filling the gaps of 3d mapping in monocular slam: from inverse depth...

21
Filling the gaps of 3D mapping in Monocular SLAM: from inverse depth for planes to super-pixels Jose Martinez-Carranza Associate Professor Royal Society-Newton Advanced Fellowship Robotics Laboratory Computer Science Department Instituto Nacional de Astrofisica Optica y Electronica (INAOE) http://ccc.inaoep.mx/~carranza/ [email protected] Twitter: @josemtzcarranza

Upload: others

Post on 06-Mar-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Filling the gaps of 3D mapping in Monocular SLAM: from inverse depth …csadc/LPM17/slides/LPM2017... · 2017. 12. 21. · , A. Calway. Efficiently Increasing Map Density in Visual

Filling the gaps of 3D mapping in Monocular SLAM: from inverse depth for planes to super-pixels

Jose Martinez-Carranza

Associate Professor Royal Society-Newton Advanced Fellowship

Robotics Laboratory Computer Science Department

Instituto Nacional de Astrofisica Optica y Electronica (INAOE)

http://ccc.inaoep.mx/~carranza/

[email protected]

Twitter: @josemtzcarranza

Page 2: Filling the gaps of 3D mapping in Monocular SLAM: from inverse depth …csadc/LPM17/slides/LPM2017... · 2017. 12. 21. · , A. Calway. Efficiently Increasing Map Density in Visual

Visual Simultaneous Localisation and Mapping

MonoSLAM Filtering Method based on EKF

PTAM Parallel Tracking and Mapping via

Optimisation

Simultaneous Mapping and Camera Pose Estimation

Separating Mapping from Camera Pose Estimation

Page 3: Filling the gaps of 3D mapping in Monocular SLAM: from inverse depth …csadc/LPM17/slides/LPM2017... · 2017. 12. 21. · , A. Calway. Efficiently Increasing Map Density in Visual

Filling the Gaps in EKF SLAM Detecting planes in between map

points using visual appearance Incorporating planes within EKF

mapping (adaptive measurements)

• J. Martinez-Carranza, A. Calway. Efficiently Increasing Map Density in Visual SLAM Using Planar Features with Adaptive Measurements. Proceedings of the British Machine Vision Conference (BMVC). London, UK. September, 2009.

• J. Martinez-Carranza, A. Calway. Appearance Based Extraction of Planar Structure in Monocular SLAM. Proceedings of the Scandinavian Conference on Image Analysis (SCIA). Oslo, Norway. June, 2009.

Page 4: Filling the gaps of 3D mapping in Monocular SLAM: from inverse depth …csadc/LPM17/slides/LPM2017... · 2017. 12. 21. · , A. Calway. Efficiently Increasing Map Density in Visual

Inverse Depth Plane Parameterisation

Follow inverse depth concept on initialising feature without delay and

wait for it to evolve

Page 5: Filling the gaps of 3D mapping in Monocular SLAM: from inverse depth …csadc/LPM17/slides/LPM2017... · 2017. 12. 21. · , A. Calway. Efficiently Increasing Map Density in Visual

Inverse Depth for Feature Initialsiation in Monocular EKF SLAM

Page 6: Filling the gaps of 3D mapping in Monocular SLAM: from inverse depth …csadc/LPM17/slides/LPM2017... · 2017. 12. 21. · , A. Calway. Efficiently Increasing Map Density in Visual

Inverse Depth Parameterisation for Planes

Page 7: Filling the gaps of 3D mapping in Monocular SLAM: from inverse depth …csadc/LPM17/slides/LPM2017... · 2017. 12. 21. · , A. Calway. Efficiently Increasing Map Density in Visual

Inverse Depth Parameterisation for Planes

Page 8: Filling the gaps of 3D mapping in Monocular SLAM: from inverse depth …csadc/LPM17/slides/LPM2017... · 2017. 12. 21. · , A. Calway. Efficiently Increasing Map Density in Visual

Inverse Depth Parameterisation for Planes

Page 9: Filling the gaps of 3D mapping in Monocular SLAM: from inverse depth …csadc/LPM17/slides/LPM2017... · 2017. 12. 21. · , A. Calway. Efficiently Increasing Map Density in Visual

Inverse Depth Parameterisation for Planes

Page 10: Filling the gaps of 3D mapping in Monocular SLAM: from inverse depth …csadc/LPM17/slides/LPM2017... · 2017. 12. 21. · , A. Calway. Efficiently Increasing Map Density in Visual

Inverse Depth Parameterisation for Planes

Page 11: Filling the gaps of 3D mapping in Monocular SLAM: from inverse depth …csadc/LPM17/slides/LPM2017... · 2017. 12. 21. · , A. Calway. Efficiently Increasing Map Density in Visual

Inverse Depth Parameterisation for Planes

Page 12: Filling the gaps of 3D mapping in Monocular SLAM: from inverse depth …csadc/LPM17/slides/LPM2017... · 2017. 12. 21. · , A. Calway. Efficiently Increasing Map Density in Visual

• J. Martinez-Carranza, A. Calway. Efficient Visual Odometry Using a Structure-Driven Temporal Map. Proceedings of the International Conference on Robotics and Automation (ICRA). Minnesota, USA. May, 2012.

• J. Martinez-Carranza, A. Calway. Unifying Planar and Point Mapping in Monocular SLAM. Proceedings of the British Machine Vision Conference (BMVC). Aberystwyth, UK. September, 2010.

Inverse Depth Parameterisation for Planes

Page 13: Filling the gaps of 3D mapping in Monocular SLAM: from inverse depth …csadc/LPM17/slides/LPM2017... · 2017. 12. 21. · , A. Calway. Efficiently Increasing Map Density in Visual

IDPP and Plane Recognition

• O. Haines, J. Martinez-Carranza and A. Calway. Visual mapping using learned structural priors. Proceedings of the International Conference on Robotics and Automation (ICRA). Karlsruhe, Germany. May, 2013.

Page 14: Filling the gaps of 3D mapping in Monocular SLAM: from inverse depth …csadc/LPM17/slides/LPM2017... · 2017. 12. 21. · , A. Calway. Efficiently Increasing Map Density in Visual

Plane Recognition/Orientation in a Single Image

Page 15: Filling the gaps of 3D mapping in Monocular SLAM: from inverse depth …csadc/LPM17/slides/LPM2017... · 2017. 12. 21. · , A. Calway. Efficiently Increasing Map Density in Visual

Plane Recognition/Orientation in a Single Image

• J. A. Osuna-Coutiño, J. Martinez-Carranza, M. Arias-Estrada, W. Mayol-Cuevas. Dominant Plane Recognition in Interior Scenes from a Single Image. International Conference on Pattern Recognition. Cancun (ICPR), Mex. Dec, 2016.

Page 16: Filling the gaps of 3D mapping in Monocular SLAM: from inverse depth …csadc/LPM17/slides/LPM2017... · 2017. 12. 21. · , A. Calway. Efficiently Increasing Map Density in Visual

Enhancing Mapping with Separate Processing

GPU Smart Camera GPU+Superpixels

Page 17: Filling the gaps of 3D mapping in Monocular SLAM: from inverse depth …csadc/LPM17/slides/LPM2017... · 2017. 12. 21. · , A. Calway. Efficiently Increasing Map Density in Visual

Towards a Smart Camera

Page 18: Filling the gaps of 3D mapping in Monocular SLAM: from inverse depth …csadc/LPM17/slides/LPM2017... · 2017. 12. 21. · , A. Calway. Efficiently Increasing Map Density in Visual

• R. de Lima, J. Martinez-Carranza, A. Morales-Reyes and R. Cumplido. Toward a smart camera for fast high-level structure extraction. Journal of Real-Time Image Proc (2017). Springer. https://doi.org/10.1007/s11554-017-0704-5

Towards a Smart Camera

Page 19: Filling the gaps of 3D mapping in Monocular SLAM: from inverse depth …csadc/LPM17/slides/LPM2017... · 2017. 12. 21. · , A. Calway. Efficiently Increasing Map Density in Visual

Filling the Gaps with SuperPixels

Page 20: Filling the gaps of 3D mapping in Monocular SLAM: from inverse depth …csadc/LPM17/slides/LPM2017... · 2017. 12. 21. · , A. Calway. Efficiently Increasing Map Density in Visual

• C. Cruz-Martinez, J. Martínez-Carranza, J. & W. Mayol-Cuevas. Real-time enhancement of sparse 3D maps using a parallel segmentation scheme based on superpixels. Journal of Real-Time Image Proc (2017). Springer. https://doi.org/10.1007/s11554-017-0707-2.

Filling the Gaps with SuperPixels

Page 21: Filling the gaps of 3D mapping in Monocular SLAM: from inverse depth …csadc/LPM17/slides/LPM2017... · 2017. 12. 21. · , A. Calway. Efficiently Increasing Map Density in Visual

• Stochastic mapping enables efficient frame-to-frame processing, but specially when combined with high level structure detection/segmentation. – Let the hard work (of detection/segmentation/recognition) to be done by

machine learning approaches).

• Separating the mapping enables light computing to be carried out where suitable. – Camera pose estimates on low-budget computers/drones. – High cost processing on specialised hardware (GPU, FPGA).

Final Remarks