fenómenos interfaciales en las baterías de ion litio y … · fenómenos interfaciales en las...

54
Fenómenos interfaciales en las baterías de ion litio y de litio/azufre Perla B. Balbuena Department of Chemical Engineering Department of Materials Science and Engineering Texas A&M University College Station, TX 77843 [email protected] http://engineering.tamu.edu/chemical/people/pbalbuena Buenos Aires, Agosto 2015

Upload: truongdiep

Post on 20-Sep-2018

228 views

Category:

Documents


0 download

TRANSCRIPT

  • Fenmenos interfaciales en las

    bateras de ion litio y de

    litio/azufre

    Perla B. Balbuena

    Department of Chemical Engineering

    Department of Materials Science and Engineering

    Texas A&M University

    College Station, TX 77843

    [email protected]

    http://engineering.tamu.edu/chemical/people/pbalbuena

    Buenos Aires, Agosto 2015

    mailto:[email protected]://engineering.tamu.edu/chemical/people/pbalbuena

  • Interfacial phenomena

    solid

    liquidmass transfer

    heat transfer

    reactions

    2

  • Lithium-ion battery (rechargeable)

    3

  • Lithium-ion battery (rechargeable)

    https://corneliya.wordpress.com/2013/01/15/interkalationsbatterien-das-problem/ 4

  • why batteries?

    5

  • .

    Necesitamos almacenar la energa

    obtenida

    Bateras y supercapacitores son las

    soluciones mas convenientes

    Renewable energies (solar, wind) are intermittent

    Energy can be produced

    but it must be stored

    6

  • Where may energy be stored?

    Liquid fuels (gasoline, methanol, ethanol)

    Gas fuels: Hydrogen (fuel cells)

    Hydroelectric dam (potential energy)

    Electrochemical cells (batteries:

    chemical energy)

    7

  • what is the current status

    of battery technology?

    Li-ion dominates the marketportable electronic devices

    Expensive, relatively low energy density electric vehicles

    8

  • Practical vs. theoretical energy density

    M. M. Thackeray et al., Energy Environ. Sci., 2012, 5, 78549

  • Behavior depends on materials properties

    B. J. Landi et al, Energy Environ. Sci., 2009, 2, 638-654 10

  • Li-S battery

    From Prof. Vilas Pol, Purdue U. https://engineering.purdue.edu/ViPER/index.html11

    https://engineering.purdue.edu/ViPER/index.html

  • Advantages

    S: very abundant

    relatively cheap

    much less toxic than current Co-oxides

    storage capacity: an order of

    magnitude > current cathodes

    May reach goal of 500 km for EVs and be useful for renewable energies

    12

  • Li-S battery: cathode

    P. G. Bruce et al, Nature Materials, 11, p. 19, (2012) 13

  • Li-S battery: anode

    P. G. Bruce et al, Nature Materials, 11, p. 19, (2012)

    . dendrite formation

    . interfacial reactions

    . safety issues

    . insulating Li2S film on surface

    14

  • Challenges

    Solid S bad ionic/electronic conductor

    Changes in S structure during

    charge/discharge (swelling, pulverization)

    Intermediate compounds shuttle between

    electrodes

    Li metal anode issues

    Low stability short battery life

    15

  • Interfacial phenomena

    solid-liquid interfaces

    2

    unwanted reactions

    16

  • Otherwise:

    electron

    transfer from

    electrode to

    electrolyte

    may occur

    eVoc < Eg

    Electrochemical stability

    LUMO

    HOMO

    Eg

    E

    cathode anode

    Electrolyte/

    separator

    mc(Li)

    ma(Li)

    eVoc

    Condition:

    Materials design is crucial

    17

  • First-principles computational

    analyses --

    understand and predict complex

    phenomena

    18

  • Solid-Electrolyte-Interphase layer

    SEI--surface film formed at anode and cathode surfaces

    Due to electrolyte

    decomposition (reduction

    or oxidation)

    May protect and stabilize anodes (carbon, Li metal); be unstable (metal-oxide cathodes; silicon anodes)

    19

  • Thickness: from a

    few to tens or

    hundreds of

    dense inorganic layer

    (from salt decomposition)

    porous organic layer

    (from solvent decomposition)

    SEI mosaic composition

    Verma, Maire, Novak, EC Acta 2010

    20

  • How is the SEI layer formed?

    21

  • EC reductive dissociation

    B3PW91/6-311++G(d,p)

    In gas phase:

    thermodynamically forbidden

    Wang, Nakamura, Ue, Balbuena, JACS, 123, 11708-11718, (2001)

    In solvent:

    1 and 2 e- reductions

    are possible

    22

  • Li+(EC) reductive dissociation

    Ion-pair intermediate;

    e- is transferred to EC

    Much easier !!!

    Li salts facilitate the reaction

    Homolytic

    ring opening

    Radical anion

    23

  • Termination

    reactions

    lithium butylene dicarbonate

    lithium ethylene dicarbonate

    + C2H2

    Another e- transfer

    Li-carbide

    lithium organic salt

    with an ester group

    insoluble inorganic

    Lithium carbonate24

  • EC

    EC + DEC + LiPF6EC + LiPF6

    SEI on carbons for different electrolyte compositions

    G. Ramos Sanchez, A. Harutyunyan, P. B. Balbuena, JES, in press

    Very different SEI

    composition and

    product distribution

    25

  • LithiationMany Cycles

    Si

    LithiationMany Cycles

    SEI

    Si

    Nano Today, Volume 7, Issue 5, October 2012, Pages 414-429, ISSN 1748-0132

    The Si electrode (capacity: one order of

    magnitude > carbon)

    SEI layer formation

    26

  • Voltage range

    H

    O

    OH

    LiSi

    (100)

    (101)

    Li13Si4

    (010)

    Highly lithiatedEarly stages of lithiation

    LiSi4 LiSi2

    ~0.2 V0.8 to~0.4 V

    LiSi15

    27

  • Extent of lithiation: Effect on EC reduction mechanisms

    Very low lithiationLiSi15

    Li over the surface

    plane; Si-OE bonds

    formed

    LiSi2 LiSi4

    Li on the surface plane or in the

    subsurface: Si-C bonds are formed

    Intermediate to high lithiationLi13Si4

    1 and 2-e- mech.

    can coexist

    based on calculated

    activation energies

    2-e- mech. preferred; at higher lithiation

    4 e- mech. observed

    CE-O cleavage

    Ma and Balbuena

    JES, 2014

    JM Martinez de la Hoz, K Leung and P B Balbuena, ACS Appl. Mat. and Interfaces, 2013 28

  • VC reduction on lithiated Si anodesCleavage of C1O2 bond: VC (ads) + 2e

    - OC2H2OCO2-

    (ads)

    a) Li-O interaction

    b) Formation of C-Si bond

    c) Ring opening (open VC2-)

    d) Cleavage of a 2nd C1O2 bond

    CO2 formation results from: VC + CO32- OC2H2OCO2

    2- + CO2

    CO32- is a product of EC decomposition

    (alternative mechanism to Ushirogata et al, JACS 2013)

    VC products: open VC2-, OC2H2O2-, OC2H2OCO2

    2-, CO, CO2

    C=C containing species

    J. M. Martinez de la Hoz and P. B. Balbuena, PCCP, 16 (32), 17091-17098 (2014)

    Allsurfaces

    Higher lithiated

    + 2e-+ 2e-

    29

  • Effect of degree of lithiation on additives

    very low lithiation

    FEC: 2 e- mechanism preferred;

    CC-OE and Cc-F bond cleavages:

    low/moderate barriers

    multi-electron

    reactions

    on highly lithiated

    surfaces

    2 e- transfer

    to FEC ring opening

    C-F bond breaking

    OC2H3O-, CO2-, F-

    OC2H3-, CO2

    2-, F-

    OCOC2H2O2-, CO2

    2-, H, F-open VC2-

    FEC can yield open VC anion

    (path III) and therefore all VC-

    derived products ,

    in addition to other specific FEC

    products (paths I, II, and III)

    J. M. Martinez de la Hoz and P. B. Balbuena, PCCP, 16, 17091-17098 (2014)

    Ma and Balbuena

    JES, 2014

    30

  • Effects of electrolyte composition

    AIMD simulations of mixtures

    of various compositions

    Goals: clarify additive and

    salt effects in mixtures

    Illustration:

    mixture 3

    15% wt VC

    JM Martinez de la Hoz, FA Soto and PB Balbuena, JPCC, 201531

  • surface structure and

    electrolyte chemistry play big roles;

    how does the surface chemistry matter?

    -native oxides

    -artificial coating

  • SiO2 : lithiation and reactivity

    hydroxylated amorphous Si surface33

  • Lithiation formation energy

    -2.25

    -1.75

    -1.25

    -0.75

    -0.25

    0 0.5 1 1.5 2 2.5 3 3.5 4

    Fo

    rma

    tio

    n e

    ne

    rgy

    pe

    r S

    i [e

    V]

    x in LixSiO2.48H0.963

    E(x) = [E(LixSurface) x E(Limetallic) E(Surface)] / N

    Saturation point

    34

  • Structural evolution

    x in LixSiO2.48H0.963

    x = 0 0.37 0.74 1.11 1.48

    1.85 2.22 2.59 2.96 3.33

    S. Perez Beltran, G. E. Ramirez-Caballero, and PB Balbuena, JPCC, 2015 35

  • Lithiation mechanisms in native oxides

    Si1

    Si2O1

    Li1

    Li2

    Li1

    Li2

    hydroxylated amorphous film LixSiO2.48H0.97

    x = 0.37 x = 1.48 x = 3.33

    Si-O broken, Si-Si formed, Li6O complexes formed

    Perez-Beltran Ramirez-Caballero & Balbuena, JPCC in press 36

  • Charge of EC vs.Si-C1 distance

    0

    1

    2

    3

    4

    5

    -3

    -2.5

    -2

    -1.5

    -1

    -0.5

    0

    0 2000 4000 6000 8000

    Si-C

    1 d

    ista

    nce

    []

    Ele

    ctro

    nic

    char

    ge[e

    ]

    Time [fs]

    Totalcharge

    O1-Li+ = 2.39

    O2-C1 = 1.38

    O1-Li+ = 2.02

    O2-C1 = 1.75

    O1-Li+ = 2.0.6

    O2-C1 = 1.65 O1-Li

    + = 2.06 O2-C1 = 3.01

    EC(ac) + 2e- O(C2H4)OCO

    2-(ads)

    Optimized ECmolecule

    37

  • Aluminum alcoxide (alucon) coating

    Collaboration with Chunmei Ban (NREL)

    film formation, lithiation, reactivity38

  • Film lithiation

    -2.63 eV; -3.15 eV; -3.3 eV

    binding to

    the film stronger

    than to Si

    agreement with

    experiment:

    fast film lithiation39

  • Electronic conductivity in alucone film

    film saturation

    once the film is saturated with Li,

    it becomes electronically conductive;

    SEI reactions observed

    Collaboration

    with C. Ban (NREL)

    Balbuena, Seminario, C.H. Ban et al, ACS Appl. Mater. Inter., 7, 11948, (2015)40

  • Role of Additives

    at very low lithiation

    FEC: 2 e- mechanism preferred;

    CC-OE and Cc-F bond cleavages:

    low/moderate barriers

    multi-electron

    reactions

    on highly lithiated

    surfaces

    2 e- transfer

    to FEC ring opening

    C-F bond breaking

    OC2H3O-, CO2-, F-

    OC2H3-, CO2

    2-, F-

    OCOC2H2O2-, CO2

    2-, H, F-open VC2-

    FEC can yield open VC anion

    (path III) and therefore all VC-

    derived products ,

    in addition to other specific FEC

    products (paths I, II, and III)

    Martinez and Balbuena, PCCP, 2014

    Ma and Balbuena JES, 2014;

    K. Leung et al JES 2014

    41

  • Carbon anodes: effect of surface area

    on irreversible capacity

    0

    500

    1000

    1500

    2000

    2500

    3000

    0 300 600 900 1200 1500

    1st

    Lit

    hi/

    de

    lith

    iati

    on

    Ca

    pa

    city

    (mA

    h/g

    )

    BET(m2/g)BET (m2/g)

    1st

    Lith

    iati

    on

    Del

    ith

    iati

    on

    Cap

    acit

    y (m

    Ah

    /g)

    Delithiation

    Lithiation

    Irreversible capacity

    0.0

    10.0

    20.0

    30.0

    40.0

    50.0

    60.0

    70.0

    80.0

    90.0

    100.0

    0 300 600 900 1200 15001

    st C

    ou

    lom

    b E

    ffic

    ien

    cy (

    %)

    BET(m2/g)BET (m2/g)

    1st

    Co

    ulo

    mb

    Eff

    icie

    ncy

    (%

    )

    Experimental data from Honda Research Institute, 2014

    42

  • DFT calculated 1st lithiation

    intercalation energy and voltage

    c) d)

    e) f)a) b)

    low surface area

    high surface area

    Omichi, Ramos Sanchez, Harutyunyan, Balbuena, JES, in press

    high surface area carbons: much higher capacity to store Li in the 1st lithiation

    43

  • Irreversible capacity loss

    Omichi, Ramos Sanchez, Harutyunyan, Balbuena, JES, in press44

  • Complexation energies of SEI

    fragments to LiSpecies Ecomp Ecomp/Li Ecomp-Li

    o Ecomp-Li

    o /Li

    C6O4H10Li5 -9.30 -1.86 -6.59 -3.30

    C7O4H15Li3 -6.17 -2.06 -2.78 -2.78

    C2O1H5Li2 -4.35 -2.18 -2.25 -2.25

    C4O2H10Li5 -9.30 -1.86 -6.59 -3.30

    C2O2H4Li7

    -5.81 -2.90

    C3O2H5Li4 -4.64 -1.16 -1.46 -1.46

    C3O3H4Li2

    -6.27 -3.13

    CO3Li2

    -6.38 -3.19

    LiF

    -4.63 -4.63

    45

  • Irreversible capacity loss due to SEI

    First cycle Second cycle

    # C # Li # Li SEI # Li int

    G-C 144 104 14 70

    Capacity: C6Li4.3 Capacity: C6Li0.83

    G-H 144 48 7 0

    Capacity: C6Li2 Capacity: C6Li1.7

    Table 4. First and second cycle capacity as a function of the functional groups in the edges: G-C is the

    highest surface area carbon; G-H is a less-high surface area carbon.

    46

  • Back to Li-S battery

    2 Highly interconnected chemistry47

  • Cathode Reactions

    S dissolves in electrolyte,

    and reacts with Li

    EDS Elemental Mapping of

    sulfur (29.85 %-wt)

    & carbon (65.83 %-wt)

    A. Dysart and V. Pol,

    Purdue University, 201448

  • LiTFSI +

    electrolyte

    /Li {100}

    EC+salt on Li(100)

    0 fs 6369 fs

    330 K

    Anode Reactions

    49

  • LiTFSI + electrolyte /Li {100}Summary and comparison

    EC

    EC LiTFSI/EC-sideways LiTFSI/EC-upwards

    T [K] Total time [ps] EC-red time [ps] EC-red time [ps] EC-red

    330 14 8.0 7 6.4 6 4.3 7

    400 14 8.0 7 6.1 6 3.9 6

    DOL

    DOL LiTFSI/DOL-sideways LiTFSI/DOL-upwards

    T [K] Total time [ps] DOL-red time [ps] DOL-red time [ps] DOL-red

    330 13 15.0 0 7.0 0 4.7 0

    400 13 15.0 0 6.8 0 4.6 1

    DME

    DME LiTFSI/DME-sideways LiTFSI/DME-upwards

    T [K] Total time [ps] DME-red time [ps] DME-red time [ps] DME-red

    330 9 15.0 0 6.6 5 5.1 0

    400 9 15.0 0 7.6 0 5.0 0

    Very reactive

    Low reactivity

    Intermediate reactivity

    Salt decomposes

    always; however,

    lower reactivity

    with DOL

    Surface reconstruction generates

    sites where dendritic growth

    may occur

    50

  • Shuttle effect: polysulfide

    species migrate to anode

    51

  • Effect of PS species on Li anode

    52

    Li2S formation

  • Conclusions

    Very rich interfacial chemistry

    Li consumed in SEI layer is irreversibly lost

    Need to generate a stable interfacial layer

    Li-S chemistry: highly interconnected system

    Experimental/theoretical interaction essential

  • AcknowledgementsDOE/EERE DE-EE0006832 and

    DE-AC02-05CH11231-Sub 7060634

    Honda Research Institute

    Special thanks to

    supercomputer time from:

    Brazos HPC Cluster

    Collaborators:

    Prof. Jorge Seminario (TAMU)

    Prof. Partha Mukherjee (TAMU)

    Prof. Vilas Pol (Purdue U)

    Dr. Kevin Leung (Sandia Nat. Lab)

    Dr. Susan Rempe (Sandia Nat. Lab)

    Dr. Chunmei Ban (NREL)

    Dr. Avetik Harutyunyan (HRI)

    54