final report to the west virginia department of natural...

31
Final report to the West Virginia Department of Natural Resources Project Title: A genetic assessment of the population health and connectivity of a keystone species in high elevation Appalachian forest ecosystems: red spruce (Picea rubens Sarg.) Principal Investigator: Dr. Stephen R. Keller, Adjunct Faculty 1 Key Personnel: Regina Trott, Faculty Research Assistant Supporting Institution: Appalachian Laboratory University of Maryland Center for Environmental Science 301 Braddock Rd. Frostburg, MD 21532 301-689-7203 email: [email protected] Award Number: WDU Project #13-R10 Date submitted: July 20, 2017 1 Current Address: Assistant Professor of Plant Biology Department of Plant Biology University of Vermont 111 Jeffords Hall, 63 Carrigan Drive Burlington, VT 05465 Email: [email protected] Phone: 802-656-5121

Upload: others

Post on 22-Jun-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Final report to the West Virginia Department of Natural ...kellrlab/LabManuscripts/Keller_2017_WVDNR_FinalP… · Final report to the West Virginia Department of Natural Resources

FinalreporttotheWestVirginiaDepartmentofNaturalResourcesProjectTitle:Ageneticassessmentofthepopulationhealthandconnectivityofakeystonespecies

inhighelevationAppalachianforestecosystems:redspruce(PicearubensSarg.)

PrincipalInvestigator:Dr.StephenR.Keller,AdjunctFaculty1

KeyPersonnel:ReginaTrott,FacultyResearchAssistant

SupportingInstitution:AppalachianLaboratory

UniversityofMarylandCenterforEnvironmentalScience

301BraddockRd.

Frostburg,MD21532

301-689-7203

email:[email protected]

AwardNumber:WDUProject#13-R10Datesubmitted:July20,20171CurrentAddress:AssistantProfessorofPlantBiology

DepartmentofPlantBiology

UniversityofVermont

111JeffordsHall,63CarriganDrive

Burlington,VT05465

Email:[email protected]

Phone:802-656-5121

Page 2: Final report to the West Virginia Department of Natural ...kellrlab/LabManuscripts/Keller_2017_WVDNR_FinalP… · Final report to the West Virginia Department of Natural Resources

2

BackgroundandMotivation

Highelevationconiferousforestsdominatedbyredspruce(PicearubensSarg.)areabiodiversityhotspotintheCentralAppalachians,representativeofborealforest

ecosystemstypicallyrestrictedtomorenortherlyregionsofeasternCanadaand

NewEngland.Theseforestsarecriticalhabitatformanyspeciesofplantsand

wildlife,andassuchP.rubensrepresentsa“keystonespecies”whosepopulationviabilityandresiliencetoenvironmentalchangehasfarreachingconservation

impacts(Byersetal.2010).

TheCentralAppalachianredspruceecosystemattainsitsgreatest

concentrationinthehighelevations(>2500ft.)oftheAlleghenyMountainsinWest

Virginia,andwesternMaryland.Estimatesoftheoriginalexpanseofredspruce

forestinthisregionsuggest>400,000hectaresofthisimportantecosystem

blanketedWestVirginia.Today,<10%ofthisareaiscurrentlyoccupiedbynative

redspruce(anestimated30,000hectares;WVWCAP),andmuchofthisissecondor

thirdgenerationgrowth.Thislargehistoricalreductionindistribution,alongwith

itsecologicalsensitivitytoavarietyofsourcesofenvironmentalchange(e.g.,acid

rain,insectpathogens,deforestation,climate)hascausedredsprucedominated

foreststoberegardedasendangeredecosystemsatthestateandglobalscales

(Beane2010;Byers&Norris2011).

Itiswellknownthatdemographicbottlenecksandhabitatfragmentationcan

reducegeneticdiversitywithinpopulationsandaltergeneflowacrossthe

landscape.Whenpopulationsbecomesmallerandmorefragmented,diversityislost

throughinbreedingandgeneticdrift,anddifferentiationamongpopulationswith

limitedconnectivityincreasesasaresultofrestricteddispersalandgeneflow(i.e.,

“populationstructure”).Theroleofgeneticdiversityinconservationisnowwell

established,includingtheimportanceofheterozygositytoindividualphysiological

performanceandavoidanceofinbreedingdepression,andthenecessityofgenetic

diversityforpopulationstobeabletoadapttonewselectionpressures,suchas

changesinthetypeorabundanceofinsectherbivores,orshiftsintheabiotic

environment(ReedandFrankham2003).Thedominantviewamongconservation

biologistsandrestorationecologistsisthattheeffectivepopulationsize(Ne)isakeyvariableintomaintainingminimumviablepopulations(Schwartzetal.2007).Best

practicescallfortheminimumeffectivepopulationsizetobeatleast500inorderto

avoidthedetrimentaleffectsofinbreedingandgeneticerosion,andtomaintain

viablepopulationsthatareadaptableandresilientinthefaceofenvironmental

heterogeneityanddisturbance(Shaffer1981).

Itiscurrentlynotclearwhatimpactshistoricaldecimationhavehadonthe

reservoirofgeneticdiversitypresentinCentralAppalachianP.rubens,orifNeintheregionislargeenoughtomeetconservationneeds.Geneticdiversityscalesstrongly

andpositivelywithreproductivefitnessinP.rubensinotherpartsofitsrange,probablyreflectingthedegreeofinbreedingdepressionarisingamongclose

relativesinlowdiversitypopulations(Rajoraetal.2000;Mosseleretal.2003).

Page 3: Final report to the West Virginia Department of Natural ...kellrlab/LabManuscripts/Keller_2017_WVDNR_FinalP… · Final report to the West Virginia Department of Natural Resources

3

TheecologicalimportanceofP.rubensanditsvulnerabilitytoecologicaldisturbancehasledtoalargescaleecologicalrestorationeffortbytheCentral

AppalachianRedSpruceInitiative(CASRI).Thegoalofthismulti-agencygroupisto

restore,viasupplementalplantingsandothersilviculturaltechniques,afunctioning

redspruceecosystemthroughoutitsformerrangeinintheCentralAppalachians

(www.restoreredspruce.org).Geneticdiversityplaysakeyroleinrestoration

(Mckayetal.2005),withrestoredpopulationsbenefittingfrominformedselectionandplantingofdiverse,endemicgenotypes.Thus,suchrestorationeffortscould

benefitfromknowledgeofthegeneticdiversityandNeofrestorationstock,andifcertainexistingstandssufferfromusuallylowdiversityorlackofgenetic

connectivitywithotherstands.

Giventheseconservationconcerns,thereisaneedtoassessthestabilityand

healthofexistingnaturalstandsofP.rubensacrosstheCentralAppalachianlandscape.Thisprojectsoughttofillsomeofthesegapsbyconductingapopulation

geneticstudytoestimatelevelsofgeneticdiversityanddegreeofpopulation

structureamongremnantstandsofredsprucewithinWVandwesternMD,withthe

goalofcharacterizingthegeneticdiversityofP.rubensintheregion,itseffectivepopulationsizeandevidenceforhistoricalbottlenecksinNe,andtheextenttowhichgeneflowmaintainsconnectivityamongremnantsprucestands.Specifically,we

soughttoaddressthefollowingthreesetsofquestions:

1. Whatarethestandinglevelsofgeneticdiversitywithinstands?Docertainstandscontainunusuallylowdiversity,orexhibitevidenceof

inbreeding,andassuchcouldbeprioritizedforgeneticrestoration?

2. WhatistheeffectivepopulationsizeofCentralAppalachianP.rubens?IsthereevidenceoftemporalchangesorbottlenecksinNe?HowdoestheNeofCentralAppalachianP.rubenscomparetopopulationsinotherpartsofitsrange?

3. HowmuchgeneticstructureexistsamongexistingstandsintheCentralAppalachians?Whataretheenvironmentalvariables(climate,geographic

distance)thataremostimportanttogeneticisolationamongremnantred

sprucestands?

MethodsFieldSampling

WorkinginclosecollaborationwithbiologistsattheWVDNRNaturalHeritage

Program,theNatureConservancy,andtheUSDAMonongahelaNationalForest,we

prioritizedoldergrowthorgeographicallyisolatedremnantstandsofredsprucefor

fieldsamplingofneedletissueforgeneticanalysis(Byersetal.2010).SamplinglocalityinformationissummarizedinTable1.

Page 4: Final report to the West Virginia Department of Natural ...kellrlab/LabManuscripts/Keller_2017_WVDNR_FinalP… · Final report to the West Virginia Department of Natural Resources

Table1.SamplinginformationforP.rubenspopulationscollectedduringthisstudy.SiteCode

State/Prov

LocationName NHPPlotCode1 N2 Latitude(dd.ddd)

Longitude(dd.ddd)

Elevation(m)

MinimumStandAge(yrs)3

BAT WV BarlowTop MONF.302 16 38.2292266 -80.2326555 1362 170BLM WV BlackMountain MONF.303 16 38.2951654 -80.2391810 1369 BNT WV Boar'sNestTrail,DollySods MONF.313 16 38.9391179 -79.3913178 1315 CBA WV CranberryGladesBotanicalArea MONF.205 16 38.1980991 -80.2713728 1027 144CMK WV CheatMountainKnob MONF.272 16 38.6307291 -79.8953463 1212 CNH WV CanaanHeights

16 39.0919726 -79.4498189 1155

CNS WV CranesvilleSwamp CRSW.9 16 39.5338726 -79.4817813 787 COW WV CowPasture MONF.198 16 38.2022533 -80.2570746 1047 103CPT WV CowPastureTrail MONF.194 16 38.1955116 -80.2619217 1038 210CSP WV CanaanStatePark CASP.30 16 39.0484004 -79.4739629 995 FSR WV ForestServiceRoad75

16 39.0111999 -79.3196768 1186

GDK WV GaudineerKnob

16 38.6141002 -79.8429144 GLR1 WV GladeRun-Shaver'sFork MONF.288 16 38.6420113 -79.8414660 1193 215GLR2 WV GladeRunsite2

16 38.6571443 -79.8407687

GRK WV GreenKnob MONF.318 16 38.8977829 -79.4411622 1406 HAK WV HaystackKnob MONF.320 16 38.9043187 -79.4406518 1336 140HKB WV HuckleberryTrail MONF.293 16 38.7347977 -79.5089717 1393 KSF WV KumbrabowStateForest KUMB.22 17 38.6294772 -80.1327991 1058 301LFW WV LaurelForkWilderness MONF.165 16 38.6905218 -79.6991719 1060 90OPR WV OldPineyRoad MONF.316 16 38.4729537 -79.7011336 1316 133PHK WV PharisKnob MONF.266/267 16 38.7437972 -79.6307336 1287 196PKB WV PantherKnob PEND.14 16 38.5706214 -79.4900388 1295 PRT WV PineyRidgeTrail KUMB.23 16 38.6383999 -80.1315325 1105 287RRN WV RedRun

16 38.6280000 -79.8995600

RSK WV RedSpruceKnob MONF.300 18 38.3346989 -80.1540319 1377 125

Page 5: Final report to the West Virginia Department of Natural ...kellrlab/LabManuscripts/Keller_2017_WVDNR_FinalP… · Final report to the West Virginia Department of Natural Resources

5

SEN WV SenecaCreek MONF.321 16 38.7066954 -79.5473580 1201 135SHV WV Shaver'sMountain MONF.58/59 16 38.9896590 -79.6065495 1137 SKB WV Stuart'sKnob

16 38.9388145 -79.7135679 1206

SKL WV SpruceKnobLake

16 38.7180241 -79.6120161 1152 SMR WV SawMillRun PEND.17 16 38.6679848 -79.5704751 1165 90SPK WV SpruceKnob MONF.292 16 38.7166488 -79.5219644 1430 104SPT WV SouthProngTrail MONF.295 16 38.9560255 -79.3565877 1220 TKR WV Turkey(McGowan)Mountain MONF.277 16 39.0192477 -79.6750557 1131 TOA WV TopofAllegheny MONF.315 16 38.4742984 -79.7166843 1299 116WMT WV Whitmeadow MONF.291 16 38.6670538 -79.8530919 1171 WSW WV WhitmeadowSwamp MONF.212 16 38.6720019 -79.8866321 1132 117YCK WV YellowCreek MONF.103 16 38.9547280 -79.6637386 913 128NGR WV4 NewGermanySeedlings 100

FZL MD FinzelSwamp

16 39.7039308 -78.9384452 820 GLD MD TheGlades

16 39.5621173 -79.2781106 825

WLF MD WolfSwamp

16 39.6613345 -79.0917602 808 BMB PA BearMeadow'sBog

16 40.7303320 -77.7638050

LAC PA Lackawanna

16 41.2008810 -75.6193360 LKP NY LakePlacid

16 44.3312656 -73.9019769 494

BPT NH BlackPondTrail

16 44.1057363 -71.5813700 RAT NH Ripley-ArethusaTrail

16 44.1489594 -71.3884488

SMN VT Smuggler'sNotch

17 44.5734909 -72.7787015 595 GT ON GloucesterTownship

6 45.36199629 -75.53139755 90

1PlotcodesbasedontheWVDNR’sNaturalHeritageProgramforestinventoryplots2Numberofsampledindividualsforgeneticanalysis3Minimumstandage,basedontheoldestdatedtreecorereportedintheWVDNRNaturalHeritagePrograminventoryplots(WVDNR2017).4SourceofNGRseedlingswasfrompooledseedcollectedinWV.SeedlingsweresampledforanalysisatNewGermanyStatePark,MD,priortoplanting.

Page 6: Final report to the West Virginia Department of Natural ...kellrlab/LabManuscripts/Keller_2017_WVDNR_FinalP… · Final report to the West Virginia Department of Natural Resources

Treeswereselectedforsamplingacrossarangeofrepresentativediameterclasseswithineachsite,andbasedonfeasibilityofaccesstoneedletissue.Consequently,wewerenotalwaysabletosampletissuefromsomeverylargetreesduetotheheightofthecanopy.Foreachtreeselected,weclippedasmallamountoffresh,currentyearbranchgrowthwithhealthyneedles.WealsomeasuredDBHtothenearest0.1cm,andrecordedindividualtreeGPScoordinatesandelevation(ma.s.l.)usingaGarminGPSmap60Csx.Wealsonotedseveralcategoricaldescriptorsforeachsample,includingpositiononslope(riparian,flat,lowerslope,upperslope,crest),aspect(N,NE,E,SE,S,SW,W,NW),abundanceofP.rubens(dominant,abundant,common,uncommon,rare,solitary),lifehistorystageofthesampledindividual(juvenile,mature(conebearing),over-mature(crownsenescing)),andtookaphotographofthesampledtree.

Intotal,wesampledfortysitesacrossWV(N=37)andwesternMD(N=3),

withanaverageof16individualspersite,foratotalof643individuals(Figure1).Wealsoincludedadditionalsamplingfrom7sitesoutsideoftheCentralAppalachianregiontoprovideabroadergeographicandgeneticcontextandtoassessthedistinctivenessoftheCentralAppalachiandiversity.ThisconsistedofP.rubensfromNH(N=32),PA(N=32),NY(N=16),VT(N=16),andOntario(ON;N=6).Lastly,toassessthediversityencompassedbyseedlingsdistributedbyCASRI’srestorationseedlingprogram,wesampled100individualsfromasingleseedlinglotdeliveredtoNewGermanyStatePark,nearGrantsville,MD(NGR).Theproject-widesamplesizeforgeneticanalysiswasthusN=845individualsrepresenting47naturalpopulationsand1cohortofrestorationseedlings.AllsampledneedletissuewastransportedbacktotheUniversityofMaryland’sAppalachianLaboratory(Frostburg,MD)andstoredfrozenat-80°Cuntilfurtherprocessing.CollectiondetailsforindividualsamplesaregiveninAppendixA.

DNAIsolationandMicrosatelliteGenotypingWeextractedwholegenomicDNAfromneedletissueusingtheQiagenDNeasy96Plantkitandquantifieditfluorometrically(InvitrogenQUANT-IT).WeusedthispurifiedDNAtoPCRamplify18microsatellitelocidevelopedinotherPiceaspecies(mostlyP.glauca)thathavebeenshowntoreliablycross-amplifyinP.rubens(Pfeifferetal.1997;Hodgettsetal.2001;Rajoraetal.2001;Scottietal.2002;Rungisetal.2004).Theselociweretestedinpreliminaryanalysesandfoundtobepolymorphicandproducereliableamplificationproductsforscoringallelesizes.Weemployedamultiplexingstrategy(Blacketetal.2012)toamplifymultiplelocisimultaneously.Specifically,weusedacombinationofauniversalprimerfluorescentlylabeledwith1of4dyes(6-FAM,NED,PET,andVIC)andapairoflocus-specificprimers,withtheforwardlocus-specificprimermodifiedtohavea5’universalsequencetailcomplimentarytothelabeledprimer.Thisenabledahighlyefficientandflexiblesystemtodevelopmultiplexedsetsoflocilabeledwithdifferentfluorophores(Table2).

Page 7: Final report to the West Virginia Department of Natural ...kellrlab/LabManuscripts/Keller_2017_WVDNR_FinalP… · Final report to the West Virginia Department of Natural Resources

Figure1.Samplinglocalitiesforredspruce.Bluepointsindicatesamplinglocalitiesoftreesusedinthisstudy.Leftpanel:Mapof40samplinglocalitiesintheCentralAppalachianregion(WVandMD).Greenshadingindicatesestimateddensityofredsprucecover(high,medium,low)basedonWVDNRNHPmapping.Rightpanel:Regionalmap,showingadditionalsamplinglocalitiesinthenortheast.InsetshowstheCentralAppalachianregion.Shadingindicatestherange-widedistributionofP.rubens(Little1971).

Page 8: Final report to the West Virginia Department of Natural ...kellrlab/LabManuscripts/Keller_2017_WVDNR_FinalP… · Final report to the West Virginia Department of Natural Resources

Table2.Primerinformationfor18microsatellitelociamplifiedinP.rubens.LocusName Motif Size(bp) Dye Plex TA(°C) ReferenceGAT64 GAT 102-112 6-FAM A 57 Hodgettsetal.(2001)TG25 TG 94-106 PET A 57 Hodgettsetal.(2001)CT189B CT 114-116 NED A 57 Hodgettsetal.(2001)CA24 AC 184-212 6-FAM A 57 Hodgettsetal.(2001)PGL12 AG 222-250 PET A 57 Rajoraetal.(2001)PGL14 AG 136-180 VIC A 50 Rajoraetal.(2001)CT144 CT 145-154 NED A 50 Hodgettsetal.(2001) SPAGG3 GA 130-146 6-FAM B 57 Pfeifferetal.(1997)UAPgAG105 AG 175-179 NED B 57 Hodgettsetal.(2001)WS0082.E23 TA 248-266 VIC B 57 Rungisetal.(2004)PAAC23 GT 284-294 NED B 57 Scottietal(2000) WS0022.B15 AG 210-225 NED C 57 Rungisetal.(2004)WS0092.A19 AC 241-245 6-FAM C 57 Rungisetal.(2004)EAC6B03 AC 129-135 VIC C 57 Scottietal.(2002)SPL3AG1H4 GA 135-137 PET C 57 Pfeifferetal.(1997)WS00111.K13 AT 234-238 PET C 57 Rungisetal.(2004)WS0082.023 TA 226-240 VIC C 57 Rungisetal.(2004)

PCRamplificationsusedtheQiagenMultiplexPCRkitin10ulreactions,consistingof1ulddH2O,5ulMultiplexPCRMasterMix,1ulQ-solution,andamplifiedonanEppendorfMasterCyclerproPCRmachinewiththefollowingconditions:95°Cfor15min.,30cyclesof94°Cfor30s,TA(either50or57°C;seeTable2)for90s,72°Cfor90s,followedbyafinal72°Cextensionfor30min.andthena4°Chold.AsampleofamplificationproductswerescreenedusinggelelectrophoresisbeforecombiningwithLIZ500sizestandardandshippingtotheWestVirginiaUniversityGenomicsCoreLabforfragmentanalysisonanABI3130xlsequencer(AppliedBiosystems).RawdataweresizedusingthesoftwarePeakScanner(AppliedBiosystems)usingautomatedscoring,followedbymanualchecking.AllelefragmentsizeswerebinnedusingtheprogramTANDEM(Matschiner&Salzburger2009).StatisticalAnalysis1.GeneticDiversitywithinPopulationsandIndividualsWeestimatedpopulationgeneticdiversitystatisticsaveragedacrosslociforeachsiteusingthe‘diveRsity’package(Keenanetal.2013)inRv.3.3.2(RCoreTeam2014).Diversitymeasuresincludedtherawnumberallelesperlocusunadjustedforsamplesize(A),theproportionofallallelesobservedwithinsites(%A),allelicrichnessadjustedforsamplesizedbasedonrarefaction(Ar),observedheterozygosity(Ho),expectedheterozygosity(He),andthepopulationinbreedingcoefficient(FIS).SignificanceofFISwastestedwith1,000bootstrapresamples.

Page 9: Final report to the West Virginia Department of Natural ...kellrlab/LabManuscripts/Keller_2017_WVDNR_FinalP… · Final report to the West Virginia Department of Natural Resources

9

Wewerealsointerestedinassessinggeneticdiversityattheindividuallevel,totestforanassociationbetweensizeclass(DBH)andheterozygosity.Suchanassociationmightbeexpectedifselectionactingacrosslifehistorystagesfavorsmoreheterozygous,lessinbredgenotypes,yieldinganenrichmentinheterozyogistyamongthelargestDBHtrees(aproxyforage)relativetomorerecentlyrecruitedsmallDBHtrees.Toestimatemulti-locusheterozygosityforeachindividualacrossthe18loci,weusedtheRpackage‘Rhh’(Alhoetal.,2010)toestimatethemulti-locusstandardizedheterozygositymeasure(SH;Coltmanetal.,1999).IncomparingSHtoDBH,werecognizethatDBHisgoingtobehighlyinfluencedbyenvironmentaldifferences,bothacrosssitesandwithinasite,duetovariationinreleaseratesofsubcanopytrees.Therefore,wetestedforheterozygosity~DBHassociationsbyrestrictingthesampletojustthelower(<9.60DBH)andupperquartileoftreeDBH(>34.40DBH),andincludedsiteasarandomeffectinamixedlinearmodelusingthe‘lme4’packageinR(Batesetal.2015).2.PopulationStructureandGeneticAncestryWeestimatedgeneticdifferentiationamongallpopulationsusingNei’sstandardizedestimateofallelefrequencydivergenceamongpopulations(GST),andHedrick’sre-scaledestimatethatdeterminesGSTrelativetoitsmaximumpossiblelevel(G’ST).Estimationwasdoneusingthe‘diveRsity’package,withsignificancedeterminedwith1,000bootstrapresamples.Toassessdifferencesingeneticancestrywithoutoursample,andtoassignindividualstotheirmostlikelygenepools,weusedtheBayesianclusteringprogramSTRUCTUREversion2.2(Pritchardetal.,2000;Falushetal.,2003),usingtheadmixturemodelwithcorrelatedallelefrequencies.Weperformed10independentrunsforeachK(1-10)with1,000,000MCMCiterationsafteraburn-inperiodof200,000iterations.Post-processingofSTRUCTURErunsandad-hocestimationofthenumberofclusters(K)basedonthedelta-Kmethod(Evannoetal.2005)wasimplementedinthesoftwareSTRUCTUREHARVESTER(Earl&vonHoldt,2012).AncestrycoefficientsacrossrunswerecombinedusingCLUMPP(Jakobsson&Rosenberg,2007). 3.GeneticConnectivityandIsolationbyEnvironmentToestimatethefactorscontributingtohistoricalconnectivityandgeneflowamongCentralAppalachianstands,weusedalandscapegeneticsapproachtorelatepopulationstructuretoenvironmentalfeaturesacrossthelandscape(Maneletal.2003).Specifically,weusedGeneralizedDissimilarityModeling(GDM)torelatepairwisegeneticdistancesamongsitestodifferencesintheirlocalclimateenvironment(Ferrieretal.2007;Fitzpatrick&Keller2015).TheGDMapproachisaformofmultivariatematrixregressionthatfitsnon-linearI-splinestomodeltherelationshipbetweenbiologicaldistanceandmultipleenvironmentalpredictors.Climatedataconsistedof19bioclimaticvariablesthatsummarizeseasonalaspectsoftemperatureandprecipitation(http://www.worldclim.org/bioclim),basedontheWorldClimdatasetdownscaledto30sresolution(Hijmansetal.2005).WealsoincludedpairwiseEuclideangeographicdistanceasanadditionalpredictorto

Page 10: Final report to the West Virginia Department of Natural ...kellrlab/LabManuscripts/Keller_2017_WVDNR_FinalP… · Final report to the West Virginia Department of Natural Resources

10

accommodateeffectsofisolationbydistance.WeusedHedrick’sG’STasthegeneticdistancemetric,normalizedbetween0-1byscalingbasedonthelargestpairwisevalueobserved.GDMmodelswerefitusingtheRpackage‘gdm’(Manionetal.2016).Aftermodelfitting,weretainedallsignificantenvironmentalpredictorsandusedthemtotransformcontinuousbioclimaticspaceintheCentralAppalachianregionbasedonthemodeledassociationbetweengeneticandclimaticdistances.Theresultingtransformationwasthenmappedtovisualizethecontinuoussurfaceofgenetically-transformedenvironmentaldifferencesbetweensites.Suchananalysiscanbeusedtohighlightwhichregionsofthelandscapeareestimatedtobewellconnectedbygeneflowthroughclimaticspace,andwhicharelikelytobegeneticallyisolatedbyenvironmentaldifferences.

WealsoexploredtheextentofgeneticconnectivityamongCentral

AppalachianP.rubensusingDyer’spopulationgraphmethod(Dyer&Nason2004;Dyer2014).Populationgraphsemployagraph-theoreticframeworktomodelgeneticcovarianceinallelefrequenciesamongsitesusingnetworktheory,andestimateconditionalgeneticdistancesthatreflectthepatternofconnectivityandgeneflowamongsites.PopulationgraphsforP.rubensintheCentralAppalachianswereestimatedusingthe‘popgraph’Rpackage,withanalphathresholdtoleranceof0.025,andoverlaidontoGDMmodelpredictionstomaphowpopulationnetworkconnectivitycorrespondstogeneticisolationbyclimaticdistance.4.CurrentandHistoricalEffectivePopulationSize(Ne)Toestimatetheeffectivepopulationsize(Ne)intheCentralAppalachians,weemployedtheLDNemethodimplementedinNeEstimator(Doetal.2014).ThismethodestimatescurrentNebylookingattheextentoflinkagedisequilibriumpresentwithinapopulation,relativetowhatwouldbeexpectedundergeneticdriftinapopulationofsizeNe.WeinitiallyattemptedtoestimateNeseparatelyforeachsite,buttheaveragesamplesizeof16individuals(Table1)ledmostvaluestobeinestimable.Thus,weinsteadconsidered4differentdatasubsetsforestimatingNe:(1)asingleCentralAppalachian“population”consistingof643sampledindividualsfromWVandMD(excludingtherestorationseedlingsfromNGR);(2)the100NGRrestorationseedlings,toassesswhatfractionoftotaldiversitywasrepresentedbyrestorationstock;(3)the102northeasternsamplesfromPA,NY,VT,NH,andON,torelateCentralAppalachiandiversitytothatpresentfurthernorth;and(4)theentirepooledsampleof845individuals.

AsacomplimenttotheLDNemethod,wealsoestimatedcurrentandhistoricalNeusingacoalescentapproach.UnliketheLDNemethodbasedonpatternsoflinkagedisequilibrium,thecoalescentapproachmodelsthegenealogicalrelationshipsgivingrisetothedistributionofallelesizessampledinthepopulation.The“birth-death”processofallelesthenprovidesanestimateoftherateatwhichthepopulationwassubjecttogeneticdrift,whichisproportionaltoNe.UnliketheLDNemethodhowever,thecoalescentcanbeusedtoinferpasttemporalchangesinNethathaveshapedthegenealogyofalleles.Weusedthecoalescentmethod

Page 11: Final report to the West Virginia Department of Natural ...kellrlab/LabManuscripts/Keller_2017_WVDNR_FinalP… · Final report to the West Virginia Department of Natural Resources

11

implementedintheRpackage‘VarEff’tomodelcurrentNeaswellasancestralNeusingasize-changemodel(Nikolic&Chevalet2014).ThetestedmodelallowedfortwohistoricalsizechangesleadinguptothecurrentNeintheCentralAppalachians.Thus,therewere3effectivepopulationsizesestimatedlookingbackwardsintime:currentNe,Neafterthesizechange(Ne-2),andtheancestralNepriortothesizechange(Ne-3).Asisstandardincoalescentapproaches,estimationwasforthecompoundparameterθ(=4Neµ,whereµisthemicrosatellitemutationrateperlocuspergeneration).Similarly,timingofthesizechangewasestimatedastheparameterτ(=gµ,wheregistimemeasuredingenerations).WefirstestimatedappropriaterangesforpriorsonNeandgfrompreliminaryrunsusingtheTheta()function.WethenperformedBayesianestimationofparameterswithMarkovChainMonteCarlo,withaburn-inof10,000iterationsfollowedby10,000samplingiterationsandathinningintervalof10.AsadvisedbyNikolicandChevalet(2014),wetookthemedianvaluefromtheposteriordistributionofeachparameterasourdemographicestimate,andintegratedacrossthe95%posteriorprobabilitytoobtainconfidenceintervals.Toconvertcompoundparameterstoanabsolutedemographicscale,wesubstitutedamutationrateof5x10-4forµ.Thisisvalueanover-simplificationthatdoesnotaccommodateuncertaintyinthemutationratenorvarianceamongloci,butisconsistentwithmicrosatellitemutationratesreportedintheliterature(Marriageetal.2009),andestimationofNeinthiswayprovidesapointofcomparisontotheLDNemethodwhichdoesnotrequireuseofamutationrate.Therefore,agreementbetweenthetwodifferentNeestimators,whichmakeuseofdifferentsignaturesinthegeneticdata,lendsconfidencetoourinferenceofeffectivepopulationsize.ResultsGeneticDiversityMicrosatellitediversitywithinsitesshowedlimitedvariabilityacrosssamplinglocations,withseveralnotableexceptions(Table3).Allelicrichness(Ar)withinCentralAppalachiansites(WVandMD)variedfrom2.8to3.86,withameanof3.12.SitesthatstoodoutashavingunusuallyhighdiversityofallelesincludedSKB(Stuart’sKnob),CNH(CanaanHeights)andYCK(YellowCreek),whileKSF(KumbrabowStateForest)andPKB(PantherKnob)possessedthelowestvaluesforthisregion,consistentwiththegeographicisolationoftheselocalities.Thiswasadditionallyreflectedbytheproportionoftotalallelicrichnesspresentwithinsites(%A),inwhichSKBstoodoutclearlywith>45%ofthetotaldiversityobservedwithinthisonesite.TheNGRrestorationseedlingspossessedthelargestabsolutenumberofalleles(111),likelyreflectingthelargesamplessize(N=100)andpoolingofseedsacrosscollectinglocalities.Afterrarefaction,allelicrichnessofNGRwasstillrelativelyhighbutlowerthanSKB,CNH,orYCK(Table3).OutsideoftheCentralAppalachians,LAC(Lackawanna)alsopossessedhighallelicdiversity(A,%A,andAr)whilepopulationsfurthernorthsuchasLKP(LakePlacid,NY),SMN(Smuggler’sNotch,VT)andGT(GloucesterTownship,ON)exhibitedsomeofthelowestvalues

Page 12: Final report to the West Virginia Department of Natural ...kellrlab/LabManuscripts/Keller_2017_WVDNR_FinalP… · Final report to the West Virginia Department of Natural Resources

12

Table3.Populationgeneticdiversitywithinsites.BoldfacevaluesofFISaresignificantbasedon95%confidenceintervalsfrom1000bootstrapreplicates.SiteCode State N A %A Ar Ho He FISBAT WV 15.67 83 31.52 3.23 0.51 0.54 0.0607BLM WV 15.44 74 29.29 3.04 0.51 0.52 0.0172BNT WV 15.5 79 31.12 3.27 0.52 0.53 0.0254CBA WV 13.78 76 29.44 2.94 0.51 0.52 0.0264CMK WV 15.44 78 30.29 3.08 0.53 0.53 -0.01CNH WV 14.89 100 38.96 3.4 0.49 0.56 0.1344CNS WV 15.78 88 35.15 3.27 0.51 0.54 0.0582COW WV 15.78 77 30.18 3.25 0.57 0.54 -0.0676CPT WV 15.67 78 29.9 3.03 0.48 0.5 0.0394CSP WV 15.5 79 30.76 3.11 0.52 0.52 0.0138FSR WV 15.5 74 27.92 2.98 0.52 0.51 -0.0258GDK WV 15.17 81 31.4 3.14 0.54 0.53 -0.0068GLR1 WV 14.06 77 29.07 2.98 0.54 0.5 -0.0775GLR2 WV 15.61 79 31.07 3.13 0.53 0.53 0.016GRK WV 15.5 78 30.72 3.05 0.5 0.53 0.0667HAK WV 15.61 76 30.19 3.04 0.5 0.5 0.0098HKB WV 15.83 70 27.59 3 0.5 0.52 0.0327KSF WV 14.5 72 28.47 2.8 0.47 0.51 0.0672LFW WV 14.5 79 30.51 3.04 0.49 0.5 0.0266OPR WV 15.33 77 30.02 3.07 0.54 0.54 -0.013PHK WV 15.11 78 30.36 3.2 0.54 0.54 -0.0017PKB WV 15.28 67 26.09 2.8 0.48 0.47 -0.0246PRT WV 14.78 75 29.96 2.95 0.51 0.54 0.0419RRN WV 15.72 77 30.38 3.11 0.54 0.52 -0.0459RSK WV 16.17 80 31.13 3.02 0.53 0.54 0.024SEN WV 15.17 83 32.59 3.13 0.54 0.53 -0.0133SHV WV 15.67 83 31.98 3.25 0.55 0.54 -0.016SKB WV 14.94 112 45.19 3.86 0.52 0.64 0.1894SKL WV 15.33 80 31.13 3.12 0.48 0.52 0.0646SMR WV 15.5 84 33.24 3.14 0.5 0.53 0.042SPK WV 15.5 83 31.27 3.2 0.5 0.53 0.057SPT WV 14.94 74 28.37 3.03 0.55 0.53 -0.0394TKR WV 15.33 78 30.82 3.19 0.56 0.53 -0.0448TOA WV 15.67 75 29.01 3.02 0.56 0.52 -0.0789WMT WV 15.33 79 31.14 3.12 0.53 0.53 -0.0028WSW WV 15.28 77 29.29 3.17 0.55 0.53 -0.0415YCK WV 15.22 90 34.73 3.4 0.57 0.56 -0.0084FZL MD 14.44 81 33.56 3.09 0.47 0.55 0.1369GLD MD 15.39 82 33.07 3.17 0.5 0.55 0.0843WLF MD 14.72 71 28.97 2.94 0.47 0.52 0.0967NGR WV 96.5 134 49.71 3.31 0.51 0.56 0.086BMB PA 14.61 86 35.19 3.23 0.52 0.57 0.0918LAC PA 14.67 118 48.97 3.88 0.56 0.66 0.1466SMN VT 14.78 75 30.61 2.79 0.49 0.48 -0.0122LKP NY 15.22 67 27.49 2.71 0.43 0.49 0.1228BPT NH 15.61 77 31.87 3.05 0.53 0.51 -0.0387RAT NH 15.67 78 31.45 3.04 0.53 0.52 -0.0244GT ON 5.06 63 27.09 2.87 0.48 0.53 0.1005

Page 13: Final report to the West Virginia Department of Natural ...kellrlab/LabManuscripts/Keller_2017_WVDNR_FinalP… · Final report to the West Virginia Department of Natural Resources

13

observedacrosstheentiredataset,possiblyreflectingalossofdiversityalongthe

pathwayofpost-glacialrangeexpansion.

Heterozygosityshowedsimilartrendsamongsites,withSKBandCNHhaving

highvalues(Table3).However,levelsofobservedheterozygosityatthesesites

causedasignificantdeparturefromHardy-Weinbergequilibrium(significantly

positiveFISvalue),indicatingadeficitofheterozygotes.Whileselfingorbiparental

inbreedingisonepossibleexplanationforpositiveFISvalues,analternative

explanationconsistentwiththehighdiversityatthesesitesisarecentadmixtureof

multiplesourceswithdivergentallelefrequencies(e.g.,aWahlundeffect),causing

allelicdiversityandheterozygositytoincrease,butwithobservedheterozygosity

laggingduetoinsufficienttimeformatingtohomogenizeallelefrequenciesamong

offspring.Theexplanationofrecentadmixturebothraisingdiversitywhilealso

creatingadeficitofobservedheterozygotesisalsoconsistentwiththediversityof

theNGRseedlings,whichshowedsignificantFIS.Inthiscase,weknowthat

“admixture”occurredduringthepoolingofseedsfrommultipledifferentsource

localities.Incontrast,FZL(FinzelSwamp)andWLF(WolfSwamp)inwesternMD

bothshowedsignificantFISaccompaniedbyrelativelylowallelicrichness,

suggestingthatheterozygotedeficitwithinthesesitesatthenorthernedgeofthe

CentralAppalachiansmaybeattributabletoinbreeding.Attheotherendofthe

spectrum,siteTOA(TopofAllegheny)showedasignificantlynegativeFIS,indicatinganexcessofobservedheterozygotesrelativetoexpectationsunderrandommating.

OnepossibilityisselectionforheterozygousgenotypesatTOA,butgiventhatthisis

theonlypopulationtoshowsuchapattern,thesignificanceofFISheremaysimply

beattributabletomultipletestingacrossalargenumberofsites.

Asamorerigoroustestofthehypothesisthatselectionmayfavorthe

eventualdominanceofmoreheterozygousgenotypes,wetestedforanassociation

betweenindividualmulti-locusheterozygosityandDBHclass.Heterozygositywas

weaklybutnotsignificantlycorrelatedacrosslociwithinindividuals(r=0.042;95%CI:-0.016-0.099),providinglimitedsupportforselectionfavoringindividuals

thatareheterozygousacrosstheirgenomes.Consistentwiththis,weobservedno

supportforanassociationbetweenmulti-locusheterozygosityandDBHsizeclass

aftercontrollingforsiteeffects(β=0.019;t=0.729;P=0.467)(Figure2).Thus,unlikepreviousreportsfromP.rubenspopulationsinCanada(Rajoraetal.2000;Mosseleretal.2003),wefindlittleevidenceofincreasedheterozygositywithsizeclass.

Page 14: Final report to the West Virginia Department of Natural ...kellrlab/LabManuscripts/Keller_2017_WVDNR_FinalP… · Final report to the West Virginia Department of Natural Resources

14

Figure2.Associationbetweenstandardizedheterozygosity(SH)andthelowerandupperquartileoftreeDBH,usedhereasaroughproxyofage.

Lower Quartile Upper Quartile

0.4

0.6

0.8

1.0

1.2

1.4

DBH Size Class

Stan

dard

ized

mul

ti−lo

cus

hete

rozy

gosi

ty (S

H)

Page 15: Final report to the West Virginia Department of Natural ...kellrlab/LabManuscripts/Keller_2017_WVDNR_FinalP… · Final report to the West Virginia Department of Natural Resources

15

PopulationStructureGeneticdifferentiationamongsiteswaslowoverall(GST=0.0109,95%C.I.0.0051-0.0179;G’ST=0.0245,95%CI:0.0122-0.0386),butinlinewithlowdifferentiationreportedforotherwind-pollinated,predominantlyoutcrossingforesttrees(Savolainenetal.2007).TheseGSTvaluesindicatethatroughly1-2%ofthetotalgeneticdiversitypresentintheCentralAppalachiansispartitionedamongdifferentsites,withthemajorityofvariabilityexistingwithinsites.Estimatesofpairwisedivergenceamongsitesshowedmorenuancedvariability,withmostsite-pairsshowinglittledivergence,andafewshowingrelativelylargegeneticdivergence,ofteninvolvingeitherFLZorWLFandotherCentralAppalachianpopulations(AppendixB). STRUCTUREanalysisofgeneticancestryreturnedK=3clustersbasedonthedelta-Kmethodofmodelselection(Evannoetal.2005).AtK=3,individualancestryassignmentsshowedmostsitesintheCentralAppalachianscontainedmixturesof2differentgeneticclusters,possiblyreflectingadmixturebetweentwodifferentrefugialregionsinthesoutheasternU.S.duringthePleistoceneglacialmaximum(AppendicesC1andC2).Interestingly,manyindividualsinSKBandCNHsharedancestryinageneticclusterthatispredominantlyfoundinnortheasternsites(redinK=3;AppendixC1).AtK=4,thisclusterseparatesintoafourthgroupathighestfrequencyintheLACsite,anditiswiththisgroupthatsomeSKBindividualssharegeneticancestry.AlongwithevidenceofelevatedallelediversityanddeparturesfromHardy-Weinbergequilibriuminthesesites,thisprovidesindicationthatSKBandCNHwereprobablysupplementedatsomepointinthepastwithseedlingmaterialoriginatingfromoutsidetheCentralAppalachianregion,likelyfromnortheasternP.rubens.AlsoofinterestistheancestryofNGRrestorationseedlings,whichhasapproximatelyequalancestryacrossallthreeclusters,includingthenortheasterncluster(AppendixC2).Thiscouldindicatethattheseedsourcesofrestorationplantingsmaythemselveshavebeensupplementedatsometimeinthepastwithgeneticancestryfromthenortheast,butthisremainsspeculativewithoutadditionaltesting.GeneticConnectivityandIsolationbyEnvironmentTheclimatezoneinhabitedbysampledP.rubensstandsinthisstudyshowtheCentralAppalachiansoccupyingadistinctclimatenichefromnortheasternredspruceforests(Figure3,top).Specifically,CentralAppalachiansiteswereseparatedfromothersamplesalongthefirstPrincipalComponentclimateaxis(54%ofvariance),withWVandMDsitescharacterizedbyhighertemperatures,higherprecipitation,andlowerseasonalityrelativetonorthernsites.WhentheCentralAppalachianregionwasanalyzedseparately,thethreewesternMDsites(WLF,FLZ,andGLD)separatedalongaprecipitationgradientrepresentedbythefirstPCaxis(51%ofvariance),indicatingthatthesesitesoccupyadriermicroclimatewithintheAlleghenyMountains(Figure3,bottom).

Page 16: Final report to the West Virginia Department of Natural ...kellrlab/LabManuscripts/Keller_2017_WVDNR_FinalP… · Final report to the West Virginia Department of Natural Resources

16

Figure3.PrincipalComponentAnalysis(PCA)ofclimatespaceoccupiedbyredsprucepopulationsinthisstudy,asdefinedby19bioclimaticvariables.Toppanelsshowrange-widePCA;bottompanelsshowPCAofCentralAppalachianredspruce.Bioclimvariabledefinitions:bio1(meanannualtemp.),bio2(meantemp.diurnalrange),bio3(isothermality),bio4(temp.seasonality),bio5(maxtemp.ofwarmestmonth),bio6(mintemp.warmestmonth),bio7(temp.annualrange),bio8(meantemp.wettestquarter),bio9(meantemp.driestquarter),bio10(meantemp.warmestquarter),bio11(meantemp.coldestquarter),bio12(annualprecip.),bio13(precip.wettestmonth),bio14(precip.driestmonth),bio15(precip.seasonality),bio16(precip.wettestquarter),bio17(precip.driestquarter),bio18(precip.warmestquarter),bio19(precipcoldestquarter).

−15 −10 −5 0 5

−10

−50

5Individuals factor map (PCA)

Dim 1 (54.30%)

Dim

2 (2

5.73

%)

● ●

●●

●●

● ●

●●

● ●

●●

●●

●●

BAT BLM

BMB

BNTBPT

CBA

CMK

CNHCNS

COWCPTCSP

FSRFZL

GDK

GLD

GLR1GLR2

GRKGT

HAK

HKBKSF

LACLFW

LKP

OPRPHK

PKB

PRT

RAT

RRNRSKSEN

SHVSKB

SKL

SMN

SMRSPK

SPTTKR

TOA

WLF

WMTWSW

YCK

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

Variables factor map (PCA)

Dim 1 (54.30%)Di

m 2

(25.

73%

) Elev

bio1

bio2 bio3

bio4

bio5

bio6

bio7

bio8

bio9

bio10

bio11

bio12bio13

bio14

bio15

bio16bio17bio18 bio19

−10 −5 0 5

−50

5

Individuals factor map (PCA)

Dim 1 (51.00%)

Dim

2 (3

3.30

%)

●●

●●

●● ●

●●

●●

●●

●●

BATBLM

BNT

CBA

CMKCNH

CNS COWCPT

CSPFSR GDK

GLR1GLR2

GRKHAK

HKB

KSF

LFWOPRPHK

PKB

PRT

RRN

RSK

SEN

SHV SKB

SKLSMR

SPK

SPT

TKR

TOAWMT

WSWYCK

FZLGLD

WLF

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

Variables factor map (PCA)

Dim 1 (51.00%)

Dim

2 (3

3.30

%)

Elev

bio1

bio2bio3

bio4

bio5

bio6

bio7

bio8

bio9bio10

bio11

bio12

bio13

bio14bio15

bio16

bio17

bio18bio19

Page 17: Final report to the West Virginia Department of Natural ...kellrlab/LabManuscripts/Keller_2017_WVDNR_FinalP… · Final report to the West Virginia Department of Natural Resources

17

WethenaskedwhetherthesebioclimaticdifferencesinoccupiedclimatenichespacewithintheCentralAppalachianshaveshapedpatternsofgeneflowandpopulationconnectivityacrosstheregion.UsingGeneralizedDissimilarityModeling(GDM),werelatedpairwisepopulationgeneticdivergence(G’ST)todifferencesamongsitesforthe19bioclimaticvariables.Theoveralldevianceexplainedbyenvironmentaldifferenceswasonly17%ofthetotaldeviance,suggestingmostoftherelativelyweakgeneticdivergenceamongsitesisleftunaccountedfor,probablyduetootheraspectsoflandusehistoryaswellasstochasticdemographicandsamplingprocesses.Interestingly,onlyfourenvironmentalpredictorsweresignificantinthemodel,showingnon-zerodevianceinexplaininggeneticconnectivityamongsites(Figure4).Ofthese,themostimportantbyfarwasprecipitationduringthewarmestquarteroftheyear(bio18),withsteepchangesingeneticconnectivityacrossthedryportionoftheprecipitationgradientfrom32.0–36.0cm,followedbylittlechangeinconnectivityacrossthewetterportionofthegradientabove36.0cm(Figure4).Theotherimportantpredictorofgeneticconnectivitywasthemeantemperatureofthecoldestquarteroftheyear(bio11),whereconnectivitychangedthemostalongthecoldportionofthegradient(below-3.5°C).Devianceexplainedbytheremainingvariablesshowedrelativelyminoreffectsofgeographicdistanceandprecipitationseasonality(bio15). TheturnoverfunctionsproducedbyGDMallowtransformationofthecontinuousbioclimaticsurfaceintoageneticallyinformedmapofhowtheenvironmentisexpectedtomediategeneticconnectivityamongsites(Fitzpatrick&Keller2015).Thesetransformationsarebasedonthemodeledturnoverfunctionsthatassociatespecificportionsalongenvironmentalgradientswithhighorlowturnoveringeneticdiversity(Figure4).InGDMtransformedmaps,pixelswithsimilarcolorsarepredictedtoexperiencelowgeneticisolationbyenvironment,andhencesharehighconnectivitythroughthegene-environmentspace.GDMtransformationintheCentralAppalachiansshowsahighdegreeofconnectivityamongmuchofthecoreportionofP.rubensrangeintheregion(Figure5).ThegeneraltrendinconnectivityisalongaSWtoNEtrendingaxis,withabrupttransitionstowardstherainshadowoftheAlleghenyfront,inthevicinityofPKB(PantherKnob)neartheWV/VAborder.StrongchangesinconnectivityarealsoapparentnorthwardintoGarretCounty,MD,wheresitesGLD(Glades),WLF,andFZLshowlowpredictedconnectivitywiththerestoftherangeinWV.ThisdropinconnectivityislikelydrivenbyregionsofreducedsummerprecipitationnorthandeastoftheAlleghenyFront,althoughthesespecificstandsofredsprucehavefoundsuitablesitesmediatedbylocalhydrology.Nevertheless,theGDMunderscoresthegeneticandclimaticisolationofthewesternMDsprucesitesfromtherestoftheCentralAppalachianregion.Thisreducedconnectivityisalsoaccompaniedbyreducedwithin-sitediversityandevidenceforinbreeding(Table3). OverlayingthenetworktopologyofconditionalgeneticdistancesfromthepopulationgraphanalysisclearlyshowsthegeneticisolationofwesternMDP.rubenssites,includingCNS(CranesvilleSwamp)ontheWV/MDborder(Figure6).

Page 18: Final report to the West Virginia Department of Natural ...kellrlab/LabManuscripts/Keller_2017_WVDNR_FinalP… · Final report to the West Virginia Department of Natural Resources

18

Figure4.GeneralizedDissimilarityModeling(GDM)resultsshowinginfluenceofbioclimaticvariablesonpopulationgeneticstructure.Toppanelsshowmodelperformanceatpredictingobservedgeneticdistanceamongpopulations.Bottomtworowsoffiguresshowgeneticturnoveralongenvironmentalgradientsofgeographicdistance,meantemperatureofcoldestquarter(bio11),precipitationseasonality(bio15),andprecipitationofwarmestquarter(bio18).

0.2 0.3 0.4 0.5 0.6 0.7

0.0

0.4

0.8

Predicted Ecological Distance

Obs

erve

d Co

mpo

sitio

nal D

issim

ilarit

y

●●

● ●

●●

● ●

●●

● ●

● ●

●●

●●

● ● ●●

●● ●

● ●

●●

●●

●●

● ●●

●●

● ● ●●

●●

●●

●●

●●

●●

●● ●●

● ● ●●● ●

●●●

●●●

●●

●●●● ●

●●

● ●

● ●

●● ●

●●

●● ●

●● ●

●●

●●

● ●

● ●

●●

● ●●●

● ●

●●

●●

●●

●●

● ● ●

●●

● ●

● ● ● ●

●●

●●●

● ●

●● ●

●●

● ●

●●

●●

●●●●

●● ● ●●

● ● ●

●●

●●

● ●

● ●

●●

● ●

●●

● ●●

●● ●●

●●●

● ●

0.2 0.3 0.4 0.5

0.0

0.4

0.8

Predicted Compositional Dissimilarity

Obs

erve

d Co

mpo

sitio

nal D

issim

ilarit

y

●●

● ●

● ●

● ●

●●

● ●

● ●

●●

●●

● ● ●●

●● ●

● ●

●●

●●

●●

● ●●

●●

● ● ●●

●●

●●

●●

●●

●●

●● ●●

● ● ●●● ●

●●●

●● ●

●●

●●●● ●

●●

● ●

● ●

●● ●

●●

●● ●

●● ●

●●

●●

● ●

● ●

●●

● ●●●

● ●

●●

●●

●●

●●

● ● ●

●●

● ●

● ● ● ●

●●

●●●

● ●

●● ●

●●

● ●

●●

●●

●●●●

● ● ● ●●

● ● ●

●●

●●

● ●

● ●

●●

● ●

●●

● ●●

●● ●●

●●●

● ●

0.0 0.5 1.0 1.5 2.0

0.0

0.2

0.4

Geographic Distance

f(Geo

grap

hic

Dist

ance

)

−40 −35 −30 −25

0.0

0.2

0.4

bio11_13

f(bio

11_1

3)

8 9 10 11 12 13

0.0

0.2

0.4

bio15_13

f(bio

15_1

3)

320 340 360 380 400 420

0.0

0.2

0.4

bio18_13

f(bio

18_1

3)

Page 19: Final report to the West Virginia Department of Natural ...kellrlab/LabManuscripts/Keller_2017_WVDNR_FinalP… · Final report to the West Virginia Department of Natural Resources

Figure5.PredictedspatialvariationinpopulationgeneticdifferentiationbasedonGeneralizedDissimilarityModeling(GDM).AreaswithsimilarcolorsrepresentareasofpredictedgeneticsimilaritybasedonGDMtransformationofbioclimaticvariablesandtheirassociationwithgeneticdistance.Theleftpanelshowsthepredictedgradientacrosstheregion.TherightpanelshowsthesamegradientcroppedusingtheWVDNRRedSpruce(Picearubens)CoverinWestVirginia2013maplayerinordertobettershowthepredictedconnectivitywithinthecoredistributionalrangeofredspruceinWV.

●●

●●

●●

●●

● ●

●●

●●●

●●

Page 20: Final report to the West Virginia Department of Natural ...kellrlab/LabManuscripts/Keller_2017_WVDNR_FinalP… · Final report to the West Virginia Department of Natural Resources

Figure6.PopulationgraphgeneticnetworkstructureamongCentralAppalachiansites.Leftpanelshowsheatmapandhierarchicalclusteringofsamplingsitesaccordingtotheirconditionalgeneticdistances.Warmercolorsindicatehigherconnectivity.Rightpanelspatiallymapsthepopulationgraphnetworktopologyofsites(nodes;blackcircles)linkedbyconditionalgeneticdistances(whiteedges).NetworktopologyisoverlaidontothegeneticallytransformedclimaticsurfacefromGDM.

OPR TOA

CNH

SKB

GRK HAK

SPK

CNS

FZL

KSF

CBA

YCK

WLF

GLR

1PR

TCS

PFS

RCP

TWSW BAT

COW

GLR

2WMT

PHK

SPT

SMR

LFW

SKL

RRN

PKB

SEN

TKR

HKB

CMK

BNT

GLD

BLM

RSK

SHV

GDK

OPRTOACNHSKBGRKHAKSPKCNSFZLKSFCBAYCKWLFGLR1PRTCSPFSRCPTWSWBATCOWGLR2WMTPHKSPTSMRLFWSKLRRNPKBSENTKRHKBCMKBNTGLDBLMRSKSHVGDK

Conditional genetic distance

0 20 60Value

Color Key

●●

●●

●●

●●

●● ●

●●●

●●●

●●

●●

●●

Page 21: Final report to the West Virginia Department of Natural ...kellrlab/LabManuscripts/Keller_2017_WVDNR_FinalP… · Final report to the West Virginia Department of Natural Resources

Thepopulationgraphalsorevealsseveraladditionalinsightsintothegeneticconnectivityamongsitesthatwerenotapparentfromotheranalyses.ThemoststrikingfeaturebeingthealmostcompletelackofconnectivityofapairofpopulationsalongtheeasternedgeofP.rubensinWV,namelysitesTOA(TopofAllegheny)andOPR(OldPineyRoad),althoughbothsitesappearwellconnectedtoeachother(Figure6,leftpanel).OthersitesalsoshowsomewhatlimitedconnectivitywithinthenetworksuchasKSFandPRTintheKumbrabowStateForest,andPKBtotheeast.EffectivePopulationSizeandDemographicHistoryCurrentbestestimatesoftheeffectivepopulationsize(Ne)ofP.rubensintheCentralAppalachiansusingthelinkage-disequilibriummethodimplementedinNeEstimatorarelow:Ne=322,witha95%C.I.of287-364(Table4).ThisisslightlylowerthantheminimumNerecommendedforlong-termviablepopulations,andreflectstheknownlowgeneticdiversityreportedforP.rubensinothergeneticstudies(Hawley&DeHayes1994;Perronetal.2000).However,whenputintoabroaderregionalcontext,theCentralAppalachianNeislargerelativetotheNeestimatedfornortheasternP.rubens(ca.68individuals,CI:60-77),andrepresentsabout76%ofthetotalspecies-wideNeestimatedfromthepooledsampleofallindividuals(Table4).However,theseconclusionsregardingNeinthenortheastremainverytentativeuntilmuchmorethoroughsamplingcanbeconducted.TheNGRrestorationseedlingscapturedasurprisinglylargefractionoftheavailableNeintheCentralAppalachians,Ne=157(CI:123-212),roughlyhalfoftheregionalNe(Table4).Table4.Estimatesofcurrenteffectivepopulationsize(Ne).

SampleGroupSamplesize

(Nindividuals)Effectivepopulation

size(Ne)Lower95%

C.I.Upper95%

C.I.CentralAppalachians

(WV&MD) 643 322 287 364

Restorationseedlings

(NGR) 100 157 123 212

Northeast(PA,NY,NH,

VT,ON) 102 68 60 77

Pooled 845 539 473 619

EstimatesofcurrentNebasedonthecoalescentmethodinVarEffwerehighly

congruentwiththosefromNeEstimator.Assumingamutationrateof5x10-4,VarEffestimatesacurrentNefortheCentralAppalachianregionof535.7(95%CI:88.5–1765.3)(Figure7).ThisisslightlylargerthantheNefromNeEstimator,buttheconfidenceintervaloverlaps.Thus,giventwoalternatemethodsthatmakeuseofdifferentsignaturesofgeneticdriftinthedata,thereemergesarelativelyrobustpicturethatcurrentNeisinthehundreds,andveryclosetotheminimumrecommendedleveladvisedbyconservationbiologistsforlong-termviability.

Page 22: Final report to the West Virginia Department of Natural ...kellrlab/LabManuscripts/Keller_2017_WVDNR_FinalP… · Final report to the West Virginia Department of Natural Resources

Figure7.Coalescentmodelofeffectivepopulationsize(Ne)ofredspruceatdifferenttimeperiodsintheCentralAppalachians.NeisshownattimepointscorrespondingtotheancestralNebeforethesizechange(Ne-3;green),theNefollowingthesizechange(Ne-2;red),andthecurrentNe(blue).

0 2000 4000 6000 8000 10000

0.00

000.

0005

0.00

100.

0015

0.00

20

Effective population size (Ne)

Post

erio

r den

sity

Ne currentNe−2Ne−3

Page 23: Final report to the West Virginia Department of Natural ...kellrlab/LabManuscripts/Keller_2017_WVDNR_FinalP… · Final report to the West Virginia Department of Natural Resources

23

Interestingly,Neintheregionhasnotalwaysbeenatthislowlevel.Thesize

changemodelinVarEffestimatesthattheancestralpopulationtoCentralAppalachianP.rubenshadamuchlargerNeinthepast(Figure8).ThesizeofthisancestralpopulationtotheCentralAppalachianregionisestimatedtobe7,209(95%CI:268.3-10,248.5)--anorderofmagnitudelargerthancurrentNeestimates,butwithawideconfidenceintervalreflectingtheuncertaintyinherentinestimatingchangesintheevolutionarypast.Thetimingofthesizechangeisestimatedat376generationsago(95%CI:13.3-1,229.0).Dependingonthevalueassumedforgenerationtime,thisplacesthetimingofthesizereductionsometimeinthemidtolateHolocene,probablyreflectinghistoricalreductionsinabundanceasthepost-glacialclimatewarmed.Thedominantsignatureleftinthegeneticdatareflectthismoreancientevent,andapparentlyoverwhelmanyeffectsonNefrommorerecentevents.ThissuggeststhatP.rubenswasalreadyquitebottleneckedintermsofitsgeneticdiversitypriortotheonsetoflandusechangeinthe19thand20thcenturies.

Figure8.2-Dposteriordensitydistributionsof(log10)effectivepopulationsizechangethroughtime.,measuredasgenerationsinthepast.Warmercolorsindicateareasofgreaterposteriorprobability.

200 400 600 800 1000

2.0

2.5

3.0

3.5

4.0

Time T in the past (generations)

log_

10( N

(T) )

N-T joint distribution (coverage = 99.2093 % )

/Volumes/kellrlab/STEVE/wvdnr_spruce/popgen_analysis/VarEff/job

Page 24: Final report to the West Virginia Department of Natural ...kellrlab/LabManuscripts/Keller_2017_WVDNR_FinalP… · Final report to the West Virginia Department of Natural Resources

24

ConclusionsTheresultsofthisresearchprovideafirst,detailedassessmentofthegeneticstatusofremnantpopulationsinP.rubens,akeystonespeciesinhighelevationconiferforests.Whilemanyquestionsremain,theresultshereshouldprovidesomeguidancetocurrentandfutureecosystemrestorationandmanagementeffortsintheCentralAppalachianeco-regionseekingtomaximizethedistributionofdiversityandgeneticconnectivityinordertomaintainapopulationthatpossesslong-termviability.Belowweprovidesomehighlightsandsynthesisofthemorestrikingresultstocomeoutofthisstudyandtheirpotentialrelevancetoredsprucerestoration:

• GeneticdiversityofP.rubensisquitelow,particularlyforanoutcrossingforesttree.Thisisreflectedbothinthelowlevelsofallelicrichnesswithinsites(Table3)andtheverysmallvaluesofitscurrenteffectivepopulationsize(Table4;Figure7).Lowlevelsofgeneticdiversityhavealsobeenfoundbyotherpopulationgeneticstudiesofredspruceindifferentportionsofitsrange,andappeartobeauniquefeatureofthistaxonthatstandsoutamongotherwind-pollinatedoutcrossingforesttrees.SomeresearchershavepositedthatP.rubensisactuallyarecentlyderived(andnotcompletelyreproductivelyisolated)speciesfromP.mariana(Perronetal.2000;Jaramillo-Correa&Bousquet2003;DeLafontaineetal.2015).

• ThelowcurrentNeisnearorslightlybelowwhatisgenerallyrecognizedasaminimumacceptableeffectivepopulationsizeforconservationofimpactedtaxa(Waples2002;Reed&Frankham2003;Frankham2005;Latta2008).ThesestudiessuggestthattheratioofNetocensuspopulationsizeisoften~0.1,butsucharatiogivesrisetounrealisticallysmallcensussizeestimatesofredspruceintheCentralAppalachians(ontheorderofafewthousand).Thus,itismorelikelythattheNe/NratioisthereforeevensmallerinP.rubens,possiblyreflectingitsdemographichistoryofrecentfoundereffectspeciationduringthePleistocenewithP.marianaaswellasthehistoricalbottleneckdetectedhereinthemid-lateHolocenethatreducedNebyanorderofmagnitude.ComplicationsduetoprolongedperiodsatlowNeincludereducedabilitytopurgedeleteriousmutationsandavoidinbreedingdepression,aswellaslimitedcapacityforresponsetonovelselectionpressures,suchasemergingpestsandpathogensorachangingclimate(Charlesworth2009).Thus,restorationpracticesshouldworktomaximizeNeofCentralAppalachianP.rubensbydrawingfromadiverseseedstockwithintheregion,andmaximizingtheallelicdiversityofrestorationseedlings.Thatsaid,theNepresentintheofCentralAppalachiansappearstobelargerelativetootherpartsofthespeciesrange,butconfidenceinthisassessmentwillhavetoawaitfurthersamplingofP.rubensinthenortheast.

Page 25: Final report to the West Virginia Department of Natural ...kellrlab/LabManuscripts/Keller_2017_WVDNR_FinalP… · Final report to the West Virginia Department of Natural Resources

25

• PresenceofgeneticancestryintheCentralAppalachianscharacteristicofnortheasternredsprucediversitysuggestshistoricanthropogenicmovementofgenesfromfurthernorth.Theeffectofthismovementrepresentsapotentialopportunitytoassesstheconsequencesoflong-distancegeneflowasamechanismofgeneticrescue,orifsuchgeneflowismaladaptivebydilutinglocaladaptation.Detailedcomparisonsoftreeswithvs.withoutnorthernancestrygrowinginthesamemicro-environmentwouldbepotentiallyrevealingonthispoint.

• GeneticconnectivityamongCentralAppalachianstandsishigh,butthereareisolatedpocketsofpopulationsseparatedfromthecoreoftheregionbymarginalclimateconditions.TheGDManalysisindicatessummerprecipitationisakeyfactorregulatingthisconnectivity.WesternMDsitesarenotablehere,beingclimaticallyandgeographicallyisolatedfromtherestoftheCentralAppalachianspruce,aswellasshowingreduceddiversityandevidenceforinbreeding.ItisimportanttonotethatthisstudypurposefullysampledtreesdeemedtobenativeandavoidedtherestorationplantingsconductedbytheNatureConservancyinthisregion.Thus,thepotentialthattheseplantingsmightsupplementtheexistinggeneticdiversityofthesestandswouldseemtobehigh,andcouldbeassessedastheplantingsmature.

AcknowledgementsIamgratefulfortheassistanceandadviceofmanypeoplewhocontributedtothisproject.Mostimportantly,myresearchassistantReginaTrottwhowashighlycommittedtothecollectioneffortandmolecularanalyses.Ialsoappreciatemanybiologistswithexpertiseontheredspruceecosystemwhoassistedmeinlocatingandaccessingsamples,includingKentKarriker,JimVanderhorst,BrianStreets,ElizabethByers,DaveSaville,MikePowell,andDeborahLandau.Finally,IacknowledgetheWVDNRandtheUniversityofMarylandCenterforEnvironmentalScienceforfundingsupport.

Page 26: Final report to the West Virginia Department of Natural ...kellrlab/LabManuscripts/Keller_2017_WVDNR_FinalP… · Final report to the West Virginia Department of Natural Resources

26

Appendices

AppendixA.Individualsamplinginformation.

AppendixB.Excelfilecontainingestimatesofpairwisegeneticdivergence(GST,

G’ST)amongpopulations.

AppendixC:STRUCTUREancestryassignmentsofindividualstogeneticclusters.

AppendixD.Microsatellitegenotypedataforallsampledindividualsat18loci.

Page 27: Final report to the West Virginia Department of Natural ...kellrlab/LabManuscripts/Keller_2017_WVDNR_FinalP… · Final report to the West Virginia Department of Natural Resources

27

References

BatesD,MaechlerM,BolkerB,WalkerS(2015)lme4:Linearmixed-effectsmodels

usingEigenandS4.Rpackageversion1.1-8.http://CRAN.R-

project.org/package=lme4.

BeaneNR(2010)UsingEnvironmentalandSite-specificVariablestoModelCurrent

andFutureDistributionofRedSpruce(PicearubensSarg.)ForestHabitatin

WestVirginia.PhDThesis.WestVirginiaUniversity.

BlacketMJ,RobinC,GoodRT,LeeSF,MillerAD(2012)Universalprimersfor

fluorescentlabellingofPCRfragments-anefficientandcost-effectiveapproach

togenotypingbyfluorescence.MolecularEcologyResources,12,456–463.

ByersE,NorrisS(2011)Climatechangevulnerabilityassessmentofspeciesof

concerninWestVirginia.WestVirginiaDivisionofNaturalResources,Elkins,

WV.

ByersBEA,VanderhorstJP,StreetsBP(2010)ClassificationandConservation

AssessmentofUplandRedSpruceCommunitiesinWestVirginia.WestVirginia

DivisionofNaturalResources,Elkins,WV.

CharlesworthB(2009)Fundamentalconceptsingenetics:effectivepopulationsize

andpatternsofmolecularevolutionandvariation.NatureReviews.Genetics,10,

195–205.

DoC,WaplesRS,PeelDetal.(2014)NeEstimatorv2:Re-implementationof

softwarefortheestimationofcontemporaryeffectivepopulationsize(Ne)

fromgeneticdata.MolecularEcologyResources,14,209–214.

DyerRJ(2014)PopulationGraphsandLandscapeGenetics.AnnualReviewof

Page 28: Final report to the West Virginia Department of Natural ...kellrlab/LabManuscripts/Keller_2017_WVDNR_FinalP… · Final report to the West Virginia Department of Natural Resources

28

Ecology,Evolution,andSystematics,46,annurev–ecolsys–112414–054150.

DyerRJ,NasonJD(2004)PopulationGraphs:Thegraphtheoreticshapeofgenetic

structure.MolecularEcology,13,1713–1727.

EvannoG,RegnautS,GoudetJ(2005)Detectingthenumberofclustersof

individualsusingthesoftwareSTRUCTURE:asimulationstudy.Molecular

Ecology,14,2611–20.

FerrierS,ManionG,ElithJ,RichardsonK(2007)Usinggeneralizeddissimilarity

modellingtoanalyseandpredictpatternsofbetadiversityinregional

biodiversityassessment.DiversityandDistributions,13,252–264.

FitzpatrickMC,KellerSR(2015)Ecologicalgenomicsmeetscommunity-level

modellingofbiodiversity:mappingthegenomiclandscapeofcurrentand

futureenvironmentaladaptation.EcologyLetters,18,1–16.

FrankhamR(2005)Geneticsandextinction.BiologicalConservation,126,131–140.

HawleyGJ,DeHayesDH(1994)Geneticdiversityandpopulationstructureofred

spruce(Picearubens).CanadianJournalofBotany,72,1778–1786.

HijmansRJ,CameronSE,ParraJL,JonesPG,JarvisA(2005)Veryhighresolution

interpolatedclimatesurfacesforgloballandareas.InternationalJournalof

Climatology,25,1965–1978.

HodgettsRB,AleksiukMA,BrownAetal.(2001)Developmentofmicrosatellite

markersforwhitespruce(Piceaglauca)andrelatedspecies.Theoreticaland

AppliedGenetics,102,1252–1258.

Jaramillo-CorreaJP,BousquetJ(2003)NewevidencefrommitochondrialDNAofa

progenitor-derivativespeciesrelationshipbetweenblackspruceandred

Page 29: Final report to the West Virginia Department of Natural ...kellrlab/LabManuscripts/Keller_2017_WVDNR_FinalP… · Final report to the West Virginia Department of Natural Resources

29

spruce(Pinaceae).AmericanJournalofBotany,90,1801–1806.

KeenanK,McginnityP,CrossTF,CrozierWW,ProdöhlPA(2013)DiveRsity:AnR

packagefortheestimationandexplorationofpopulationgeneticsparameters

andtheirassociatederrors.MethodsinEcologyandEvolution,4,782–788.

DeLafontaineG,PrunierJ,GérardiS,BousquetJ(2015)Trackingtheprogressionof

speciation:Variablepatternsofintrogressionacrossthegenomeprovide

insightsonthespeciesdelimitationbetweenprogenitor-derivativespruces

(Piceamariana×P.rubens).MolecularEcology,24,5229–5247.

LattaRG(2008)Conservationgeneticsasappliedevolution:fromgeneticpatternto

evolutionaryprocess.EvolutionaryApplications,1,84–94.

LittleEL(1971)AtlasofUnitedStatestrees:Vol.1.Conifersandimportant

hardwoods.USDAForestService.

ManelS,SchwartzMK,LuikartG,TaberletP(2003)Landscapegenetics:combining

landscapeecologyandpopulationgenetics.TrendsinEcology&Evolution,18,

189–197.

ManionG,LiskM,FerrierS,Nieto-LugildeD,FitzpatrickMC(2016)gdm:Functions

forGeneralizedDissimilarityModeling.

MarriageTN,HudmanS,MortMEetal.(2009)Directestimationofthemutation

rateatdinucleotidemicrosatellitelociinArabidopsisthaliana(Brassicaceae).

Heredity,103,310–7.

MatschinerM,SalzburgerW(2009)TANDEM:Integratingautomatedallelebinning

intogeneticsandgenomicsworkflows.Bioinformatics,25,1982–1983.

McKayJK,ChristianCE,HarrisonS,RiceKJ(2005)“‘HowLocalIsLocal ?’”—A

Page 30: Final report to the West Virginia Department of Natural ...kellrlab/LabManuscripts/Keller_2017_WVDNR_FinalP… · Final report to the West Virginia Department of Natural Resources

30

ReviewofPracticalandConceptualIssuesintheGeneticsofRestoration.

RestorationEcology,13,432–440.

MosselerA,MajorJ,RajoraO(2003)Old-growthredspruceforestsasreservoirsof

geneticdiversityandreproductivefitness.TAGTheoreticalandAppliedGenetics,

106,931–937.

NikolicN,ChevaletC(2014)Detectingpastchangesofeffectivepopulationsize.

EvolutionaryApplications,7,663–681.

PerronM,PerryDJ,AndaloC,BousquetJ(2000)Evidencefromsequence-tagged-

sitemarkersofarecentprogenitor-derivativespeciespairinconifers.

ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica,

97,11331–11336.

PfeifferA,OlivieriAM,MorganteM(1997)Identificationandcharacterizationof

microsatellitesinNorwayspruce(PiceaabiesK.).Genome,40,411–419.

RCoreTeam(2014)R:Alanguageandenvironmentforstatisticalcomputing.

RajoraOP,MosselerA,MajorJE(2000)Indicatorsofpopulationviabilityinred

spruce,Picearubens.II.Geneticdiversity,populationstructure,andmating

behavior.CanadianJournalofBotany,78,941–956.

RajoraOP,RahmanMH,DayanandanS,MosselerA(2001)Isolation,

characterization,inheritanceandlinkageofmicrosatelliteDNAmarkersin

whitespruce(Piceaglauca)andtheirusefulnessinothersprucespecies.

MolecularandGeneralGenetics,264,871–882.

ReedDH,FrankhamR(2003)CorrelationbetweenFitnessandGeneticDiversity.

ConservationBiology,17,230–237.

Page 31: Final report to the West Virginia Department of Natural ...kellrlab/LabManuscripts/Keller_2017_WVDNR_FinalP… · Final report to the West Virginia Department of Natural Resources

31

RungisD,BérubéY,ZhangJetal.(2004)Robustsimplesequencerepeatmarkersfor

spruce(Piceaspp.)fromexpressedsequencetags.TheoreticalandApplied

Genetics,109,1283–1294.

SavolainenO,PyhajarviT,KnurrT(2007)Geneflowandlocaladaptationintees.

AnnualReviewofEcology,Evolution,andSystematics,38,595–619.

ScottiI,PagliaGP,MagniF,MorganteM(2002)Efficientdevelopmentof

dinucleotidemicrosatellitemarkersinNorwayspruce(PiceaabiesKarst.)

throughdot-blotselection.TheoreticalandAppliedGenetics,104,1035–1041.

WaplesR(2002)Definitionandestimationofeffectivepopulationsizeinthe

conservationofendangeredspecies.Populationviabilityanalysis.

WVDNR(2017)Plots2-WVdatabaseofcommunityecologyplots.WestVirginia

NaturalHeritageProgram,WVDivisionofNaturalResources,Elkins,WV.