

dd

d

d

d

d

mponents at node 5

displacement components at node 6

displacement components at node 7

displacement components at node 8

1

1

1

( 1, 2, ,8) ei

u

v i

w

d

17

5 8

6 4

2

0

z

y

x

3

0

fsz

fsyfsx

87654321 NNNNNNNNN

)8,,2,1(

00

00

00

i

N

N

N

i

i

i

iN

Page 22: Fem 3d solid

22Finite Element Method by G. R. Liu and S. S. Quek

Shape functionsShape functions

4(-1, 1, -1)

(1, -1, 1)6

(1, -1, -1)2

1 7

5 8

6 4

2 0

z

y

x

3

0

fsz

fsy fsx

8(-1, 1, 1)

7 (1, 1, 1)

(-1, -1, 1)5

(-1, -1, -1)1

3(1, 1, -1)

iii

iii

iii

zNz

yNy

xNx

),,(

),,(

),,(

8

1

8

1

8

1

)1)(1)(1(

8

1iiiiN

(Tri-linear functions)

Page 23: Fem 3d solid

23Finite Element Method by G. R. Liu and S. S. Quek

Strain matrixStrain matrix

87654321 BBBBBBBBB

whereby

0

0

0

00

00

00

xNyN

xNzN

yNzN

zN

yN

xN

ii

ii

ii

i

i

i

ii LNB

Note: Shape functions are expressed in natural coordinates – chain rule of differentiation

ee BdLNdLU

Page 24: Fem 3d solid

24Finite Element Method by G. R. Liu and S. S. Quek

Strain matrixStrain matrix

z

z

Ny

y

Nx

x

NN

z

z

Ny

y

Nx

x

NN

z

z

Ny

y

Nx

x

NN

iiii

iiii

iiii

Chain rule of differentiation

z

Ny

Nx

N

N

N

N

i

i

i

i

i

i

J

where

z

z

z

y

y

y

x

x

x

J

Page 25: Fem 3d solid

25Finite Element Method by G. R. Liu and S. S. Quek

Strain matrixStrain matrix8 8 8

1 1 1

( , , ) , ( , , ) , ( , , )i i i i i ii i i

x N x y N y z N z

Since,

or

8

1

8

1

8

1

8

1

8

1

8

1

8

1

8

1

8

1

i

ii

i

ii

i

ii

i

ii

i

ii

i

ii

i

ii

i

ii

i

ii

Nz

Nz

Nz

Ny

Ny

Ny

Nx

Nx

Nx

J

1 1 1

2 2 23 5 6 7 81 2 4

3 3 3

4 4 43 5 6 7 81 2 4

5 5 5

6 6 61 2 3 4 5 6 7 8

7 7 7

8 8 8

x y z

x y zN N N N NN N Nx y z

x y zN N N N NN N Nx y z

x y zN N N N N N N N

x y z

x y z

J

Page 26: Fem 3d solid

26Finite Element Method by G. R. Liu and S. S. Quek

Strain matrixStrain matrix

i

i

i

i

i

i

N

N

N

z

Ny

Nx

N

1J

0

0

0

00

00

00

xNyN

xNzN

yNzN

zN

yN

xN

ii

ii

ii

i

i

i

ii LNB

Used to replace derivatives w.r.t. x, y, z with derivatives w.r.t. , ,

Page 27: Fem 3d solid

27Finite Element Method by G. R. Liu and S. S. Quek

Element matricesElement matrices

1 1 1T T

1 1 1d det[ ]d d d

e

e

V

A

k B cB B cB J

Gauss integration: ),,(d)d,(1 1 1

1

1

1

1

1

1 jjikji

n

i

m

j

l

k

fwwwfI

1 1 1

1 1 1d det d d d

e

T Te

V

V

m N N N N [J]

Page 28: Fem 3d solid

28Finite Element Method by G. R. Liu and S. S. Quek

Element matricesElement matrices

For rectangular hexahedron:

det eabc V [J]

88

7877

686766

58575655

4847464544

282726252433

28272625242322

1817161514131211

.

m

mm

mmm

mmmm

mmmmm

mmmmmm

mmmmmmm

mmmmmmmm

m

sy

e

Page 29: Fem 3d solid

29Finite Element Method by G. R. Liu and S. S. Quek

Element matricesElement matrices

(Cont’d)

where

ddd

00

00

00

ddd

00

00

00

00

00

00

ddd

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

ji

ji

ji

j

j

j

i

i

i

jiij

NN

NN

NN

abc

N

N

N

N

N

N

abc

abc NNm

Page 30: Fem 3d solid

30Finite Element Method by G. R. Liu and S. S. Quek

Element matricesElement matrices

(Cont’d)

or

ij

ij

ij

ij

m

m

m

00

00

00

m

where

)1)(1)(1(8

d)1)(1(d)1)(1(d)1)(1(64

ddd

31

31

31

1

1

1

1

1

1

1

1

1

1

jijiji

jijiji

jiij

hab

abc

NNabcm

Page 31: Fem 3d solid

31Finite Element Method by G. R. Liu and S. S. Quek

Element matricesElement matrices

(Cont’d)

E.g.216

8)111)(111)(111(8 3

131

31

33

abcabcm

216

1216

2216

4

216

8

46352817

184538276857473625162413

483726155814786756342312

8877665544332211

abcmmmm

abcmmmmmmmmmmmm

abcmmmmmmmmmmmm

abc

mmmmmmmm

Page 32: Fem 3d solid

32Finite Element Method by G. R. Liu and S. S. Quek

Element matricesElement matrices

(Cont’d)

8

48.

248

4248

42128

242148

1242248

21244248

216

sy

abcex

m

Note: For x direction only

(Rectangular hexahedron)

Page 33: Fem 3d solid

33Finite Element Method by G. R. Liu and S. S. Quek

Element matricesElement matrices

l

f

f

f

l

sz

sy

sx

e d ][43

T

Nf

17

5 8

6 4

2

0

z

y

x

3

0

fsz

fsyfsx

13

13

13

13

13

13

432

1

0

0

0

0

0

0

f

sz

sy

sx

sz

sy

sx

e

f

f

ff

f

f

l

For uniformly distributed load:

Page 34: Fem 3d solid

34Finite Element Method by G. R. Liu and S. S. Quek

Using tetrahedrons to form hexahedronsUsing tetrahedrons to form hexahedrons

Hexahedrons can be made up of several tetrahedrons

1

5

6

8 1 4

3

8

1

2 3

4

5

7

8

3

1 6

8

6

3

2

1

6

3

6 7

8 Hexahedron made up of 5 tetrahedrons:

Page 35: Fem 3d solid

35Finite Element Method by G. R. Liu and S. S. Quek

Using tetrahedrons to form hexahedronsUsing tetrahedrons to form hexahedrons

1

2 3

4

5

7

8

6

1

2

4

5 8

6

2 3

7

8

6 4

1 4

5

6

1

2

4 6

5 8

6 4

Break into three

Hexahedron made up of six tetrahedrons:

Element matrices can be obtained by assembly of tetrahedron elements

Page 36: Fem 3d solid

36Finite Element Method by G. R. Liu and S. S. Quek

HIGHER ORDER ELEMENTSHIGHER ORDER ELEMENTS

Tetrahedron elements

1

9

8

7 10

2

5

6

3

4

5 2 3

6 1 3

7 1 2

8 1 4

9 2 4

10 3 4

(2 -1) for corner nodes 1,2,3,4

4

4

4 for mid-edge nodes

4

4

4

i i iN L L i

N L L

N L L

N L L

N L L

N L L

N L L

10 nodes, quadratic:

Page 37: Fem 3d solid

37Finite Element Method by G. R. Liu and S. S. Quek

HIGHER ORDER ELEMENTSHIGHER ORDER ELEMENTS

Tetrahedron elements (Cont’d)20 nodes, cubic:

12

9 95 1 1 3 11 1 1 42 2

9 96 3 1 3 12 4 1 42 2

9 97 1 1 2 13 22 2

98 2 1 22

99 2 2 32

910 3 2 32

(3 1)(3 2) for corner nodes 1,2,3,4

(3 1) (3 1)

(3 1) (3 1)

(3 1) (3 1)

(3 1)

(3 1)

(3 1)

i i i iN L L L i

N L L L N L L L

N L L L N L L L

N L L L N L L

N L L L

N L L L

N L L L

2 4

914 4 2 42

915 3 3 42

916 4 3 42

17 2 3 4

18 1 2 3

19 1 3 4

20 1 2 4

for edge nodes(3 1)

(3 1)

(3 1)

27

27 for center surface nodes

27

27

L

N L L L

N L L L

N L L L

N L L L

N L L L

N L L L

N L L L

1

13 12

7

15

2

9

6 3

4

5

8

10

11

14

16

17

18

195

20

Page 38: Fem 3d solid

38Finite Element Method by G. R. Liu and S. S. Quek

HIGHER ORDER ELEMENTSHIGHER ORDER ELEMENTS

Brick elements

Lagrange type:

i(I,J,K)

(0,0,0)

(n,m,p)

(n,0,0)

(n,m,0)

(nd=(n+1)(m+1)(p+1) nodes)

1 1 1 ( ) ( ) ( )D D D n m pi I J K I J KN N N N l l l

0 1 1 1

0 1 1 1

( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )n k k nk

k k k k k k k n

l

where

Page 39: Fem 3d solid

39Finite Element Method by G. R. Liu and S. S. Quek

HIGHER ORDER HIGHER ORDER ELEMENTSELEMENTS

Brick elements (Cont’d)

Serendipity type elements:

4(-1, 1, -1)

(1, -1, 1)6

(1, -1, -1)2

8(-1, 1, 1)

7 (1, 1, 1)

(-1, -1, 1)5

(-1,-1,-1)1

3(1, 1, -1)

9(1,0,-1)

10(0,1,-1)

11(-1,0,-1) 12(0-1,-1)

13 143

15

16

17 18

19 20

18

214

214

(1 )(1 )(1 )( 2)

for corner nodes 1, , 8

(1 )(1 )(1 ) for mid-side nodes 10,12,14,16

(1 )(1

j j j j j j i

j j j

j

N

j

N j

N

214

)(1 ) for mid-side nodes 9,11,13,15

(1 )(1 )(1 ) for mid-side nodes 17,18,19,20

j j

j j j

j

N j

20 nodes, tri-quadratic:

Page 40: Fem 3d solid

40Finite Element Method by G. R. Liu and S. S. Quek

HIGHER ORDER ELEMENTSHIGHER ORDER ELEMENTS

Brick elements (Cont’d)

2 2 2164

2964

13

2964

(1 )(1 )(1 )(9 9 9 19)

for corner nodes 1, , 8

(1 )(1 9 )(1 )(1 )

for side nodes with , 1 and 1

(1 )(1 9

j j j j

j j j j

j j j

j

N

j

N

N

13

2964

13

)(1 )(1 )

for side nodes with , 1 and 1

(1 )(1 9 )(1 )(1 )

for side nodes with , 1 and 1

j j j

j j j

j j j j

j j j

N

32 nodes, tri-cubic:

Page 41: Fem 3d solid

41Finite Element Method by G. R. Liu and S. S. Quek

ELEMENTS WITH CURVED ELEMENTS WITH CURVED SURFACESSURFACES

1

4

9 8

7 10

2 5

6 3

7 18

16

12 15

14 11

13

5 17 19

20

6

10 9

8

2

1

4 3

9 8

7 10

2

5

6 3

1

4

13 7 18 16

12 15

14 11

5 17 19

20

6

10

9

8

2

1 4

3

Page 42: Fem 3d solid

42Finite Element Method by G. R. Liu and S. S. Quek

CASE STUDYCASE STUDY

Stress and strain analysis of a quantum dot heterostructure

Material E (Gpa)

GaAs 86.96 0.31

InAs 51.42 0.35

GaAs substrate

GaAs cap layer

InAs wetting layer

InAs quantum dot

Page 43: Fem 3d solid

43Finite Element Method by G. R. Liu and S. S. Quek

CASE STUDYCASE STUDY

Page 44: Fem 3d solid

44Finite Element Method by G. R. Liu and S. S. Quek

CASE STUDYCASE STUDY30 nm

30 nm

Page 45: Fem 3d solid

45Finite Element Method by G. R. Liu and S. S. Quek

CASE STUDYCASE STUDY

Page 46: Fem 3d solid

46Finite Element Method by G. R. Liu and S. S. Quek

CASE STUDYCASE STUDY