プラズマ実験装置nstx(princeton) · 1 エネルギー機能材料学特論 第5回目...

24
1 エネルギー機能材料学特論 5回目 担当:西野信博 A3-012号室 [email protected] プラズマ実験装置NSTX(Princeton)

Upload: others

Post on 19-Apr-2020

10 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: プラズマ実験装置NSTX(Princeton) · 1 エネルギー機能材料学特論 第5回目 担当:西野信博 A3-012号室 nishino@hiroshima-u.ac.jp プラズマ実験装置NSTX(Princeton)

1

エネルギー機能材料学特論 第5回目

担当:西野信博

A3-012号室

[email protected]

プラズマ実験装置NSTX(Princeton)

Page 2: プラズマ実験装置NSTX(Princeton) · 1 エネルギー機能材料学特論 第5回目 担当:西野信博 A3-012号室 nishino@hiroshima-u.ac.jp プラズマ実験装置NSTX(Princeton)

2

授業の内容

• プラズマを記述する基礎方程式(支配方程式)を求める

– 背景

– アボガドロ数程度の多数の粒子の運動方程式を一つ一つ解いて、プラズマの挙動を予測することは不可能。

• こうした場合、以下の二通りのアプローチがよく使用される。

– 運動学的(微視的, 統計的)方法

• ==>分布関数を使用する

– 流体的(巨視的, 連続体近似)方法

• ==>流体モデルといわれるもの

• 両者を概説します

– 注意:本日も式が多い

あくまでも詳細に記述

平均操作により、滑らかに

Page 3: プラズマ実験装置NSTX(Princeton) · 1 エネルギー機能材料学特論 第5回目 担当:西野信博 A3-012号室 nishino@hiroshima-u.ac.jp プラズマ実験装置NSTX(Princeton)

3

統計的手法のBoltzmann方程式、および、流体の式

• Boltzmann方程式とは、基本的には粒子の保存則で、6次元位相

空間の分布関数 で粒子の移流、拡散を表した式となっ

ていて、Plasmaの方程式の基礎を与える。

• Boltzmann方程式は、以下の式

• 左辺第1項は,分布関数fの局所時間変化

• 左辺第2項は,分布関数fの実空間での移流,第3項は速度空

間での移流を表す

• 右辺は,分布関数fの源(ソース)項で,本質的な源が無くて

も,衝突などがある場合は,以下のように記述し,Sが0でない

vf f a f St

v

( , , )f tr v

coll

fSt

( , , )x y z

v ( v , v , v )x y z

Page 4: プラズマ実験装置NSTX(Princeton) · 1 エネルギー機能材料学特論 第5回目 担当:西野信博 A3-012号室 nishino@hiroshima-u.ac.jp プラズマ実験装置NSTX(Princeton)

4

物理的な考察

• 前ページのボルツマン方程式の意味を考える。

• 粒子はその座標,速度及び時刻tによって指定される。

• より一般的には,正準変数q1,q2,q3,p1,p2,p3及び時刻tで記

述しても良い。後者の場合, 運動方程式に従う粒子の位相空間

における微小体積Δ(= δq1δq2δq3δp1δp2δp3)は,以下

のように保存される。

Page 5: プラズマ実験装置NSTX(Princeton) · 1 エネルギー機能材料学特論 第5回目 担当:西野信博 A3-012号室 nishino@hiroshima-u.ac.jp プラズマ実験装置NSTX(Princeton)

ラグランジュ形式を使えば、 デカルト座標をだろうが、極座標だろうが、 他のどんな座標系であろうが、方程式の形が変わらないことを思い出そう。運動エネルギーT、ポテンシャルVとして、ラグランジアンLは

解析力学を思い出しましょう

L T V

運動方程式は 上のドットは時間微分を表していた。0i i

d L Ldt x x

特に、デカルト座標にこだわらないため、一般に座標をqで書き、一般化座標と呼ぶ。

0i i

d L Ldt q q

ラグランジュアンLをルジャンドル変換し、ハミルトニアンHを導入する

一般化運動量pはi

i

Lpq

i ii

H p q L

5座標の変換を行い、対称性をよくしている

Page 6: プラズマ実験装置NSTX(Princeton) · 1 エネルギー機能材料学特論 第5回目 担当:西野信博 A3-012号室 nishino@hiroshima-u.ac.jp プラズマ実験装置NSTX(Princeton)

ラグランジュ方程式からハミルトン形式へ

• すると、位相空間における粒子の運動はハミルトン方程式によ

って記述される。

• この時,位相空間における粒子群の占める微小体積Δ

• の時間変化は

1 11 1 2 2 3 3

3 33 3 1 1 2 2

( ) ( )

( ) ( )

d q d pd p q q p q pdt dt dt

d q d pp q q p q pdt dt

( , , )i i i

i

dq H q p tdt p

( , , )i i i

i

dp H q p tdt q

6

1 2 3 1 2 3q q q p p p

Page 7: プラズマ実験装置NSTX(Princeton) · 1 エネルギー機能材料学特論 第5回目 担当:西野信博 A3-012号室 nishino@hiroshima-u.ac.jp プラズマ実験装置NSTX(Princeton)

7

リューヴィユの定理

• よって,

• これで,位相空間における体積保存(リューヴィユの定理)が証明された

• 位相空間の微小体積中の粒子数を

• で表した時, を位相空間における分布関数と定義する

• もし,衝突などによる粒子の散乱がなく,粒子群が運動方程式に従って,移動するとすれば,微小体積Δも保存されるから,粒子数保存の法則より粒子密度である分布関数も保存される

2

i ii i i

d H Hq qdt p p q

2

i ii i i

d H Hp pdt q q p

2 2

0i i i i i

d H Hdt p q q p

( , , )i i i if q p t q p ( , , )i if q p t

ここで、

Page 8: プラズマ実験装置NSTX(Princeton) · 1 エネルギー機能材料学特論 第5回目 担当:西野信博 A3-012号室 nishino@hiroshima-u.ac.jp プラズマ実験装置NSTX(Princeton)

8

ボルツマン方程式

• よって, の満たすべき方程式は、

• さらに,粒子の衝突を考慮すれば,

• これを,実空間と速度座標で表すとボルツマン方程式となる

0dfdt

0i i

i i i

dq dpf f ft dt q dt p

i i

i colli i

dq dpf f f ft dt q dt p t

vcoll

f ff ft m t

Fv ( )q F E v B

ボルツマン方程式はプラズマを記述する出発点となる基礎方程式である。

粒子群(ここでは、プラズマ)を表す分布関数 の時間変化を与える式である。

f

f

Page 9: プラズマ実験装置NSTX(Princeton) · 1 エネルギー機能材料学特論 第5回目 担当:西野信博 A3-012号室 nishino@hiroshima-u.ac.jp プラズマ実験装置NSTX(Princeton)

忘れた人は、思い出しましょう

ポテンシャルV中の質量mの粒子の2次元での運動方程式は、デカルト座標をx、yとして、x成分のみ表記すると

例えば、これを極座標で書くと?真面目に式変形すれば、

cos , sinx r y r 座標変換が必要

2cos 2 sin cos sinmx m r r r r

sincosV V Vx r r

2 sincos 2 sin cos sin cos V Vm r r r rr r

よって、以下のような式を得る(x成分のみ分表記)

これではとても解けないから、y成分も合わせて式変形した後

2 2, 2V Vm r r m rr rr

を得る

Vmx Fx

9

Page 10: プラズマ実験装置NSTX(Princeton) · 1 エネルギー機能材料学特論 第5回目 担当:西野信博 A3-012号室 nishino@hiroshima-u.ac.jp プラズマ実験装置NSTX(Princeton)

デカルト座標から極座標へ

,V Vmx myx y

結局

2 2, 2V Vm r r m rr rr

見た目がずいぶん変わってしまった!

0, 0i i i i

d L L d L Ldt x x dt y y

0, 0

i i i i

d L L d L Ldt r r dt

しかし、ラグランジュ方程式を使うと

なんと、解り易いことか!

各自、確認してください。但し、以下の変換は最低必要ですが…

2 212

L T V m x y V 2 2 212

L m r r V

10

Page 11: プラズマ実験装置NSTX(Princeton) · 1 エネルギー機能材料学特論 第5回目 担当:西野信博 A3-012号室 nishino@hiroshima-u.ac.jp プラズマ実験装置NSTX(Princeton)

11

運動論から巨視的方程式へ

• プラズマの挙動を,運動論的な方程式で追うには,前のボルツマン

方程式を解けばよい。しかし,分布関数は6次元空間の関数であり,

これを解く事は数値的にも容易ではない。

• そこで,変数が少ない巨視量の方程式を導入する。

• まず,

• に,r,v,tの関数g(r,v,t)を掛けてvで積分する。

– これを,速度モーメントという。

• g=1,mv,mv2/2でそれぞれ密度,運動量,エネルギーに関する方程式を得ることができる。

• この時,分布関数で平均した量を<>で表す。

vcoll

f ff ft m t

Fv

( , , ) ( , , )( , )

( , , )

g t f t dg t

f t d

r v r v v

rr v v

Page 12: プラズマ実験装置NSTX(Princeton) · 1 エネルギー機能材料学特論 第5回目 担当:西野信博 A3-012号室 nishino@hiroshima-u.ac.jp プラズマ実験装置NSTX(Princeton)

12

平均量での操作

• 分布関数fは粒子数を表すので,

• すると,前ページの式は,以下となる

• 部分積分を用いると,以下の式を得る

( , ) ( , , )n t f t d r r v v

( , ) ( , ) ( , , ) ( , , )n t g t g t f t d r r r v r v v

fg d n g n gt t t

v

v v vi i ii i i

fg d n g n gx x x

v

F Fv v

ii

i i

f ng d gm m

v

Page 13: プラズマ実験装置NSTX(Princeton) · 1 エネルギー機能材料学特論 第5回目 担当:西野信博 A3-012号室 nishino@hiroshima-u.ac.jp プラズマ実験装置NSTX(Princeton)

13

プラズマでは

• 前ページ最後の式は,力Fがローレンツ力だから,

• よって,

• 従って,ボルツマン方程式の速度による積分から

q F E v BF 0v

i

i

F Fv v

ii

i i

f ng d gm m

v

v

coll

g nn g n n g n g gt t m

fgt

v v F

Page 14: プラズマ実験装置NSTX(Princeton) · 1 エネルギー機能材料学特論 第5回目 担当:西野信博 A3-012号室 nishino@hiroshima-u.ac.jp プラズマ実験装置NSTX(Princeton)

14

具体的な式を得る

• g=1とすると,

– 密度 に関する連続の方程式を得る

• g=mvとし,いくつかの式変形の後に

– 運動方程式を得る。ここに、Fは外力、pは圧力(p=nT)、Πは応力テンソル、Rは衝突による運動量の増加

• g=mv2/2とし,いくつかの式変形の後に

– エネルギーの輸送方程式,ここに、qは熱伝導項,Qは発熱項

coll

n fn dt t

v v

ij

j j

dmn n pdt x

v F R

( , )n n t r

3 3 v2 2 ij i

ij j

p p p Qt x

v v q

Page 15: プラズマ実験装置NSTX(Princeton) · 1 エネルギー機能材料学特論 第5回目 担当:西野信博 A3-012号室 nishino@hiroshima-u.ac.jp プラズマ実験装置NSTX(Princeton)

速度モーメントの考え方

ij ij ijP p

前項のような速度vをかけて積分することを、速度のモーメントを取るという。そして、速度をランダムな速度(熱運動)と平均的な運動速度(流体的な速度)に分ける。

すると、圧力テンソルPはr v v v 0r v

v vij ri rj ijP nm

等方的である場合、2 2v v / 3ij ri ij r ij ijP nm nm p

一般的に、2v v ( v / 3)ij ri rj r ijnm

また、他粒子との衝突の効果を表す衝突項は

rcoll

fm dt

R v v

熱伝導項と発熱項は、それぞれ2 2v v( , , ) ,

2 2r r

rcoll

m m ff r t d Q dt

q v v v v

Page 16: プラズマ実験装置NSTX(Princeton) · 1 エネルギー機能材料学特論 第5回目 担当:西野信博 A3-012号室 nishino@hiroshima-u.ac.jp プラズマ実験装置NSTX(Princeton)

16

分かりやすい記号で書きなおす

• 分布関数による平均の記号 を、見慣れた表現に変えて、イオンと電子の平均速度であらわすと、

i iv V e ev V

0ii i

n nt

V 0e

e en nt

V

iii i i

dmn p eZndt x

V E V B R

eee i e

dmn p endt x

V E V B R

32

ee ee e e e e e e

T Vn T p Qt x

V V q

32

ii ii i i i i i i

T Vn T p Qt x

V V q

流体の連続の式

運動方程式

エネルギーの方程式

,

,

Page 17: プラズマ実験装置NSTX(Princeton) · 1 エネルギー機能材料学特論 第5回目 担当:西野信博 A3-012号室 nishino@hiroshima-u.ac.jp プラズマ実験装置NSTX(Princeton)

17

電磁流体力学方程式

• 前頁までで、イオンと電子それぞれの巨視的方程式を導いたが、これらの方程式をつないで、プラズマを一流体として考察する。

• プラズマの質量密度ρm、平均速度V、電荷分密度ρ,電流密度jを次式で定義する

m e e i i i in m n m n m

e e e i i i ei e i i

m i

n m n m m Zm

V VV V V V V

e i een Zen e n

ie e i e e i

e

Znen enn

j V V V V

iiee TnTnp 但し,温度Tの単位はJである

電荷密度

電流密度

圧力

平均速度

(質量)密度

Page 18: プラズマ実験装置NSTX(Princeton) · 1 エネルギー機能材料学特論 第5回目 担当:西野信博 A3-012号室 nishino@hiroshima-u.ac.jp プラズマ実験装置NSTX(Princeton)

18

質量保存の式

• 全部は長くなるため,一部の式のみ式変形を導く

• 電子とイオンの連続の式から

0ii i

n nt

V

0ee e

n nt

V em

im

0e ee e e

m n m nt

V

0i ii i i

m n m nt

V

加えると

0 Vm

m

t

質量保存の式

などの近似の下で,運動方程式など他の式が得られる

1ie mm

厳密に得られた

Page 19: プラズマ実験装置NSTX(Princeton) · 1 エネルギー機能材料学特論 第5回目 担当:西野信博 A3-012号室 nishino@hiroshima-u.ac.jp プラズマ実験装置NSTX(Princeton)

19

+Maxwell方程式

• いくばくかの式変形の後に,一流体の運動方程式とオームの法則が得られる。それと、Maxwell方程式を合わせてMHD方程式ができる。

0mmt

V

0t

j

t

B E 0

0

1t

EB j

0 B 0 E

md pdt x

V E j B

E V B j

質量保存の式

電荷保存の式

Maxwell方程式

運動方程式

一般化したオームの法則

qjjuu pp

tp )1()( 圧力の方程式

(エネルギー保存の変形)

ちなみに変数の数は14個である。

Page 20: プラズマ実験装置NSTX(Princeton) · 1 エネルギー機能材料学特論 第5回目 担当:西野信博 A3-012号室 nishino@hiroshima-u.ac.jp プラズマ実験装置NSTX(Princeton)

20

運動方程式の説明

• 運動方程式の各項は,

md pdt

V E j B

md pdt x

V E j B

質量密度と加速度の積

圧力勾配

応力=粘性

電場による力

電流と磁場による力

粘性の影響が小さいとして,無視できる場合

md pdt x

V 比較すると電磁力が付加されていること

がわかる

粘性項

参考 Navier-Stokes方程式

Page 21: プラズマ実験装置NSTX(Princeton) · 1 エネルギー機能材料学特論 第5回目 担当:西野信博 A3-012号室 nishino@hiroshima-u.ac.jp プラズマ実験装置NSTX(Princeton)

21

電気抵抗について

• プラズマは荷電粒子の集合体であるから,電場Eを加えると電流が流れるが,衝突のために電気抵抗ηが存在する

•• 単位時間に単位体積当りの電子が電場によって受ける運動量の増

加は電気抵抗率をηとすると, より(Bに平行方向)

•• であり,電子がイオンと一回衝突して受ける運動量の増加は

• 程度であるから,単位時間に単位体積当りの電子がの受ける運動量の増加は

•• ここに,νeiは衝突頻度(衝突周波数)である。

• 両者は大きさが等しい(符号は逆)であるから,Te*をkeV単位として

)( eieen VVj

jE jE enen ee

)( ieem VV

emmn eie

eiieee//

//)( jVV

)(*ln103.2 2/3

92// m

TZ

enm

ee

eie

Page 22: プラズマ実験装置NSTX(Princeton) · 1 エネルギー機能材料学特論 第5回目 担当:西野信博 A3-012号室 nishino@hiroshima-u.ac.jp プラズマ実験装置NSTX(Princeton)

補足 温度緩和時間

式の導出は省略するが、温度T,T*でMaxwell分布をした粒子群のクーロン衝突でのエネルギー移動による温度緩和時間は、温度Tの粒子群から見て

ここに、n*は温度T*の粒子数密度、m*、q*はそれぞれ、粒子の質量、電荷である。

電子‐電子、イオン‐イオン、イオン‐電子間の緩和時間をそれぞれ、

とすると

で、電子‐電子、イオン‐イオンの緩和時間よりイオン‐電子のそれがかなり長いことがわかる。

1/2 3/220

2

2 3 * ***ln *

mm T Tm mn qq

, ,ee ii ie

1/2 3/2

3

1 1: : 1: :2

ee ii ie i i i

e e e

m T mZ m T Z m

22

式の導出には、例えば宮本健朗著

「核融合のためのプラズマ物理」など

Page 23: プラズマ実験装置NSTX(Princeton) · 1 エネルギー機能材料学特論 第5回目 担当:西野信博 A3-012号室 nishino@hiroshima-u.ac.jp プラズマ実験装置NSTX(Princeton)

補足 運動量緩和時間

• 前と同様に、運動量に関しても緩和時間があり、衝突前の速度方向とそれに垂直方向の緩和時間は、以下で与えられる。

• テスト粒子を電子にとり、プラズマがZ価のイオンと電子からなるとすると、

• この逆数が前々ページの衝突周波数 となる。

• この場合も、

2 30

/ / 2 2

*

4 vln * *

rmmq q n

2 2 30

2 2

*

2 vln * *

mq q n

2 30

/ / / / 4

2 v2 ln

ee ee ei ei e ee

e

mZ Zn e

ei

23

Page 24: プラズマ実験装置NSTX(Princeton) · 1 エネルギー機能材料学特論 第5回目 担当:西野信博 A3-012号室 nishino@hiroshima-u.ac.jp プラズマ実験装置NSTX(Princeton)

24

演習とレポート

• 電子の電荷-e,イオンの電荷+Zeとして,電荷保存の式を導いてみよう。但し、プラズマは全体で準中性とする。

• レポート

• ケルビン‐ヘルムホルツ不安定性(Kelvin–Helmholtz instability)か• レーリー‐テイラー不安定性(Rayleigh-Taylor instability)のどちらかにつ

いて調べよ。

0t

j

0ee e

n nt

V

0ii i

n nt

V ??

?

加えると

何をかけるとよいでしょう? 電荷保存の式