final report detailed hydrocarbon … report detailed hydrocarbon analysis of face diesel fuels...

95
FINAL REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge Natural Resources Canada, CanmetENERGY–Devon Work performed for: NATURAL RESOURCES CANADA, CANMETENERGY–DEVON COORDINATING RESEARCH COUNCIL FACE WORKING GROUP OCTOBER 2013 NATURAL RESOURCES CANADA DIVISION REPORT CDEV-2013-2065-RT

Upload: duongtu

Post on 12-Mar-2018

219 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

FINAL REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge Natural Resources Canada, CanmetENERGY–Devon Work performed for: NATURAL RESOURCES CANADA, CANMETENERGY–DEVON COORDINATING RESEARCH COUNCIL FACE WORKING GROUP OCTOBER 2013 NATURAL RESOURCES CANADA DIVISION REPORT CDEV-2013-2065-RT

Page 2: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

i

© Department of Natural Resources Canada, 2013. All rights reserved

DISCLAIMER

This report and its contents, the project in respect of which it is submitted, and

the conclusions and recommendations arising from it do not necessarily reflect the

views of the Government of Canada, its officers, employees, or agents.

COPYRIGHT

This report was created during the author’s course of employment with

CanmetENERGY at the Devon Research Centre, Natural Resources Canada, and as

such, Her Majesty the Queen in Right of Canada, as represented by the Minister of

Natural Resources Canada (Her Majesty), is the sole copyright owner of the report.

Natural Resources Canada is a federal government department and any copyrighted

material created by a federal employee is Crown copyright. Under Canadian Law,

Crown copyright cannot be assigned without an Order in Council.

Page 3: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

ii

Natural Resources Canada, CanmetENERGY–Devon

EXECUTIVE SUMMARY

In 2009, the Coordinating Research Council (CRC) Fuels for Advanced

Combustion Engines (FACE) working group designed a matrix of nine diesel fuels to

investigate the influence of cetane number (CN), aromatic content, and 90%

distillation temperature (T90) on advanced combustion strategies.

The application of comprehensive two-dimensional gas chromatography

(GCxGC) to FACE diesel fuels was demonstrated to be a powerful chromatographic

tool yielding reasonable results with enhanced resolution. All experiments were run

twice/three times to determine repeatability. Both reverse and normal column

combination were applied in this work to characterize the hydrocarbon composition

of FACE diesel fuels. In general, six hydrocarbon classes (n-paraffins, iso-paraffins,

cycloparaffins, monoaromatics, diaromatics and polyaromatics) were identified and

quantified using a flame ionization detector (FID). Results presented in this report

support the other analysis presented in CRC report FACE-1 published in July, 2010.

In contrast to other advanced analytical methods, such as GC-Field Ionization

Mass Spectrometry, the revised GCxGC analysis demonstrated the capability to

reveal more detailed chemical structure which can be visually presented and could

assist in more comprehensive correlation analysis in the future.

Page 4: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

iii

Natural Resources Canada, CanmetENERGY–Devon

CONTENTS

DISCLAIMER ................................................................................................................ I

COPYRIGHT .................................................................................................................. I

EXECUTIVE SUMMARY............................................................................................. II

1.0 INTRODUCTION ...............................................................................................1

2.0 EXPERIMENTAL ...............................................................................................2

3.0 RESULTS AND DISCUSSION ...........................................................................5

4.0 CONCLUSIONS ............................................................................................... 22

5.0 ACKNOWLEDGEMENTS ............................................................................... 23

6.0 REFERENCES .................................................................................................. 23

APPENDIX A: ‘NORMAL’ - GCXGC-FID CHROMATOGRAMS ............................ 24

APPENDIX B: ‘REVERSED’ - GCXGC-FID CHROMATOGRAMS ......................... 34

APPENDIX C: ‘NORMAL’ – GCXGC-FID IN BOILING POINT

DOMAIN AND GCXGC SIMDIS ..................................................................... 44

APPENDIX D: ‘REVERSE’ – GCXGC BUBBLE PLOTS .......................................... 50

APPENDIX E: GCXGC RESULTS – GENERAL VIEW ............................................. 56

APPENDIX F: GCXGC RESULTS – DETAILED ....................................................... 64

APPENDIX G: ULSD #2 ............................................................................................. 79

TABLES

Table 1 – Chromatographic conditions for ‘normal’ (VF5 x BPX50)

GCxGC-FID analysis ...........................................................................................3

Table 2 – Chromatographic conditions for ‘reversed’ (VF17xRTX5)

GCxGC-FID analysis ...........................................................................................3

Table 3 – The difference between T10, T50 and T90 for FD1A and FD8A .................... 13

Table E1 – Quantitative results (wt%) of ‘reverse’ - GCxGC-FID

separation for FACE fuels .................................................................................. 62

Table E2 – Relative standard deviation (%RSD) of ‘reverse’ - GCxGC-

FID separation for FACE fuels ........................................................................... 62

Page 5: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

iv

Natural Resources Canada, CanmetENERGY–Devon

Table E3 – Quantitative results (wt%) of ‘normal’ - GCxGC-FID

separation for FACE fuels .................................................................................. 63

Table E4 – Relative standard deviation (%RSD) of ‘normal’ - GCxGC-

FID separation for FACE fuels ........................................................................... 63

Table F1 – ‘normal’ - GCxGC-FID hydrocarbon speciation and

concentration (wt%) for FACE diesel fuels ........................................................ 71

Table F2 – ‘reversed’ - GCxGC-FID hydrocarbon speciation and

concentration (wt%) for FACE diesel fuels ........................................................ 75

FIGURES

Figure 1 – Schematic view of two-dimension chromatographic systems

with a) ‘normal’ and b) ‘reverse’ column setup. ...................................................4

Figure 2 – FACE diesel fuels design matrix .....................................................................5

Figure 3 – Sample: FD1A. (a) The ‘normal’-GCxGC-FID chromatogram

and (b) 3-D representation of ‘normal’-GCxGC-FID

chromatogram. .....................................................................................................7

Figure 4 – Sample: FD8A. (a) The ‘normal’-GCxGC-FID chromatogram

and (b) 3-D representation of ‘normal’-GCxGC-FID

chromatogram. .....................................................................................................8

Figure 5 – Example of the compound class distribution used during

hydrocarbon typing on ‘normal’ GCxGC-FID ......................................................9

Figure 6 – Examples of compounds assigned to groups used in the

‘normal’ GCxGC-FID system ............................................................................ 10

Figure 7 – Schematic example of compound class distribution using

‘reverse’ column set combination and separation conditions for

(VF17xRT5) GCxGC-FID ................................................................................. 11

Figure 8 – The ‘reverse’-GCxGC-FID chromatogram of FD1A fuel .............................. 12

Figure 9 – The ‘reverse’-GCxGC-FID chromatogram of FD8A fuel .............................. 12

Figure 10 – The simdis curves for FD1A and FD8A samples based on

ASTM D2887. ................................................................................................... 13

Page 6: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

v

Natural Resources Canada, CanmetENERGY–Devon

Figure 11 – Bubble plot representation of ‘normal’-GCxGC-FID

chromatogram for FD1A fuel (see Figure 3) ....................................................... 15

Figure 12 – Bubble plot representation of ‘normal’-GCxGC-FID

chromatogram for FD8A fuel (see Figure 4) ....................................................... 16

Figure 13 – Zoom into T10-T50 regions of bubble plots for FD1A (left)

and FD8A (right) ............................................................................................... 16

Figure 14 – Saturates content in FACE diesel fuels (series A) by ‘normal’-

GCxGC-FID (top), ‘reverse’-GCxGC-FID (bottom) .......................................... 19

Figure 15 – Aromatic content in FACE diesel fuels (series A) by ‘normal’-

GCxGC-FID (top), ‘reverse’-GCxGC-FID (bottom) .......................................... 20

Figure 16 – The distribution of %RSD values for ‘normal’ (top) and

‘reverse’ (bottom) GCxGC-FID ......................................................................... 21

Figure A1 – Sample: FD1A. The ‘normal’-GCxGC-FID chromatogram

(top) and (3D representation of ‘normal’-GCxGC-FID

chromatogram (bottom). ..................................................................................... 25

Figure A2 – Sample: FD2A. The ‘normal’-GCxGC-FID chromatogram

(top) and (3D representation of ‘normal’-GCxGC-FID

chromatogram (bottom). ..................................................................................... 26

Figure A3 – Sample: FD3A. The ‘normal’-GCxGC-FID chromatogram

(top) and (3D representation of ‘normal’-GCxGC-FID

chromatogram (bottom). ..................................................................................... 27

Figure A4 – Sample: FD4A. The ‘normal’-GCxGC-FID chromatogram

(top) and (3D representation of ‘normal’-GCxGC-FID

chromatogram (bottom). ..................................................................................... 28

Figure A5 – Sample: FD5A. The ‘normal’-GCxGC-FID chromatogram

(top) and (3D representation of ‘normal’-GCxGC-FID

chromatogram (bottom). ..................................................................................... 29

Figure A6 – Sample: FD6A. The ‘normal’-GCxGC-FID chromatogram

(top) and (3D representation of ‘normal’-GCxGC-FID

chromatogram (bottom). ..................................................................................... 30

Page 7: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

vi

Natural Resources Canada, CanmetENERGY–Devon

Figure A7 – Sample: FD7A. The ‘normal’-GCxGC-FID chromatogram

(top) and (3D representation of ‘normal’-GCxGC-FID

chromatogram (bottom). ..................................................................................... 31

Figure A8 – Sample: FD8A. The ‘normal’-GCxGC-FID chromatogram

(top) and (3D representation of ‘normal’-GCxGC-FID

chromatogram (bottom). ..................................................................................... 32

Figure A9–- Sample: FD9A. The ‘normal’-GCxGC-FID chromatogram

(top) and (3D representation of ‘normal’-GCxGC-FID

chromatogram (bottom). ..................................................................................... 33

Figure B1 – Sample: FD1A. (top) The ‘reverse’-GCxGC-FID

chromatogram and (bottom) 3D representation of ‘reverse’-

GCxGC-FID chromatogram. .............................................................................. 35

Figure B2 – Sample: FD2A. (top) The ‘reverse’-GCxGC-FID

chromatogram and (bottom) 3D representation of ‘reverse’-

GCxGC-FID chromatogram. .............................................................................. 36

Figure B3 – Sample: FD3A. (top) The ‘reverse’-GCxGC-FID

chromatogram and (bottom) 3D representation of ‘reverse’-

GCxGC-FID chromatogram. .............................................................................. 37

Figure B4 – Sample: FD4A. (top) The ‘reverse’-GCxGC-FID

chromatogram and (bottom) 3D representation of ‘reverse’-

GCxGC-FID chromatogram. .............................................................................. 38

Figure B5 – Sample: FD5A. (top) The ‘reverse’-GCxGC-FID

chromatogram and (bottom) 3D representation of ‘reverse’-

GCxGC-FID chromatogram. .............................................................................. 39

Figure B6 – Sample: FD6A. (top) The ‘reverse’-GCxGC-FID

chromatogram and (bottom) 3D representation of ‘reverse’-

GCxGC-FID chromatogram. .............................................................................. 40

Figure B7 – Sample: FD7A. (top) The ‘reverse’-GCxGC-FID

chromatogram and (bottom) 3D representation of ‘reverse’-

GCxGC-FID chromatogram. .............................................................................. 41

Page 8: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

vii

Natural Resources Canada, CanmetENERGY–Devon

Figure B8 – Sample: FD8A. (top) The ‘reverse’-GCxGC-FID

chromatogram and (bottom) 3D representation of ‘reverse’-

GCxGC-FID chromatogram. .............................................................................. 42

Figure B9 – Sample: FD9A. (top) The ‘reverse’-GCxGC-FID

chromatogram and (bottom) 3D representation of ‘reverse’-

GCxGC-FID chromatogram. .............................................................................. 43

Figure C1 – Sample: FD1A. Bubble plot representation as a function of

polarity vs. boiling point .................................................................................... 45

Figure C2 – Sample: FD2A. Bubble plot representation as a function of

polarity vs. boiling point .................................................................................... 45

Figure C3 – Sample: FD3A. Bubble plot representation as a function of

polarity vs. boiling point .................................................................................... 46

Figure C4 – Sample: FD4A. Bubble plot representation as a function of

polarity vs. boiling point .................................................................................... 46

Figure C5 – Sample: FD5A. Bubble plot representation as a function of

polarity vs. boiling point .................................................................................... 47

Figure C6 – Sample: FD6A. Bubble plot representation as a function of

polarity vs. boiling point .................................................................................... 47

Figure C7 – Sample: FD7A. Bubble plot representation as a function of

polarity vs. boiling point .................................................................................... 48

Figure C8 – Sample: FD8A. Bubble plot representation as a function of

polarity vs. boiling point .................................................................................... 48

Figure C9 – Sample: FD9A. Bubble plot representation as a function of

polarity vs. boiling point .................................................................................... 49

Figure D1 – Sample: FD1A. The ‘reverse’-GC×GC-FID bubble plot

chromatogram with selected classification groups. ............................................. 51

Figure D2 – Sample: FD2A. The ‘reverse’-GC×GC-FID bubble plot

chromatogram with selected classification groups. ............................................. 51

Figure D3 – Sample: FD3A. The ‘reverse’-GC×GC-FID bubble plot

chromatogram with selected classification groups. ............................................. 52

Page 9: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

viii

Natural Resources Canada, CanmetENERGY–Devon

Figure D4 – Sample: FD4A. The ‘reverse’-GC×GC-FID bubble plot

chromatogram with selected classification groups. ............................................. 52

Figure D5 – Sample: FD5A. The ‘reverse’-GC×GC-FID bubble plot

chromatogram with selected classification groups. ............................................. 53

Figure D6 – Sample: FD6A. The ‘reverse’-GC×GC-FID bubble plot

chromatogram with selected classification groups. ............................................. 53

Figure D7 – Sample: FD7A. The ‘reverse’-GC×GC-FID bubble plot

chromatogram with selected classification groups. ............................................. 54

Figure D8 – Sample: FD8A. The ‘reverse’-GC×GC-FID bubble plot

chromatogram with selected classification groups. ............................................. 54

Figure D9 – Sample: FD9A. The ‘reverse’-GC×GC-FID bubble plot

chromatogram with selected classification groups. ............................................. 55

Figure E1 – Sample: FD1A. Comparison of hydrocarbon content achieved

for all GCxGC experiments. ............................................................................... 57

Figure E2 – Sample: FD2A. Comparison of hydrocarbon content achieved

for all GCxGC experiments. ............................................................................... 57

Figure E3 – Sample: FD3A. Comparison of hydrocarbon content achieved

for all GCxGC experiments. ............................................................................... 58

Figure E4 – Sample: FD4A. Comparison of hydrocarbon content achieved

for all GCxGC experiments. ............................................................................... 58

Figure E5 – Sample: FD5A. Comparison of hydrocarbon content achieved

for all GCxGC experiments. ............................................................................... 59

Figure E6 – Sample: FD6A. Comparison of hydrocarbon content achieved

for all GCxGC experiments. ............................................................................... 59

Figure E7 – Sample: FD7A. Comparison of hydrocarbon content achieved

for all GCxGC experiments. ............................................................................... 60

Figure E8 – Sample: FD8A. Comparison of hydrocarbon content achieved

for all GCxGC experiments. ............................................................................... 60

Figure E9 – Sample: FD9A. Comparison of hydrocarbon content achieved

for all GCxGC experiments. ............................................................................... 61

Page 10: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

ix

Natural Resources Canada, CanmetENERGY–Devon

Figure F1 – Distribution of n-paraffins (in wt%) by carbon number using

‘normal’-GCxGC-FID (top), ‘reverse’-GCxGC-FID (bottom) ............................ 65

Figure F2 – Distribution of iso-paraffins (in wt%) by carbon number using

‘normal’-GCxGC-FID (top), ‘reverse’-GCxGC-FID (bottom) ............................ 66

Figure F3 – Distribution of total cycloparaffins (in wt%) by carbon

number using ‘normal’-GCxGC-FID.................................................................. 67

Figure F4 – Distribution of mono- and dicycloparaffins (in wt%) by

carbon number using ‘reverse’-GCxGC-FID ...................................................... 68

Figure F5 – Distribution of alkybenzenes (in wt%) by alkyl chain length

using ‘normal’-GCxGC-FID (top), ‘reverse’-GCxGC-FID

(bottom) ............................................................................................................. 69

Figure F6 – Distribution of naphthalenes (in wt%) by alkyl chain length

using ‘normal’-GCxGC-FID (top), ‘reverse’-GCxGC-FID

(bottom) ............................................................................................................. 70

Figure G1 – Sample: CFA. (top) The ‘normal’-GCxGC-FID

chromatogram and (bottom) 3D representation of ‘normal’-

GCxGC-FID chromatogram. .............................................................................. 80

Figure G2 – Sample: CFA. (top) The ‘reverse’-GCxGC-FID

chromatogram and (bottom) 3D representation of ‘reverse’-

GCxGC-FID chromatogram. .............................................................................. 81

Figure G3 – Sample: CFA. Bubble plot representation as a function of

polarity vs. boiling point. ................................................................................... 82

Figure G4 – Sample: CFA. The ‘reverse’-GC×GC-FID bubble plot

chromatogram with selected classification groups. ............................................. 82

Figure G5 – Sample: CFA. Comparison of hydrocarbon content achieved

for all GCxGC experiments. ............................................................................... 83

Figure G6 – Sample: CFA. Distribution of n-paraffins (in wt%) by carbon

number using ‘normal’-GCxGC-FID (blue), ‘reverse’-GCxGC-

FID (red) ............................................................................................................ 83

Page 11: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

x

Natural Resources Canada, CanmetENERGY–Devon

Figure G7 – Sample: CFA. Distribution of isoparaffins (in wt%) by carbon

number using ‘normal’-GCxGC-FID (blue), ‘reverse’-GCxGC-

FID (red). ........................................................................................................... 84

Page 12: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

PROTECTED BUSINESS INFORMATION

Natural Resources Canada, CanmetENERGY–Devon

1

1.0 INTRODUCTION

In 2009, the Coordinating Research Council (CRC) Fuels for Advanced

Combustion Engines (FACE) working group designed a matrix of nine diesel fuels to

investigate the influence of cetane number (CN), aromatic content, and 90%

distillation temperature (T90) on advanced combustion strategies. These parameters

were carefully selected in order to represent important diesel fuel characteristics such

as ignition quality, chemistry and volatility. Both standard ASTM tests and advanced

analytical techniques were engaged to characterize these fuels as fully as possible.

ASTM standard tests included measurements of physical properties (e.g. specific

gravity, viscosity, cetane number, etc.), distillation profiles, aromatics by supercritical

fluid chromatography, elemental analysis, and mass spectrometry among others.

Advanced methods consisted of gas chromatography-field ionization mass

spectrometry (GC-FIMS), comprehensive two-dimensional gas chromatography

(GCxGC) using both mass spectrometer (MS) and flame ionization detector (FID),

and nuclear magnetic resonance (NMR) (1).

Since 2009, CanmetENERGY has greatly improved its GCxGC separation

technique both by examination of a broad range of GC column combination sets and

by adjusting the GC separation parameters. Substantial progress has been made in

development of GCxGC hydrocarbon templates used for both qualitative and

quantitative analysis. Also, visualization aspect of GCxGC data was enhanced.

Complex two-dimensional chromatograms have been converted from a series of

complicated peaks into a series of simple color coded bubbles to discriminate detailed

hydrocarbon types. Taking into consideration these aspects, GCxGC analysis for all

FACE diesel fuels were repeated.

Page 13: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

PROTECTED BUSINESS INFORMATION

Natural Resources Canada, CanmetENERGY–Devon

2

2.0 EXPERIMENTAL

Comprehensive two-dimensional gas chromatography (GCxGC) is a

technique which employs two coupled columns of different selectivity and subjects

the entire sample to a two-dimensional separation. Effluent from the primary column

is continually injected to the secondary column via a device called a modulator.

Finally all of the separated compounds from the second column enter the detector. In

the two-dimensional chromatogram, compounds are separated according to two

different separation mechanisms depending on the selected columns. In the normal

column set-up, the first long (30m) column contains a non-polar stationary phase and

the second short column (~1.5m) a polar stationary phase. This combination allows

all mixture components to be separated according to volatility then polarity,

respectively.

Data handling, such as contour plotting, GC×GC peak collection, retention

time measurements, and peak volume calculations were performed using the

ChromaTOF software provided by Leco Instruments as well as Matlab ™ Mathworks

software (2).

2.1 EXPERIMENTAL CONDITIONS FOR ‘NORMAL’ AND ‘REVERSED’

GCXGC ANALYSIS

CanmetENERGY analytical laboratories have two Agilent 6890N instruments

with a LECO thermal modulator and secondary oven installed (Agilent Technologies,

Mississauga, Canada). The first GC instrument is equipped with a ‘normal’ column

set, i.e. non-polar primary and polar secondary column. This instrument has two

detectors FID and SCD arranged in a tandem configuration. Hence, in addition to the

general hydrocarbon response there is a possibility of providing a detailed sulfur

speciation. The column features and the operating conditions for ‘normal’ GCxGC-

FID experiment are listed in Table 1.

Page 14: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

PROTECTED BUSINESS INFORMATION

Natural Resources Canada, CanmetENERGY–Devon

3

Table 1 – Chromatographic conditions for ‘normal’ (VF5 x BPX50) GCxGC-FID

analysis

1st column Varian Factor 4 VF5-HT, 30 m x 0.32 mm DF:0.1 Main oven program 50C (1) to 350C (0) at 3C/min 2nd column BPX-50, 1.0 m x 0.1 DF:0.1 Secondary oven program 10C offset from main oven Inlet Temperature 350C Injection size 0.1 L Split ratio 400:1 Carrier gas He, constant flow, 1.5 mL/min Modulator temperature 55C offset from main oven Detector FID, 350°C with SCD adapter, 800°C Acquisition rate 100 Hz Modulation period 6 s

On the second GCxGC instrument, columns were installed in ‘reversed’ mode i.e. the

first column is a polar column and the second one is a non-polar column. The

reversed polarity column set-up has been used by CanmetENERGY to improve the

separation between saturates, olefins/cycloparaffins and aromatics; and potentially to

increase peak capacity. The details of column features and the operating conditions

for ‘reverse’ GCxGC column configuration are listed in Table 2.

Table 2 – Chromatographic conditions for ‘reversed’ (VF17xRTX5) GCxGC-FID

analysis

1st column Varian Factor 17 VF17-MS, 30 m x 0.32 mm DF:0.15

Main oven program 40C (5) to 350C (1) at 2C/min 2nd column RTX-5, 1.5 m x 0.18 DF:0.2 Secondary oven program 20C offset from main oven Inlet Temperature 350C Injection size 0.1 L Split ratio 300:1 Carrier gas He, constant flow, 1.5 mL/min Modulator temperature 70C offset from main oven Detector FID, 350 °C Acquisition rate 100 Hz Modulation period 10 s

Page 15: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

PROTECTED BUSINESS INFORMATION

Natural Resources Canada, CanmetENERGY–Devon

4

In the ‘normal’ column setup, chemical compounds are separated according to

their volatility (i.e. boiling point) along the primary column. The second separation is

governed by polarity, which in practice for most hydrocarbon distillates means

separation according to increasing number of aromatic rings. The scheme presented in

Figure 1 shows major differences between ‘normal’ and ‘reversed’ GCxGC set-up as

well as differences in hydrocarbon fingerprint performed on the same sample for both

column modes.

Figure 1 – Schematic view of two-dimension chromatographic systems with a)

‘normal’ and b) ‘reverse’ column setup.

2.2 SAMPLES

Nine FACE diesel samples were obtained from Chevron. These fuels were

designed by Coordinating Research Council (CRC) and commercialized by Chevron

Philips Chemicals Co. The FACE diesel matrix presented in Figure 2 included 9 fuels

arranged in the design space around three fuel properties i.e. cetane number,

aromatics content and T90.

Page 16: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

PROTECTED BUSINESS INFORMATION

Natural Resources Canada, CanmetENERGY–Devon

5

Figure 2 – FACE diesel fuels design matrix

Each FACE fuel (FD1A – FD8A) was run two times on two different GCxGC

chromatographic systems. First GCxGC experiments were performed for the neat fuel

samples. To check if strong coelution occurred between neighboring hydrocarbon

types, the samples were diluted in dichloromethane. Dichloromethane is the primary

solvent used in many GC petrochemical applications due to its high volatility, thus no

interference between solvent peak and the fuel matrix.

FD9A sample was run three times on each GCxGC chromatographic system

where each run was performed under a different split ratio namely, 200:1, 300:1,

400:1.

3.0 RESULTS AND DISCUSSION

3.1 GCXGC-FID QUALITATIVE ANALYSIS

All nine FACE fuels were subjected to both ‘normal’ and ‘reversed’ GCxGC

separation. In this section FD1A (low CN, low aromatics content, low T90) and

FD8A (high CN, high aromatics content, high T90), which are expected to be the

most different from each other (see Figure 2), are used as examples. The complete set

Page 17: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

PROTECTED BUSINESS INFORMATION

Natural Resources Canada, CanmetENERGY–Devon

6

of ‘normal’ and ‘reverse’ GCxGC-FID chromatograms for the remaining samples are

provided in Appendix A and B, respectively.

GCxGC-FID separation can be presented in a 2-D plot (Figures 3a and 4a),

where x-axis shows a primary column separation and y-axis shows secondary column

separation. Signal intensity is illustrated on a color scale. In this report the color

threshold has been set at the same level for each map in order to facilitate visual

comparison among FACE fuels. GCxGC chromatograms can also be presented in a

3-D plot (Figure 3b and 4b). On these 3-D plots the one dimensional profile depicted

in the background is reconstructed by summation of all peaks along the secondary

dimension. The FACE fuel design matrix was attached to each 3-D chromatogram in

order to assist in finding qualitative links between fuel chemistry and target designed

properties.

Page 18: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

PROTECTED BUSINESS INFORMATION

Natural Resources Canada, CanmetENERGY–Devon

7

Figure 3 – Sample: FD1A. (a) The ‘normal’-GCxGC-FID chromatogram and (b) 3-D

representation of ‘normal’-GCxGC-FID chromatogram.

a)

b)

Page 19: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

PROTECTED BUSINESS INFORMATION

Natural Resources Canada, CanmetENERGY–Devon

8

Figure 4 – Sample: FD8A. (a) The ‘normal’-GCxGC-FID chromatogram and (b) 3-D

representation of ‘normal’-GCxGC-FID chromatogram.

a)

b)

Page 20: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

PROTECTED BUSINESS INFORMATION

Natural Resources Canada, CanmetENERGY–Devon

9

Examples of the classification regions for ‘normal’ and ‘reverse’ column

configurations used in this work for hydrocarbon characterization is presented in

Figures 5 and 7, respectively. The hydrocarbon template regions are based on

hydrocarbon standards, GCxGC Time of Flight Mass Spectrometer (TOFMS)

experiments which provided structural information, and natural valleys occurring in

GCxGC chromatograms. The meaning of symbols used on this GCxGC template as

well as selected representative compounds assigned to hydrocarbon classes from the

hydrocarbon template are shown in Figure 6.

Figure 5 – Example of the compound class distribution used during hydrocarbon

typing on ‘normal’ GCxGC-FID

Page 21: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

PROTECTED BUSINESS INFORMATION

Natural Resources Canada, CanmetENERGY–Devon

10

Figure 6 – Examples of compounds assigned to groups used in the ‘normal’ GCxGC-

FID system

Page 22: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

PROTECTED BUSINESS INFORMATION

Natural Resources Canada, CanmetENERGY–Devon

11

Figure 7 – Schematic example of compound class distribution using ‘reverse’ column

set combination and separation conditions for (VF17xRT5) GCxGC-FID

In the ‘normal’ column setup, chemical compounds are separated according to

their volatility (i.e. boiling point) along the primary column. The second separation is

governed by polarity, which in practice for most hydrocarbon distillates means

separation according to increasing number of aromatic rings (Figure 5). In the

‘reverse’ column set up, normal and iso-paraffins elute after aromatics in the second

dimension (Figure 7).

Figures 8 and 9 show the ‘reverse’-GCxGC-FID separation performed on

aforementioned FD1A and FD8A. We can observe that ‘reverse’ column

combination can be more efficient to improve the separation between saturates and

aromatics as well as paraffinic and cycloparaffinic hydrocarbon types. Moreover, the

isoparaffinic peaks (see Figure 8) elute in very specific roof tile order, which allows

for more accurate integration of these hydrocarbon species.

Page 23: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

PROTECTED BUSINESS INFORMATION

Natural Resources Canada, CanmetENERGY–Devon

12

Figure 8 – The ‘reverse’-GCxGC-FID chromatogram of FD1A fuel

Figure 9 – The ‘reverse’-GCxGC-FID chromatogram of FD8A fuel

Page 24: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

PROTECTED BUSINESS INFORMATION

Natural Resources Canada, CanmetENERGY–Devon

13

3.2 POSTPROCESSING OF GCXGC DATA

Simulated distillation by gas chromatography (ASTM D2887) is commonly

used in the petroleum industry for determining the boiling point behavior of refinery

streams. Two radically different simulated distillation profiles for low-T90 (FD1A)

and high-T90 (FD8A) FACE diesel fuels are depicted in Figure 10.

Figure 10 – The simdis curves for FD1A and FD8A samples based on ASTM D2887.

Based on distillation profiles presented in Figure 10, FD1A fuel has a lower

volatility profile than FD8A fuel (presented in Table 3 as a simdis temperature

difference).

Table 3 – The difference between T10, T50 and T90 for FD1A and FD8A

FD1A FD8A ΔT

T10 170.4 253.2 82.8 T50 200.2 278.2 78.0 T50 301.4 367.8 66.4

Page 25: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

PROTECTED BUSINESS INFORMATION

Natural Resources Canada, CanmetENERGY–Devon

14

Also in Figure 10, we can observe that presented simdis profiles are characterized by

sharp and jigsaw profiles over a wide boiling point range. For instance, simdis for

FD8A fuel shows that from IBP to 258°C there is a small amount of hydrocarbons,

followed by at least three steep hills before the mixture achieved 300°C. We can

hypothesize that these slopes are likely due to a large amount of narrow-boiling

material. However, the types of hydrocarbons affecting the trend are not identified by

distillation alone. Finally, above 300°C the curve climbs relatively gently.

Generally speaking the chemical information inferred from simdis is crude

and incomplete. In the previous section, we showed that GCxGC analysis provides a

detailed view of the hydrocarbon fingerprint of the samples. Merging GCxGC

structural information with distillation profiles allows for creation of an enhanced

view of chemical composition in boiling point domain. To achieve this, peak tables

obtained after preprocessing with ChromaTOF software were further processed using

MATLAB® programming environment (2). The first-dimension retention time was

converted into a temperature scale using a correlation established between the boiling

point of n-paraffins and their retention time. This exercise allowed for the

presentation of GC×GC-FID maps in the D2887 distillation temperature domain.

Figures 11 and 12 show preprocessed ‘normal’ GCxGC-FID chromatograms for

FD1A and FD8A fuels. Appendix C (Figures C1 – C9) contains similar plots for all

FACE diesel fuels. In all these figures, peaks found in the chromatograms were

presented in bubble plot form, where the size of the bubble is related to the compound

concentration. The simdis curve obtained from ASTM D2887 analysis was

superimposed on each chromatogram as a dashed magenta line. The dashed blue line

following the magenta simdis line represents the GCxGC simdis profile. Black dotted

lines on the pictures show the simdis regions T10, T50 and T90, respectively. On

each of the bubble plots, just above the x-axis, there is indication of n-paraffinic

carbon number labeled in green.

Figures 11 and 12 reveal the entire chemical picture hidden behind the D2887

simdis elution profile. Previously, FD8A simdis data (Figure 10) demonstrated a

jigsaw trend in the volatility profile. The enhanced GCxGC chromatogram presented

in Figure 12 shows that FD8A fuel consists of large concentrations of n-paraffins

Page 26: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

PROTECTED BUSINESS INFORMATION

Natural Resources Canada, CanmetENERGY–Devon

15

(tetradecane, pentadecane, etc) and at least three large peaks belonging to diaromatic

group (most likely biphenyls or diphenyl alkanes) which can explain the unusual

simdis curve behavior for this sample.

Figure 11 – Bubble plot representation of ‘normal’-GCxGC-FID chromatogram for

FD1A fuel (see Figure 3)

Page 27: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

PROTECTED BUSINESS INFORMATION

Natural Resources Canada, CanmetENERGY–Devon

16

Figure 12 – Bubble plot representation of ‘normal’-GCxGC-FID chromatogram for

FD8A fuel (see Figure 4)

Temperature distance between T10 and T50 is almost the same for both FD1A

and FD8A fuels, but the amount and type of hydrocarbon compounds located in this

temperature range of is notably different (see Figure 13).

Figure 13 – Zoom into T10-T50 regions of bubble plots for FD1A (left) and FD8A

(right)

Page 28: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

PROTECTED BUSINESS INFORMATION

Natural Resources Canada, CanmetENERGY–Devon

17

The described method of GCxGC data presentation fully assists in

interpretation of both simdis profiles and chromatographic separation and most

importantly it helps readers to visually distinguish the compositional fingerprints

among FACE diesel fuels.

Similar methods of presentation of ‘reverse’-GCxGC-FID chromatograms are

reported in Appendix D. However, using reversed column configuration the

separation mechanisms on the primary column are based both on π- π interactions and

molecular size. Hence, the correlation between the retention time and the boiling

point is not valid anymore, and we are not able present ‘reverse’-GCxGC-FID bubble

plots in the temperature domain.

3.3 QUANTITATIVE GCXGC ANALYSIS

Detectors used in GCxGC systems must be characterized by small internal

volumes, short rise times, and high data acquisition rates. One of the detectors that

meet these demands and that is in use at CanmetENERGY is the flame ionization

detector (FID). The FID response is linear over a very wide range of concentrations

and is proportional to the mass flow rate of carbon. It therefore may be considered a

general hydrocarbon detector. All quantitative analysis provided in this report are

based on the FID response. Using a FID, the response factors of saturate and aromatic

hydrocarbons are approximately the same (within 5%) (3). Therefore, in this report

we assume that the normalized peak area percentage calculated by integration of the

GCxGC chromatograms can be reported as a weight percentage (wt%).

Quantitative information on hydrocarbon content obtained after ‘normal’ and

‘reverse’ GCxGC-FID analysis can be found in Figures 14 and 15. Results provided

from both ‘normal’ and ‘reverse’ GCxGC column combinations demonstrate

agreement between specific hydrocarbon content.

Figure 14 show saturates content including three types of hydrocarbons:

n-paraffins, iso-paraffins and cycloparaffins. The low cetane number and low

aromatics fuels (FD1A and FD2A) show the highest isoparaffin content in the FACE

group. However, according to bubble plots presented in Figure C1 and C2, most of

the isoparaffins boil below 240 °C. FD4A also has high content of iso-paraffins

Page 29: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

PROTECTED BUSINESS INFORMATION

Natural Resources Canada, CanmetENERGY–Devon

18

(~40wt%), but they are largely spread out over the diesel boiling range (see Figure

C4). High cetane number fuels (FD5A-FD8A) have high n-paraffin content (12-

33wt%). The exception is FD6A, which has almost 3 times less n-paraffin content

than other fuels from this group. Bubble plots (Figures C5 – C8) reveal that fuels

FD5A, FD7A and FD8A have high content of tetradecane and pentadecane (red

bubbles, bp. range: 250-280°C) while FD6A shows the highest cycloparaffin content

in the FACE fuel group.

The aromatic hydrocarbon types presented in Figure 14 consist of

alkylbenzenes, indanes/tetralins and diaromatics. In general Fuel FD6A demonstrates

low aromatic content and the lowest alkylbenzene content in particular. We can see

clearly from figures presented in Appendix C that during preparation of FACE fuels,

alkylbenzenes (green bubbles, bp. range: 250-280°C) could be spiked by a common

refinery stream. Fuels FD3A, FD4A, FD7A, and FD8A have very high aromatic

content (41 to 50wt%). However the ratio of aromatic subtypes namely

monoaromatic/diaromatic is totally different. Fuels FD7A and FD8A show unusually

high amount of diaromatics. In previous report it was shown that these diaromatic can

be either 1,1-diphenyl ethanes or biphenyls (1).

Page 30: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

PROTECTED BUSINESS INFORMATION

Natural Resources Canada, CanmetENERGY–Devon

19

Figure 14 – Saturates content in FACE diesel fuels (series A) by ‘normal’-GCxGC-

FID (top), ‘reverse’-GCxGC-FID (bottom)

‘normal’ – GCxGC-FID

‘reverse’ – GCxGC-FID

Page 31: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

PROTECTED BUSINESS INFORMATION

Natural Resources Canada, CanmetENERGY–Devon

20

Figure 15 – Aromatic content in FACE diesel fuels (series A) by ‘normal’-GCxGC-

FID (top), ‘reverse’-GCxGC-FID (bottom)

Figures 14 and 15 report the averaged values of two or three runs. Detailed

results presented in Appendix E (Figures E1 – E9 and Tables E1 and E3) show minor

variations between GCxGC experiments after using both neat/diluted samples and

different split ratio (FD9A fuel in this case). The precision of measurements was

expressed by relative standard deviation (%RSD) and numerical values are presented

in Tables E2 and E4 in Appendix E. The %RSD values are strongly dependent on the

GCxGC method used as well as measured hydrocarbon types. Figure 16 shows the

distribution of %RSD values for ‘normal’ and ‘reverse’ GCxGC-FID. In general,

‘normal’ – GCxGC-FID

‘reverse’ – GCxGC-FID

Page 32: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

PROTECTED BUSINESS INFORMATION

Natural Resources Canada, CanmetENERGY–Devon

21

‘reverse’ column combination is characterized by higher repeatability (lower %RSD

values). More than 90% of measurements have less than 10 %RSD. For ‘normal’

GCxGC column set-up, 80% of measurements have less than 10 %RSD. We can

observe in Table E4 that mostly tetralins/indans type have high %RSD values.

Figure 16 – The distribution of %RSD values for ‘normal’ (top) and ‘reverse’

(bottom) GCxGC-FID

Page 33: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

PROTECTED BUSINESS INFORMATION

Natural Resources Canada, CanmetENERGY–Devon

22

Figures F1 to F6 (Appendix F) show the distribution of hydrocarbon types

either by carbon number or alkyl chain length attached to main hydrocarbon

backbone. This part will be discussed in the next report where relationship between

the hydrocarbon composition of FACE diesel fuels and chemical and physical

properties will be presented.

4.0 CONCLUSIONS

The application of GCxGC-FID to FACE diesel fuels was demonstrated to be

a powerful chromatographic tool yielding reasonable results with enhanced

resolution. All experiments were run in duplicate. Two sets of column combination

were applied in this work to characterize as fully as possible the hydrocarbon

composition of FACE diesel fuels. A traditional non-polar x polar (‘normal’-GCxGC)

column set greatly helped in hydrocarbon speciation of the aromatic part of analyzed

samples.

Combination of volatility based and a polarity based separation allows for

presentation of the GCxGC chromatograms in boiling point domain and generation of

bubble plots, thereby enhancing the visual analysis. To achieve better separation

between paraffins, cycloparaffins and aromatics, the polar by non-polar column

combination set (e.g. ‘reverse’-GCxGC-FID) was also utilized in this work. As

expected, the selected column combination provided good separation of individual

components and excellent separation between saturates and aromatic classes. In

general, six hydrocarbon classes (n-paraffins, iso-paraffins, cycloparaffins,

monoaromatics, diaromatics and polyaromatics) were identified and quantified using

an FID detector and supported the results of other advanced characterization analyses

presented in CRC report FACE-1 published in July 2010. Moreover, the GCxGC

analysis demonstrated the capability to reveal the internal chemical structure which

can be visually presented and can assist in more detailed correlation analysis in the

future and discussions on the formulation of future fuels.

Page 34: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

PROTECTED BUSINESS INFORMATION

Natural Resources Canada, CanmetENERGY–Devon

23

5.0 ACKNOWLEDGEMENTS

The authors would like to acknowledge support from the Government of

Canada’s interdepartmental Program of Energy Research and Development, PERD

1.1.3 Petroleum Conversion for Cleaner Energy and the ecoENERGY Innovation

Initiative (ecoEII).

6.0 REFERENCES

1. Alnajjar, M.; Cannella, B.; Dettman,H.; Fairbridge, C.; Franz, J.; Gallant, T.;

Gieleciak, R; Hager,D; Lay, C.; Lewis, S.; Ratcliff, M.; Sluder,S.; Storey, J.;

Yin, H.; and Zigler, B. Chemical and Physical Properties of the Fuels for

Advanced Combustion Engines (FACE) Research Diesel Fuels; CRC Report

No. FACE-1, Coordinating Research Council, Alpharetta, Georgia (2010).

2. MATLAB, Release 2012b; The MathWorks, Inc.: Natick, MA, 2012.

3. Gieleciak, R. and Oro, N. A Study of FID Response Factor of GCxGC Systems for

Hydrocarbon Compound Classes Existing in Diesel Fractions, Natural

Resources Canada, Division Report CDEV-2013-1979.

Page 35: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

PROTECTED BUSINESS INFORMATION

Natural Resources Canada, CanmetENERGY–Devon

24

APPENDIX A: ‘NORMAL’ - GCXGC-FID CHROMATOGRAMS

Page 36: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

PROTECTED BUSINESS INFORMATION

Natural Resources Canada, CanmetENERGY–Devon

25

Figure A1 – Sample: FD1A. The ‘normal’-GCxGC-FID chromatogram (top) and (3D

representation of ‘normal’-GCxGC-FID chromatogram (bottom).

Page 37: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

PROTECTED BUSINESS INFORMATION

Natural Resources Canada, CanmetENERGY–Devon

26

Figure A2 – Sample: FD2A. The ‘normal’-GCxGC-FID chromatogram (top) and (3D

representation of ‘normal’-GCxGC-FID chromatogram (bottom).

Page 38: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

PROTECTED BUSINESS INFORMATION

Natural Resources Canada, CanmetENERGY–Devon

27

Figure A3 – Sample: FD3A. The ‘normal’-GCxGC-FID chromatogram (top) and (3D

representation of ‘normal’-GCxGC-FID chromatogram (bottom).

Page 39: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

PROTECTED BUSINESS INFORMATION

Natural Resources Canada, CanmetENERGY–Devon

28

Figure A4 – Sample: FD4A. The ‘normal’-GCxGC-FID chromatogram (top) and (3D

representation of ‘normal’-GCxGC-FID chromatogram (bottom).

Page 40: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

PROTECTED BUSINESS INFORMATION

Natural Resources Canada, CanmetENERGY–Devon

29

Figure A5 – Sample: FD5A. The ‘normal’-GCxGC-FID chromatogram (top) and (3D

representation of ‘normal’-GCxGC-FID chromatogram (bottom).

Page 41: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

PROTECTED BUSINESS INFORMATION

Natural Resources Canada, CanmetENERGY–Devon

30

Figure A6 – Sample: FD6A. The ‘normal’-GCxGC-FID chromatogram (top) and (3D

representation of ‘normal’-GCxGC-FID chromatogram (bottom).

Page 42: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

PROTECTED BUSINESS INFORMATION

Natural Resources Canada, CanmetENERGY–Devon

31

Figure A7 – Sample: FD7A. The ‘normal’-GCxGC-FID chromatogram (top) and (3D

representation of ‘normal’-GCxGC-FID chromatogram (bottom).

Page 43: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

PROTECTED BUSINESS INFORMATION

Natural Resources Canada, CanmetENERGY–Devon

32

Figure A8 – Sample: FD8A. The ‘normal’-GCxGC-FID chromatogram (top) and (3D

representation of ‘normal’-GCxGC-FID chromatogram (bottom).

Page 44: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

PROTECTED BUSINESS INFORMATION

Natural Resources Canada, CanmetENERGY–Devon

33

Figure A9–- Sample: FD9A. The ‘normal’-GCxGC-FID chromatogram (top) and (3D

representation of ‘normal’-GCxGC-FID chromatogram (bottom).

Page 45: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

PROTECTED BUSINESS INFORMATION

Natural Resources Canada, CanmetENERGY–Devon

34

APPENDIX B: ‘REVERSED’ - GCXGC-FID CHROMATOGRAMS

Page 46: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

PROTECTED BUSINESS INFORMATION

Natural Resources Canada, CanmetENERGY–Devon

35

Figure B1 – Sample: FD1A. (top) The ‘reverse’-GCxGC-FID chromatogram and

(bottom) 3D representation of ‘reverse’-GCxGC-FID chromatogram.

Page 47: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

PROTECTED BUSINESS INFORMATION

Natural Resources Canada, CanmetENERGY–Devon

36

Figure B2 – Sample: FD2A. (top) The ‘reverse’-GCxGC-FID chromatogram and

(bottom) 3D representation of ‘reverse’-GCxGC-FID chromatogram.

Page 48: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

PROTECTED BUSINESS INFORMATION

Natural Resources Canada, CanmetENERGY–Devon

37

Figure B3 – Sample: FD3A. (top) The ‘reverse’-GCxGC-FID chromatogram and

(bottom) 3D representation of ‘reverse’-GCxGC-FID chromatogram.

Page 49: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

PROTECTED BUSINESS INFORMATION

Natural Resources Canada, CanmetENERGY–Devon

38

Figure B4 – Sample: FD4A. (top) The ‘reverse’-GCxGC-FID chromatogram and

(bottom) 3D representation of ‘reverse’-GCxGC-FID chromatogram.

Page 50: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

PROTECTED BUSINESS INFORMATION

Natural Resources Canada, CanmetENERGY–Devon

39

Figure B5 – Sample: FD5A. (top) The ‘reverse’-GCxGC-FID chromatogram and

(bottom) 3D representation of ‘reverse’-GCxGC-FID chromatogram.

Page 51: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

PROTECTED BUSINESS INFORMATION

Natural Resources Canada, CanmetENERGY–Devon

40

Figure B6 – Sample: FD6A. (top) The ‘reverse’-GCxGC-FID chromatogram and

(bottom) 3D representation of ‘reverse’-GCxGC-FID chromatogram.

Page 52: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

PROTECTED BUSINESS INFORMATION

Natural Resources Canada, CanmetENERGY–Devon

41

Figure B7 – Sample: FD7A. (top) The ‘reverse’-GCxGC-FID chromatogram and

(bottom) 3D representation of ‘reverse’-GCxGC-FID chromatogram.

Page 53: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

PROTECTED BUSINESS INFORMATION

Natural Resources Canada, CanmetENERGY–Devon

42

Figure B8 – Sample: FD8A. (top) The ‘reverse’-GCxGC-FID chromatogram and

(bottom) 3D representation of ‘reverse’-GCxGC-FID chromatogram.

Page 54: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

PROTECTED BUSINESS INFORMATION

Natural Resources Canada, CanmetENERGY–Devon

43

Figure B9 – Sample: FD9A. (top) The ‘reverse’-GCxGC-FID chromatogram and

(bottom) 3D representation of ‘reverse’-GCxGC-FID chromatogram.

Page 55: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

PROTECTED BUSINESS INFORMATION

Natural Resources Canada, CanmetENERGY–Devon

44

APPENDIX C: ‘NORMAL’ – GCXGC-FID IN BOILING POINT DOMAIN

AND GCXGC SIMDIS

Page 56: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

PROTECTED BUSINESS INFORMATION

Natural Resources Canada, CanmetENERGY–Devon

45

Figure C1 – Sample: FD1A. Bubble plot representation as a function of polarity vs.

boiling point

Figure C2 – Sample: FD2A. Bubble plot representation as a function of polarity vs.

boiling point

Page 57: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

PROTECTED BUSINESS INFORMATION

Natural Resources Canada, CanmetENERGY–Devon

46

Figure C3 – Sample: FD3A. Bubble plot representation as a function of polarity vs.

boiling point

Figure C4 – Sample: FD4A. Bubble plot representation as a function of polarity vs.

boiling point

Page 58: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

PROTECTED BUSINESS INFORMATION

Natural Resources Canada, CanmetENERGY–Devon

47

Figure C5 – Sample: FD5A. Bubble plot representation as a function of polarity vs.

boiling point

Figure C6 – Sample: FD6A. Bubble plot representation as a function of polarity vs.

boiling point

Page 59: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

PROTECTED BUSINESS INFORMATION

Natural Resources Canada, CanmetENERGY–Devon

48

Figure C7 – Sample: FD7A. Bubble plot representation as a function of polarity vs.

boiling point

Figure C8 – Sample: FD8A. Bubble plot representation as a function of polarity vs.

boiling point

Page 60: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

PROTECTED BUSINESS INFORMATION

Natural Resources Canada, CanmetENERGY–Devon

49

Figure C9 – Sample: FD9A. Bubble plot representation as a function of polarity vs.

boiling point

Page 61: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

PROTECTED BUSINESS INFORMATION

Natural Resources Canada, CanmetENERGY–Devon

50

APPENDIX D: ‘REVERSE’ – GCXGC BUBBLE PLOTS

Page 62: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

PROTECTED BUSINESS INFORMATION

Natural Resources Canada, CanmetENERGY–Devon

51

Figure D1 – Sample: FD1A. The ‘reverse’-GC×GC-FID bubble plot chromatogram

with selected classification groups.

Figure D2 – Sample: FD2A. The ‘reverse’-GC×GC-FID bubble plot chromatogram

with selected classification groups.

Page 63: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

PROTECTED BUSINESS INFORMATION

Natural Resources Canada, CanmetENERGY–Devon

52

Figure D3 – Sample: FD3A. The ‘reverse’-GC×GC-FID bubble plot chromatogram

with selected classification groups.

Figure D4 – Sample: FD4A. The ‘reverse’-GC×GC-FID bubble plot chromatogram

with selected classification groups.

Page 64: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

PROTECTED BUSINESS INFORMATION

Natural Resources Canada, CanmetENERGY–Devon

53

Figure D5 – Sample: FD5A. The ‘reverse’-GC×GC-FID bubble plot chromatogram

with selected classification groups.

Figure D6 – Sample: FD6A. The ‘reverse’-GC×GC-FID bubble plot chromatogram

with selected classification groups.

Page 65: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

PROTECTED BUSINESS INFORMATION

Natural Resources Canada, CanmetENERGY–Devon

54

Figure D7 – Sample: FD7A. The ‘reverse’-GC×GC-FID bubble plot chromatogram

with selected classification groups.

Figure D8 – Sample: FD8A. The ‘reverse’-GC×GC-FID bubble plot chromatogram

with selected classification groups.

Page 66: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

PROTECTED BUSINESS INFORMATION

Natural Resources Canada, CanmetENERGY–Devon

55

Figure D9 – Sample: FD9A. The ‘reverse’-GC×GC-FID bubble plot chromatogram

with selected classification groups.

Page 67: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

PROTECTED BUSINESS INFORMATION

Natural Resources Canada, CanmetENERGY–Devon

56

APPENDIX E: GCXGC RESULTS – GENERAL VIEW

FACE fuels FD1A to FD8A were run two times on ‘normal’ and ‘reverse’

GCxGC-FID separation. First GCxGC experiments were performed for the neat fuel

samples, the second one on samples diluted in DCM.

FD9A sample was run three times on each GCxGC chromatographic system

where each run was performed under different split ratio, namely 200:1, 300:1, and

400:1.

Each GCxGC run was labelled using following system:

xFD_Y Where:

x: r - reverse column setup or n – normal column setup

Y: (1) neat sample (2) diluted sample

Page 68: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

PROTECTED BUSINESS INFORMATION

Natural Resources Canada, CanmetENERGY–Devon

57

Figure E1 – Sample: FD1A. Comparison of hydrocarbon content achieved for all

GCxGC experiments.

Figure E2 – Sample: FD2A. Comparison of hydrocarbon content achieved for all

GCxGC experiments.

Page 69: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

PROTECTED BUSINESS INFORMATION

Natural Resources Canada, CanmetENERGY–Devon

58

Figure E3 – Sample: FD3A. Comparison of hydrocarbon content achieved for all

GCxGC experiments.

Figure E4 – Sample: FD4A. Comparison of hydrocarbon content achieved for all

GCxGC experiments.

Page 70: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

PROTECTED BUSINESS INFORMATION

Natural Resources Canada, CanmetENERGY–Devon

59

Figure E5 – Sample: FD5A. Comparison of hydrocarbon content achieved for all

GCxGC experiments.

Figure E6 – Sample: FD6A. Comparison of hydrocarbon content achieved for all

GCxGC experiments.

Page 71: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

PROTECTED BUSINESS INFORMATION

Natural Resources Canada, CanmetENERGY–Devon

60

Figure E7 – Sample: FD7A. Comparison of hydrocarbon content achieved for all

GCxGC experiments.

Figure E8 – Sample: FD8A. Comparison of hydrocarbon content achieved for all

GCxGC experiments.

Page 72: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

PROTECTED BUSINESS INFORMATION

Natural Resources Canada, CanmetENERGY–Devon

61

Figure E9 – Sample: FD9A. Comparison of hydrocarbon content achieved for all

GCxGC experiments.

Page 73: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

Natu

ral R

esou

rces Can

ad

a, Can

metE

NE

RG

Y–

De

von

62

Table E1 – Quantitative results (wt%) of ‘reverse’ - GCxGC-FID separation for FACE fuels

Hydrocarbon types rFD1_1 rFD1_2 rFD2_1 rFD2_2 rFD3_1 rFD3_2 rFD4_1 rFD4_2 rFD5_1 rFD5_2 rFD6_1 rFD6_2 rFD7_1 rFD7_2 rFD8_1 rFD8_2 rFD9_1 rFD9_2 rFD9_3 n-Paraffins 5.41 5.25 1.68 1.85 11.06 10.90 2.13 2.10 29.81 29.59 12.44 12.32 32.20 31.89 22.65 22.88 10.81 11.31 11.25 iso-Paraffins 53.39 54.28 62.75 61.93 19.23 19.20 43.87 43.51 21.62 21.48 29.07 28.86 8.59 8.65 12.98 13.23 21.85 22.52 22.76 MonoCycloparaffins 11.50 11.07 12.74 12.60 13.16 13.17 11.45 11.74 17.66 17.92 29.53 29.76 8.40 8.33 15.15 14.84 21.03 20.66 21.13 DiCycloparaffins 2.78 2.62 0.24 0.28 4.12 4.04 1.22 1.08 6.94 6.58 7.19 6.91 2.73 2.69 2.52 2.49 6.85 6.42 6.12 PolyCycloparaffins 0.25 0.22 0.05 0.06 0.40 0.40 0.49 0.44 1.36 1.37 1.67 1.64 0.30 0.30 1.23 1.11 2.13 1.38 1.38 Total Cycloparaffins 14.52 13.91 13.04 12.94 17.68 17.60 13.16 13.26 25.95 25.87 38.39 38.31 11.43 11.33 18.90 18.43 30.02 28.45 28.62 Alkylbenzenes 17.33 17.99 18.84 19.39 34.73 34.86 35.32 35.48 16.35 16.64 5.82 5.95 22.79 23.06 8.07 8.07 20.60 22.18 21.87 Indanes/Tetralins 7.21 6.61 2.39 2.50 12.11 12.19 3.59 3.65 5.15 5.27 9.62 9.80 11.31 11.52 9.58 9.39 11.30 10.52 10.49 Diaromatics 1.94 1.73 1.12 1.16 4.89 4.91 1.69 1.70 1.03 1.03 4.44 4.53 12.88 12.74 26.22 26.45 5.10 4.74 4.72 Triaromatics 0.09 0.06 0.04 0.04 0.17 0.16 0.07 0.06 0.01 0.00 0.15 0.14 0.61 0.56 1.35 1.26 0.20 0.19 0.18 Unknown 0.11 0.17 0.14 0.19 0.13 0.19 0.17 0.23 0.08 0.12 0.06 0.09 0.19 0.24 0.25 0.27 0.11 0.09 0.10

Table E2 – Relative standard deviation (%RSD) of ‘reverse’ - GCxGC-FID separation for FACE fuels

Hydrocarbon types rFD1 rFD2 rFD3 rFD4 rFD5 rFD6 rFD7 rFD8 rFD9 n-Paraffins 2.08 6.63 1.06 0.95 0.53 0.66 0.67 0.73 2.43 iso-Paraffins 1.18 0.93 0.11 0.59 0.48 0.52 0.50 1.38 2.10 MonoCycloparaffins 2.66 0.79 0.08 1.77 1.06 0.54 0.55 1.46 1.19 DiCycloparaffins 3.96 10.01 1.49 8.63 3.80 2.82 0.99 1.06 5.71 PolyCycloparaffins 10.31 7.41 0.37 7.01 0.67 1.31 0.56 7.49 26.64 Total Cycloparaffins 3.04 0.54 0.29 0.55 0.22 0.16 0.62 1.78 2.95 Alkylbenzenes 2.65 2.05 0.25 0.33 1.24 1.54 0.83 0.01 3.89 Indanes/Tetralins 6.20 3.14 0.49 1.23 1.62 1.32 1.30 1.45 4.25 Diaromatics 8.27 2.53 0.25 0.28 0.04 1.28 0.77 0.63 4.43 Triaromatics 31.28 0.05 7.21 6.96 33.41 5.50 5.72 4.69 6.33

Page 74: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

Natu

ral R

esou

rces Can

ad

a, Can

metE

NE

RG

Y–

De

von

63

Table E3 – Quantitative results (wt%) of ‘normal’ - GCxGC-FID separation for FACE fuels

Hydrocarbon types nFD1_1 nFD1_2 nFD2_1 nFD2_2 nFD3_1 nFD3_2 nFD4_1 nFD4_2 nFD5_1 nFD5_2 nFD6_1 nFD6_2 nFD7_1 nFD7_2 nFD8_1 nFD8_2 nFD9_1 nFD9_2 nFD9_3

n-Paraffins 6.29 6.14 3.42 3.07 11.03 10.91 2.95 2.15 29.47 29.19 12.11 11.62 33.25 33.37 24.27 23.91 10.59 10.15 10.04 iso-Paraffins 57.03 57.27 60.82 61.97 21.37 21.61 39.46 40.46 24.08 24.35 28.87 28.51 9.77 9.95 12.64 12.44 23.12 23.44 23.69 Total Cycloparaffins 11.99 12.39 13.56 13.15 17.33 17.71 17.20 17.34 23.90 24.29 37.75 39.47 10.90 11.08 18.44 19.57 28.65 28.96 29.20 Alkylbenzenes 18.67 18.67 19.19 19.44 35.70 36.26 34.72 36.51 17.53 17.58 9.42 8.87 21.82 24.88 9.28 9.48 25.25 25.19 24.85 Indanes/Tetralins 4.58 4.22 1.97 1.47 9.98 9.17 4.02 2.07 4.11 3.76 7.75 7.61 10.72 7.56 6.79 6.25 7.99 7.90 7.90 Diaromatics 1.40 1.28 1.02 0.88 4.46 4.26 1.59 1.44 0.90 0.82 3.97 3.81 13.14 12.92 27.65 27.62 4.26 4.22 4.19 Triaromatics 0.04 0.02 0.03 0.02 0.13 0.09 0.06 0.03 0.01 0.00 0.13 0.10 0.39 0.23 0.89 0.71 0.15 0.14 0.13

Table E4 – Relative standard deviation (%RSD) of ‘normal’ - GCxGC-FID separation for FACE fuels

Hydrocarbon types nFD1 nFD2 nFD3 nFD4 nFD5 nFD6 nFD7 nFD8 nFD9 n-Paraffins 1.65 7.48 0.72 22.13 0.67 2.93 0.25 1.07 2.81 iso-Paraffins 0.30 1.32 0.81 1.76 0.77 0.89 1.25 1.10 1.22 Total Cycloparaffins 2.29 2.14 1.54 0.59 1.16 3.15 1.18 4.22 0.96 Alkylbenzenes 0.01 0.93 1.09 3.55 0.18 4.24 9.27 1.45 0.87 Indanes/Tetralins 5.87 20.93 6.03 45.32 6.25 1.21 24.43 5.88 0.64 Diaromatics 5.85 9.94 3.33 7.02 6.18 2.86 1.15 0.07 0.85 Triaromatics 38.76 40.61 28.80 39.92 96.23 17.60 36.59 15.99 6.25

Page 75: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

PROTECTED BUSINESS INFORMATION

Natural Resources Canada, CanmetENERGY–Devon

64

APPENDIX F: GCXGC RESULTS – DETAILED

Page 76: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

PROTECTED BUSINESS INFORMATION

Natural Resources Canada, CanmetENERGY–Devon

65

Figure F1 – Distribution of n-paraffins (in wt%) by carbon number using ‘normal’-

GCxGC-FID (top), ‘reverse’-GCxGC-FID (bottom)

Page 77: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

PROTECTED BUSINESS INFORMATION

Natural Resources Canada, CanmetENERGY–Devon

66

Figure F2 – Distribution of iso-paraffins (in wt%) by carbon number using ‘normal’-

GCxGC-FID (top), ‘reverse’-GCxGC-FID (bottom)

Page 78: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

PROTECTED BUSINESS INFORMATION

Natural Resources Canada, CanmetENERGY–Devon

67

Figure F3 – Distribution of total cycloparaffins (in wt%) by carbon number using

‘normal’-GCxGC-FID

Page 79: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

PROTECTED BUSINESS INFORMATION

Natural Resources Canada, CanmetENERGY–Devon

68

Figure F4 – Distribution of mono- and dicycloparaffins (in wt%) by carbon number

using ‘reverse’-GCxGC-FID

Page 80: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

PROTECTED BUSINESS INFORMATION

Natural Resources Canada, CanmetENERGY–Devon

69

Figure F5 – Distribution of alkybenzenes (in wt%) by alkyl chain length using

‘normal’-GCxGC-FID (top), ‘reverse’-GCxGC-FID (bottom)

Page 81: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

PROTECTED BUSINESS INFORMATION

Natural Resources Canada, CanmetENERGY–Devon

70

Figure F6 – Distribution of naphthalenes (in wt%) by alkyl chain length using

‘normal’-GCxGC-FID (top), ‘reverse’-GCxGC-FID (bottom)

Page 82: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

Natu

ral R

esou

rces Can

ad

a, Can

metE

NE

RG

Y–

De

von

71

Table F1 – ‘normal’ - GCxGC-FID hydrocarbon speciation and concentration (wt%) for FACE diesel fuels

Hydrocarbon Types FD1A FD2A FD3A FD4A FD5A FD6A FD7A FD8A AFD9A N-Paraffins n-C6 0.005 0.005 0.007 0.015 0.016 0.025 0.042 0.018 0.029 n-C7 0.025 0.028 0.044 0.012 0.060 0.047 0.005 0.030 0.039 n-C8 0.044 0.008 0.100 0.000 0.063 0.171 0.026 0.001 0.188 n-C9 0.148 0.079 0.337 0.106 0.419 0.233 0.303 0.001 0.327 n-C10 0.334 0.214 1.457 0.069 2.097 0.522 0.877 0.015 0.497 n-C11 1.035 1.495 1.789 0.017 3.077 0.709 1.301 0.025 0.668 n-C12 0.536 0.330 1.660 0.145 2.487 0.836 1.277 0.053 0.789 n-C13 0.411 0.040 1.412 0.102 1.824 1.129 1.146 0.278 1.029 n-C14 0.686 0.061 1.170 0.339 12.361 1.610 20.135 15.572 1.504 n-C15 0.677 0.116 0.970 0.391 5.344 1.613 6.682 5.752 1.430 n-C16 0.608 0.107 0.795 0.297 1.105 1.395 1.221 1.212 1.317 n-C17 0.544 0.069 0.501 0.220 0.316 1.299 0.219 0.356 0.993 n-C18 0.415 0.046 0.406 0.116 0.083 0.728 0.043 0.098 0.576 n-C19 0.303 0.043 0.213 0.115 0.041 0.391 0.012 0.059 0.334 n-C20 0.204 0.068 0.074 0.082 0.027 0.269 0.012 0.070 0.166 n-C21 0.113 0.113 0.019 0.095 0.011 0.285 0.002 0.152 0.137 n-C22 0.059 0.121 0.006 0.206 0.002 0.330 0.001 0.197 0.066 n-C23 0.038 0.209 0.003 0.112 0.000 0.138 0.001 0.104 0.082 n-C24 0.022 0.064 0.002 0.066 0.000 0.094 0.000 0.063 0.058 n-C25 0.009 0.015 0.001 0.024 0.000 0.026 0.000 0.022 0.019 n-C26 0.003 0.009 0.001 0.011 0.000 0.009 0.000 0.008 0.006 n-C27 0.001 0.004 0.000 0.005 0.000 0.004 0.000 0.002 0.003 n-C28 0.000 0.002 0.000 0.003 0.000 0.001 0.000 0.001 0.001 Total 6.22 3.246 10.967 2.548 29.333 11.864 33.305 24.089 10.258 Iso-Paraffins iP-C6 0.003 0.011 0.008 0.006 0.010 0.008 0.008 0.063 0.013 iP-C7 0.016 0.013 0.078 0.083 0.089 0.063 0.006 0.019 0.030 iP-C8 0.101 0.018 0.474 0.047 0.192 0.273 0.079 0.034 0.215 iP-C9 0.334 0.058 1.106 0.260 0.846 0.697 0.621 0.011 0.606

Page 83: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

Natu

ral R

esou

rces Can

ad

a, Can

metE

NE

RG

Y–

De

von

72

iP-C10 1.516 1.073 3.306 1.517 2.345 0.965 1.122 0.046 1.197 iP-C11 29.583 31.671 4.733 0.478 4.442 1.301 1.837 0.021 1.154 iP-C12 16.764 19.183 2.541 2.475 3.436 1.008 1.562 0.014 0.950 iP-C13 3.103 2.851 2.388 10.855 3.001 1.429 1.550 0.031 1.344 iP-C14 0.947 0.225 1.748 6.758 2.047 2.577 1.122 0.787 2.208 iP-C15 1.027 0.517 1.356 3.922 1.864 3.500 0.685 1.387 2.996 iP-C16 0.746 0.553 0.960 3.290 1.816 3.566 0.471 1.605 2.918 iP-C17 0.805 0.247 0.951 2.540 2.085 3.919 0.407 1.900 3.196 iP-C18 0.806 0.272 0.863 1.516 1.081 2.313 0.203 0.960 1.956 iP-C19 0.564 0.364 0.618 1.311 0.449 1.356 0.084 0.455 1.242 iP-C20 0.309 0.330 0.204 0.952 0.295 0.833 0.056 0.434 0.644 iP-C21 0.203 0.696 0.076 0.820 0.151 1.021 0.024 0.842 0.597 iP-C22 0.142 1.407 0.034 1.251 0.050 1.569 0.013 1.362 0.845 iP-C23 0.088 1.183 0.021 1.094 0.012 1.467 0.007 1.544 0.824 iP-C24 0.048 0.491 0.011 0.498 0.002 0.578 0.003 0.750 0.320 iP-C25 0.028 0.157 0.007 0.152 0.000 0.176 0.001 0.218 0.102 iP-C26 0.014 0.044 0.003 0.065 0.000 0.044 0.000 0.045 0.031 iP-C27 0.004 0.018 0.001 0.039 0.000 0.017 0.000 0.012 0.011 iP-C28 0.001 0.009 0.001 0.016 0.000 0.008 0.000 0.004 0.005 Total 57.152 61.391 21.488 39.945 24.213 28.688 9.861 12.544 23.404 Cycloparaffins Cyc-C9 0.107 0.052 0.382 0.059 0.652 0.241 0.398 0.040 0.221 Cyc-C10 0.387 0.022 1.534 0.101 2.627 0.796 1.020 0.045 0.762 Cyc-C11 0.208 0.007 1.301 0.014 1.367 0.833 0.804 0.034 0.785 Cyc-C12 0.792 0.377 2.749 0.005 3.961 1.702 1.895 0.034 1.515 Cyc-C13 1.335 0.824 3.604 0.018 4.198 2.522 2.631 0.130 2.356 Cyc-C14 1.691 0.072 2.009 0.505 2.160 2.574 1.648 0.338 2.341 Cyc-C15 1.642 0.132 1.822 1.933 1.603 3.072 0.966 0.749 2.712 Cyc-C16 1.260 0.133 1.282 1.396 1.491 3.275 0.566 1.058 2.762 Cyc-C17 1.162 0.326 1.025 0.952 1.601 3.138 0.348 1.347 2.637 Cyc-C18 0.947 0.532 0.893 1.354 1.515 2.987 0.267 1.304 2.392 Cyc-C19 0.871 0.466 0.517 0.963 1.118 2.557 0.169 1.220 1.835 Cyc-C20 0.625 0.599 0.252 0.552 0.960 2.341 0.139 1.526 1.656 Cyc-C21 0.387 1.077 0.092 1.506 0.531 1.889 0.092 1.496 1.255

Page 84: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

Natu

ral R

esou

rces Can

ad

a, Can

metE

NE

RG

Y–

De

von

73

Cyc-C22 0.362 2.800 0.032 2.732 0.258 3.952 0.040 2.622 1.857 Cyc-C23 0.233 3.460 0.017 3.034 0.050 4.159 0.008 3.977 2.104 Cyc-C24 0.123 1.736 0.005 1.585 0.001 1.700 0.001 2.010 1.185 Cyc-C25 0.040 0.558 0.001 0.430 0.000 0.636 0.000 0.782 0.390 Cyc-C26+ 0.018 0.182 0.000 0.134 0.000 0.235 0.000 0.295 0.171 Total 12.19 13.355 17.517 17.273 24.093 38.609 10.992 19.007 28.936 Alkylbenzenes a6-C0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 a6-C1 0.015 0.008 0.093 0.007 0.038 0.099 0.023 0.014 0.116 a6-C2 1.983 2.680 4.369 5.132 1.268 0.329 0.299 0.081 2.757 a6-C3 8.839 10.880 17.197 20.182 5.941 0.695 9.801 0.773 10.373 a6-C4 4.113 4.524 7.869 8.417 4.475 0.779 8.392 2.570 4.826 a6-C5 1.230 0.815 2.281 1.301 2.472 0.760 2.399 0.027 1.296 a6-C6 0.352 0.055 1.041 0.056 1.217 0.751 1.225 1.087 0.727 a6-C7 0.297 0.045 0.900 0.020 0.612 0.880 0.526 0.389 0.836 a6-C8 0.344 0.036 0.719 0.040 0.338 1.062 0.438 3.511 0.936 a6-C9 0.441 0.029 0.538 0.070 0.272 1.120 0.140 0.210 0.925 a6-C10 0.354 0.021 0.402 0.076 0.334 0.951 0.054 0.218 0.776 a6-C11 0.298 0.020 0.255 0.038 0.254 0.731 0.024 0.162 0.632 a6-C12 0.240 0.041 0.200 0.096 0.231 0.613 0.020 0.179 0.512 a6-C13 0.106 0.091 0.085 0.131 0.103 0.328 0.009 0.136 0.330 a6-C14 0.034 0.070 0.022 0.049 0.000 0.052 0.002 0.023 0.054 a6-C15 0.017 0.000 0.007 0.000 0.000 0.000 0.000 0.000 0.000 a6-C16 0.006 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 Total 18.669 19.315 35.98 35.615 17.555 9.15 23.352 9.38 25.096 Indans/tetralins a6A5/a6A6-1 0.388 0.332 0.615 1.180 0.277 0.053 1.200 0.008 0.367 a6A5/a6A6-2 0.847 0.522 1.609 0.949 0.843 0.263 1.668 0.008 0.641 a6A5/a6A6-3 0.858 0.417 1.733 0.619 1.309 1.101 1.304 0.101 1.200 a6A5/a6A6-4 0.598 0.158 1.991 0.120 0.831 2.173 1.310 1.720 2.045 a6A5/a6A6-5 0.510 0.095 1.573 0.024 0.385 1.888 1.268 0.979 1.763 a6A5/a6A6-6 0.354 0.058 1.030 0.011 0.090 1.173 1.753 2.232 1.057 a6A5/a6A6-7 0.237 0.023 0.488 0.006 0.009 0.404 0.407 0.821 0.384 a6A5/a6A6-8 0.164 0.012 0.256 0.016 0.031 0.177 0.143 0.317 0.174

Page 85: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

Natu

ral R

esou

rces Can

ad

a, Can

metE

NE

RG

Y–

De

von

74

a6A5/a6A6-9 0.444 0.102 0.281 0.117 0.163 0.449 0.087 0.336 0.296 Total 4.4 1.719 9.576 3.042 3.938 7.681 9.14 6.522 7.927 Naphthalenes a6a6-C0 0.315 0.341 0.552 0.642 0.213 0.027 0.525 0.002 0.332 a6a6-C1 0.321 0.246 0.558 0.430 0.307 0.174 0.549 0.038 0.386 a6a6-C2 0.136 0.097 0.697 0.139 0.194 0.703 4.113 9.440 0.727 a6a6-C3 0.137 0.085 0.815 0.108 0.084 0.960 0.924 1.793 0.867 a6a6-C4 0.115 0.061 0.553 0.066 0.032 0.619 2.960 7.424 0.589 a6a6-C5 0.079 0.037 0.303 0.035 0.011 0.384 1.145 2.421 0.336 a6a6-C6 0.039 0.011 0.125 0.010 0.003 0.145 1.278 3.130 0.125 a6a6-C7 0.026 0.001 0.040 0.001 0.000 0.033 0.423 0.980 0.028 a6a6-C8+ 0.026 0.014 0.019 0.013 0.003 0.024 0.240 0.508 0.020 Total 1.194 0.893 3.662 1.444 0.847 3.069 12.157 25.736 3.41 Acenaphthalenes/fluorenes a6A5a6-2 0.001 0.001 0.010 0.001 0.001 0.012 0.002 0.000 0.013 a6A5a6-3 0.015 0.010 0.102 0.013 0.005 0.120 0.041 0.063 0.116 a6A5a6-4 0.035 0.018 0.216 0.019 0.005 0.274 0.106 0.220 0.264 a6A5a6-5 0.039 0.016 0.199 0.020 0.003 0.247 0.155 0.358 0.244 a6A5a6-6 0.057 0.012 0.170 0.014 0.001 0.172 0.496 1.090 0.176 a6A5a6-7 0.000 0.000 0.000 0.000 0.000 0.000 0.070 0.167 0.000 Total 0.147 0.057 0.697 0.067 0.015 0.825 0.87 1.898 0.813 Phenanthrenes/Anthracenes a6a6a6-1 0.002 0.003 0.016 0.005 0.001 0.016 0.006 0.005 0.018 a6a6a6-2 0.008 0.007 0.042 0.012 0.001 0.045 0.023 0.042 0.051 a6a6a6-3 0.009 0.007 0.030 0.014 0.001 0.031 0.026 0.053 0.039 a6a6a6-4 0.006 0.003 0.013 0.006 0.000 0.012 0.029 0.054 0.017 a6a6a6-5 0.003 0.000 0.003 0.001 0.000 0.003 0.177 0.495 0.005 Total 0.028 0.02 0.104 0.038 0.003 0.107 0.261 0.649 0.13

Page 86: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

Natu

ral R

esou

rces Can

ad

a, Can

metE

NE

RG

Y–

De

von

75

Table F2 – ‘reversed’ - GCxGC-FID hydrocarbon speciation and concentration (wt%) for FACE diesel fuels

Hydrocarbon Types FD1A FD2A FD3A FD4A FD5A FD6A FD7A FD8A AFD9A N-Paraffins n-C6 0.003 0.002 0.009 0.015 0.004 0.013 0.003 0.006 0.028 n-C7 0.008 0.033 0.044 0.030 0.000 0.048 0.007 0.054 0.041 n-C8 0.010 0.005 0.113 0.000 0.075 0.109 0.031 0.001 0.107 n-C9 0.112 0.071 0.398 0.121 0.406 0.226 0.281 0.001 0.272 n-C10 0.144 0.081 1.152 0.071 1.824 0.419 0.718 0.008 0.437 n-C11 0.245 0.075 1.820 0.009 3.170 0.680 1.251 0.025 0.640 n-C12 0.352 0.091 1.631 0.024 2.620 0.835 1.273 0.042 0.775 n-C13 0.457 0.064 1.456 0.111 1.935 1.192 1.193 0.286 1.122 n-C14 0.706 0.071 1.148 0.181 12.395 1.607 19.267 14.487 1.517 n-C15 0.765 0.113 0.982 0.230 5.468 1.861 6.486 5.279 1.644 n-C16 0.657 0.118 0.804 0.226 1.200 1.502 1.206 1.211 1.488 n-C17 0.557 0.084 0.629 0.178 0.393 1.266 0.240 0.341 1.134 n-C18 0.463 0.051 0.430 0.072 0.104 0.718 0.054 0.107 0.663 n-C19 0.338 0.048 0.265 0.052 0.062 0.435 0.022 0.057 0.389 n-C20 0.232 0.118 0.079 0.060 0.043 0.277 0.011 0.098 0.206 n-C21 0.158 0.226 0.019 0.256 0.000 0.409 0.003 0.220 0.239 n-C22 0.076 0.268 0.003 0.243 0.000 0.491 0.000 0.307 0.207 n-C23 0.036 0.195 0.000 0.190 0.000 0.212 0.000 0.145 0.157 n-C24 0.008 0.053 0.000 0.049 0.000 0.073 0.000 0.077 0.048 n-C25 0.000 0.000 0.000 0.000 0.000 0.010 0.000 0.013 0.012 Total 5.327 1.767 10.982 2.118 29.699 12.383 32.046 22.765 11.126 Iso-Paraffins iP-C6 0.005 0.006 0.007 0.004 0.004 0.007 0.004 0.056 0.003 iP-C7 0.014 0.006 0.035 0.020 0.061 0.042 0.007 0.011 0.017 iP-C8 0.030 0.009 0.186 0.021 0.064 0.124 0.025 0.015 0.094 iP-C9 0.103 0.031 0.523 0.250 0.266 0.252 0.184 0.005 0.246 iP-C10 1.251 1.109 2.761 1.489 1.801 0.719 0.805 0.036 0.885 iP-C11 1.073 1.022 2.430 0.191 3.231 0.790 1.357 0.006 0.749 iP-C12 29.842 34.223 3.116 0.317 2.906 0.940 1.323 0.009 0.835 iP-C13 10.485 11.710 2.188 2.957 2.576 1.296 1.491 0.027 1.194

Page 87: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

Natu

ral R

esou

rces Can

ad

a, Can

metE

NE

RG

Y–

De

von

76

iP-C14 5.302 5.956 1.753 11.395 2.425 2.281 1.133 0.683 1.920 iP-C15 1.112 0.349 1.589 8.017 2.032 3.676 0.905 1.347 2.919 iP-C16 0.992 0.450 1.244 3.898 1.788 3.402 0.576 1.376 2.924 iP-C17 0.863 0.787 1.057 4.442 2.025 3.761 0.412 1.689 2.848 iP-C18 0.939 0.783 0.959 2.824 1.306 2.612 0.238 1.111 2.162 iP-C19 0.915 0.318 0.787 1.240 0.582 1.709 0.092 0.509 1.333 iP-C20 0.532 0.541 0.502 1.373 0.376 1.256 0.055 0.487 1.038 iP-C21 0.224 1.238 0.071 1.553 0.108 1.689 0.017 1.229 0.888 iP-C22 0.113 1.944 0.007 1.972 0.000 2.308 0.001 2.134 1.118 iP-C23 0.037 1.407 0.000 1.324 0.000 1.489 0.000 1.612 0.849 iP-C24 0.007 0.431 0.000 0.369 0.000 0.550 0.000 0.629 0.304 iP-C25 0.000 0.022 0.000 0.033 0.000 0.064 0.000 0.129 0.048 iP-C26 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.007 0.001 Total 53.839 62.342 19.215 43.689 21.551 28.967 8.625 13.107 22.375 MonoCycloparaffins MonoCyc-C7 0.044 0.006 0.080 0.004 0.068 0.083 0.032 0.010 0.091 MonoCyc-C8 0.143 0.018 0.407 0.027 0.271 0.282 0.166 0.020 0.280 MonoCyc-C9 0.278 0.037 0.579 0.030 0.781 0.430 0.602 0.003 0.398 MonoCyc-C10 0.545 0.099 1.416 0.037 2.352 0.678 1.006 0.009 0.640 MonoCyc-C11 0.676 0.382 1.948 0.025 3.418 0.945 1.513 0.009 0.878 MonoCyc-C12 1.823 1.732 1.953 0.034 2.896 1.246 1.688 0.021 1.068 MonoCyc-C13 1.086 0.236 1.872 0.099 2.100 1.439 1.353 0.059 1.311 MonoCyc-C14 1.284 0.068 1.361 0.285 0.995 1.738 0.804 0.279 1.485 MonoCyc-C15 1.139 0.030 1.309 0.383 0.790 2.265 0.493 0.502 1.961 MonoCyc-C16 0.944 0.018 0.854 0.311 0.953 2.127 0.250 0.789 1.787 MonoCyc-C17 0.951 0.016 0.631 0.429 1.004 2.286 0.175 0.812 1.873 MonoCyc-C18 0.707 0.058 0.371 0.489 0.881 1.886 0.112 0.760 1.411 MonoCyc-C19 0.527 0.118 0.219 0.486 0.711 1.547 0.108 0.754 1.146 MonoCyc-C20 0.468 0.839 0.082 1.108 0.515 2.088 0.061 1.282 1.137 MonoCyc-C21 0.414 3.558 0.067 3.146 0.057 4.258 0.005 3.656 2.188 MonoCyc-C22 0.152 2.851 0.011 2.530 0.000 3.479 0.000 2.966 1.664 MonoCyc-C23 0.070 1.689 0.003 1.405 0.000 1.902 0.000 1.977 1.057 MonoCyc-C24 0.025 0.733 0.001 0.615 0.000 0.751 0.000 0.842 0.428 MonoCyc-C25+ 0.008 0.184 0.000 0.149 0.000 0.215 0.000 0.243 0.134

Page 88: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

Natu

ral R

esou

rces Can

ad

a, Can

metE

NE

RG

Y–

De

von

77

Total 11.284 12.672 13.164 11.592 17.792 29.645 8.368 14.993 20.937 DiCycloparaffins diCyc-C9 0.027 0.004 0.051 0.004 0.072 0.032 0.040 0.002 0.030 diCyc-C10 0.237 0.013 0.588 0.002 0.877 0.328 0.407 0.005 0.309 diCyc-C11 0.369 0.034 0.940 0.000 1.233 0.605 0.647 0.009 0.559 diCyc-C12 0.378 0.040 0.850 0.002 0.737 0.780 0.507 0.008 0.723 diCyc-C13 0.479 0.028 0.799 0.011 0.554 0.861 0.483 0.046 0.813 diCyc-C14 0.603 0.010 0.480 0.039 0.344 0.886 0.209 0.159 0.827 diCyc-C15 0.424 0.004 0.266 0.051 0.359 0.698 0.100 0.305 0.658 diCyc-C16 0.080 0.001 0.080 0.158 0.472 0.636 0.075 0.353 0.484 diCyc-C17 0.063 0.000 0.013 0.247 0.691 0.793 0.095 0.473 0.662 diCyc-C18 0.001 0.002 0.002 0.147 0.407 0.350 0.050 0.415 0.433 diCyc-C19 0.028 0.031 0.002 0.306 0.500 0.776 0.064 0.542 0.623 diCyc-C20 0.000 0.035 0.001 0.066 0.385 0.175 0.031 0.153 0.256 diCyc-C21+ 0.012 0.060 0.006 0.121 0.127 0.130 0.000 0.033 0.086 diCyc-C9 0.027 0.004 0.051 0.004 0.072 0.032 0.040 0.002 0.030 Total 2.728 0.266 4.129 1.158 6.83 7.082 2.748 2.505 6.493 PolyCycloparaffins polyCyc 0.232 0.054 0.398 0.466 1.362 1.654 0.301 1.168 1.628 Total 0.232 0.054 0.398 0.466 1.362 1.654 0.301 1.168 1.628 Alkylbenzenes a6-C0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 a6-C1 0.020 0.009 0.100 0.008 0.046 0.106 0.028 0.015 0.122 a6-C2 1.746 2.454 3.920 4.747 1.134 0.306 0.256 0.054 2.501 a6-C3 8.299 10.474 15.849 19.819 5.383 0.601 6.593 0.054 9.629 a6-C4 4.765 5.206 8.994 9.507 5.013 0.872 11.528 3.206 5.086 a6-C5 1.298 0.783 2.371 1.222 2.610 0.806 2.316 0.026 1.280 a6-C6 0.407 0.068 1.191 0.051 1.386 0.837 1.274 1.168 0.767 a6-C7 0.310 0.040 0.820 0.015 0.659 0.778 0.569 0.395 0.683 a6-C8 0.279 0.032 0.610 0.009 0.216 0.692 0.252 3.045 0.621 a6-C9 0.209 0.022 0.387 0.003 0.033 0.444 0.104 0.077 0.437 a6-C10 0.131 0.013 0.258 0.001 0.004 0.247 0.004 0.011 0.229 a6-C11 0.097 0.004 0.165 0.004 0.005 0.128 0.002 0.009 0.124 a6-C12 0.050 0.000 0.092 0.001 0.001 0.043 0.000 0.001 0.044

Page 89: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

Natu

ral R

esou

rces Can

ad

a, Can

metE

NE

RG

Y–

De

von

78

a6-C13 0.026 0.000 0.031 0.000 0.000 0.007 0.000 0.000 0.009 a6-C14 0.016 0.011 0.003 0.012 0.003 0.019 0.000 0.012 0.016 a6-C15+ 0.006 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 Total 17.659 19.116 34.791 35.399 16.493 5.886 22.926 8.074 21.55 Indans/tetralins a6A5/a6A6 6.909 2.448 12.151 3.622 5.215 9.709 11.413 9.484 10.773 Total 6.909 2.448 12.151 3.622 5.215 9.709 11.413 9.484 10.773 Naphthalenes a6a6-C0 0.339 0.369 0.563 0.679 0.239 0.031 0.541 0.009 0.340 a6a6-C1 0.358 0.293 0.576 0.481 0.377 0.188 0.622 0.091 0.398 a6a6-C2 0.148 0.113 0.636 0.155 0.185 0.628 0.371 0.121 0.649 a6a6-C3 0.115 0.073 0.548 0.087 0.062 0.645 4.465 10.472 0.618 a6a6-C4 0.083 0.036 0.358 0.036 0.018 0.429 3.040 7.215 0.421 a6a6-C5+ 0.216 0.011 0.313 0.004 0.002 0.342 2.014 3.531 0.305 Total 1.259 0.895 2.994 1.442 0.883 2.263 11.053 21.439 2.731 Acenaphthalenes/fluorenes a6C5a6-C0 0.013 0.013 0.109 0.014 0.043 0.110 0.087 0.125 0.115 a6C5a6-C1 0.078 0.055 0.451 0.061 0.048 0.516 0.213 0.334 0.457 a6C5a6-C2 0.097 0.068 0.488 0.082 0.032 0.578 0.298 0.517 0.539 a6C5a6-C3+ 0.387 0.105 0.855 0.097 0.021 1.021 1.160 3.922 1.012 Total 0.575 0.241 1.903 0.254 0.144 2.225 1.758 4.898 2.123 Phenanthrenes/Anthracenes a6a6a6-C0 0.003 0.003 0.017 0.006 0.001 0.017 0.008 0.013 0.020 a6a6a6-C1 0.008 0.011 0.044 0.019 0.003 0.042 0.023 0.035 0.051 a6a6a6-C2 0.014 0.013 0.050 0.024 0.001 0.042 0.065 0.112 0.056 a6a6a6-C3 0.015 0.007 0.036 0.015 0.000 0.027 0.083 0.172 0.038 a6a6a6-C4+ 0.036 0.001 0.017 0.004 0.000 0.015 0.407 0.975 0.027 Total 0.076 0.035 0.164 0.068 0.005 0.143 0.586 1.307 0.192

Page 90: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

Natural Resources Canada, CanmetENERGY–Devon

79

APPENDIX G: ULSD #2

In addition to the results presented in this report for FACE diesel fuels,

GCxGC analysis were performed for commercial California ultra-low sulfur diesel

no. 2 (CFA). GCxGC results for this fuel will be discussed in more details in the next

report where comparison of FD9A and ULSD#2 fuels will be presented.

Page 91: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

Natural Resources Canada, CanmetENERGY–Devon

80

Figure G1 – Sample: CFA. (top) The ‘normal’-GCxGC-FID chromatogram and

(bottom) 3D representation of ‘normal’-GCxGC-FID chromatogram.

Page 92: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

Natural Resources Canada, CanmetENERGY–Devon

81

Figure G2 – Sample: CFA. (top) The ‘reverse’-GCxGC-FID chromatogram and

(bottom) 3D representation of ‘reverse’-GCxGC-FID chromatogram.

Page 93: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

Natural Resources Canada, CanmetENERGY–Devon

82

Figure G3 – Sample: CFA. Bubble plot representation as a function of polarity vs.

boiling point.

Figure G4 – Sample: CFA. The ‘reverse’-GC×GC-FID bubble plot chromatogram

with selected classification groups.

Page 94: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

Natural Resources Canada, CanmetENERGY–Devon

83

Figure G5 – Sample: CFA. Comparison of hydrocarbon content achieved for all

GCxGC experiments.

Where: ‘nCFA’- means ‘normal’-GCxGC-FID experiments, ‘rCFA’ – means

‘reverse’-GCxGC-FID experiments, ‘avg’ – averaged results

Figure G6 – Sample: CFA. Distribution of n-paraffins (in wt%) by carbon number

using ‘normal’-GCxGC-FID (blue), ‘reverse’-GCxGC-FID (red)

Page 95: FINAL REPORT DETAILED HYDROCARBON … REPORT DETAILED HYDROCARBON ANALYSIS OF FACE DIESEL FUELS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY R. Gieleciak and C. Fairbridge

Natural Resources Canada, CanmetENERGY–Devon

84

Figure G7 – Sample: CFA. Distribution of isoparaffins (in wt%) by carbon number

using ‘normal’-GCxGC-FID (blue), ‘reverse’-GCxGC-FID (red).