flowid presentation at grams in osaka, july 2016

60
1

Upload: wouter-stam

Post on 14-Apr-2017

187 views

Category:

Engineering


2 download

TRANSCRIPT

1

Company Introduction

2

Flowid is founded in 2008.Flowid designs, tests and builds process solutions for clients in the chemical, pharmaceutical and food industry. Flowid’s solutions are focused on ‘continuous processing’.

FlowidExpertise and infrastructure to move from traditional to continuous

Lab

Pilot

Production>50 clients >100 projects

Chemicals Production in the Future: Energy, Raw Materials, Capital & Risk

4

Highly variable supply Distributed production Storage/transport inefficient Use for chemicals production Highly variable production rate

Wind Turbines

50 TW

5 TW

Slides by dr.ir. John van der Schaaf TU/e

Chemicals Production in the Future: Energy, Raw Materials, Capital & Risk

5

0.5 MW

Highly variable resources Biomass, recycle, waste Distributed production Safe, robust, efficient, versatile equipment + processes

Slides by dr.ir. John van der Schaaf TU/e

Chemicals Production in the Future: Energy, Raw Materials, Capital & Risk

6

Low CAPEX High ROI Multipurpose, Scalable Robust, Safe Millions vs. Billions

Slides by dr.ir. John van der Schaaf TU/e

Multiphase Systems: Bottlenecks

7

Gas Liquid Solid

agl asCg CL

Gas Liquid Solid

11A

g g gl l gl s s r t s

r H H HC k a k a k a k L aη δ

−$ %−

= + + +& '& '( )

Catalyst concentration/activity

Rea

ctio

n ra

te

mass transfer limited

kinetically limited

δ

Slides by dr.ir. John van der Schaaf TU/e

Rotor-Stator SpinPro Technology

8

Rotor-Stator Spinning Disc Technology

Answers demands PI of multiphase systems: • High mass transfer (GL ~10 1/s, LL ~300 1/s, LS ~ 1 1/s)

• High heat transfer (U.A ~ 40 MW/m3/K)

• Short micromixing times (tm ~ 0.1 ms)

• Countercurrent Flow (100-1000 kg/hr)

• Plug Flow (~4 tonnes/hr)

• Low volume ( VR ~ 1 L)

Applications: • Extreme fast and exothermic reactions (nitrification) • Multiphase reactions (sulfonation, halogenation) • Extraction (LL, LS) • Distillation (RPB), Absorption • Crystallization • Electrochemistry, Photochemistry

Slides by dr.ir. John van der Schaaf TU/e

Rotor-Stator SpinPro Technology

9

Rotor-Stator Spinning Disc Technology

Special Features: • Alternative construction materials • Specialty coatings, surface treatment • High corrosion resistivity • Membranes, Catalytically active discs • Phase separation (GL, LS) • High pressure, high temperature • High viscosity (Glycerol, 98% H2SO4)

Slides by dr.ir. John van der Schaaf TU/e

ReactorReactor

Chemical Production Process

10

Extractor

Evaporation Crystallizer

A(S) + B(g) ----> C(S)

C(S) + B(g) ----> D(S)

A(S)

B(g)

A(S), C(S), D(S)

D(E)

C(E), D(E)

E

C(s)

E

Crystallizer

D(s)

C(E), D(E)

cat

catSlides by dr.ir. John van der Schaaf TU/e

SpinPro Reactor

11 Slides by dr.ir. John van der Schaaf TU/e

Gas-Liquid Mass Transfer

12

3 -3 -1L G0.5 m m sL GL

G

k aε

Gas-Liquid Mass Transfer

Meeuwse et al., Gas–liquid mass transfer in a rotor–stator spinning disc reactor, CES 65 466-471(2010)

Gas flow: 400 mL/min Liquid flow: 400 mL/min

Slides by dr.ir. John van der Schaaf TU/e

Multiple Spinning Disc Slurry Reactor

13 Slides by dr.ir. John van der Schaaf TU/e

Spinning Disc Electrolysis

14 I (A) Slides by dr.ir. John van der Schaaf TU/e

Photochemical Reactor

15 Slides by dr.ir. John van der Schaaf TU/e

Reactor ExtractorExtractorReactor

Chemical Production Process

16

Evaporation Crystallizer

A(S)

B(g)

A(S), C(S), D(S)

D(E)

C(E), D(E)

E

C(s)

E

Crystallizer

D(s)

C(E), D(E)

A(S) + B(g) ----> C(S)

C(S) + B(g) ----> D(S)Slides by dr.ir. John van der Schaaf TU/e

Cocurrent Liquid-Liquid Flow Rotor-Stator

17Visscher, Ind. & Eng. Chem. Res. 2012; Visscher, Chem. Eng. J. 2012 Slides by dr.ir. John van der Schaaf TU/e

Cocurrent Liquid-Liquid Flow Rotor-Stator

18Visscher, Ind. & Eng. Chem. Res. 2012; Visscher, Chem. Eng. J. 2012 Slides by dr.ir. John van der Schaaf TU/e

Rotor-Rotor Spinning Disc Extractor

19 Slides by dr.ir. John van der Schaaf TU/e

Multiple contacting stages

20 Slides by dr.ir. John van der Schaaf TU/e

Physical separation efficiency

21

5 mL/s heptane, 5 mL/s water

500 1000 1500 2000500

1000

1500

2000

PSE = Purityheavy*Puritylight (-) (Fheavy=5 ml/s and Flight=5 ml/s)

Ωinner rotor

[rpm]

Ωou

ter

roto

r [rpm

]

PSE < 0.850.85 < PSE < 0.99PSE > 0.99

Slides by dr.ir. John van der Schaaf TU/e

Physical separation efficiency

22

5 mL/s heptane, 5 mL/s water

500 1000 1500 2000500

1000

1500

2000

PSE = Purityheavy*Puritylight (-) (Fheavy=5 ml/s and Flight=5 ml/s)

Ωinner rotor

[rpm]

Ωou

ter

roto

r [rpm

]

PSE < 0.850.85 < PSE < 0.99PSE > 0.99

Slides by dr.ir. John van der Schaaf TU/e

500 1000 1500 2000500

1000

1500

2000

PSE = Purityheavy*Puritylight (-) (Fheavy=5 ml/s and Flight=5 ml/s)

Ωinner rotor

[rpm]

Ωou

ter

roto

r [rpm

]

PSE < 0.850.85 < PSE < 0.99PSE > 0.99

Physical separation efficiency

23

5 mL/s heptane, 5 mL/s water

6 mL/s, 6 mL/s

10 mL/s, 10 mL/s

Slides by dr.ir. John van der Schaaf TU/e

Extraction efficiency: kLa

24

water

heptane

30 mol/m3

0 mol/m3

UV/VIS measurement

UV/VIS measurement

Extraction efficiency: kLa

25

0 10 20 30 40 50 600

5

10

15

20

25

30

Concentration in heptane, mol m-3

Conc

entra

tion

in w

ater

, mol

m-3

Flight=5 ml/s ; Fheavy=5 ml/s ; Outer rotor =2000 rpm; Inner rotor=1350 rpm ; klal=0.7 1/s)

Equilibrium-lineModel-predictionInitial concentrationStage 1: (CORG

1 ,CAQ2 )

Stage 2:(CORG3 ,CAQ

4 )

Stage 3: (CORG5 ,CAQ

6 )SS-concentrations (measured)

Extraction efficiency: kLa

26

5 mL/s heptane, 5 mL/s water, 0-50 g/L benzoic acid in heptane

500 1000 1500 2000500

1000

1500

2000

PSE = Purityheavy*Puritylight (-) (Fheavy=5 ml/s and Flight=5 ml/s)

Ωinner rotor

[rpm]

Ωou

ter

roto

r [rpm

]

PSE < 0.850.85 < PSE < 0.99PSE > 0.99

0.05 1/s

0.35 1/s 0.7 1/s

0.1 1/s

0.13 1/s

Slides by dr.ir. John van der Schaaf TU/e

Extractor

Chemical Production Process

27

Reactor

Evaporation Crystallizer

A(S)

B(g)

A(S), C(S), D(S)

D(E)

C(E), D(E)

E

C(s)

E

Crystallizer

D(s)

C(E), D(E)

A(S) + B(g) ----> C(S)

C(S) + B(g) ----> D(S)Slides by dr.ir. John van der Schaaf TU/e

Multifunctionality

28 Slides by dr.ir. John van der Schaaf TU/e

29

Opportunities for Spinning Disc Technology

Small, Safe, VersatileIntensification of all unit operationsLow CAPEX, High ROI Low Risk 2 Marco

Opportunities for SpinPro Technology

Slides by dr.ir. John van der Schaaf TU/e

Flowid Products & Services

FlowFlex

Automated modular platform SpinPro Reactor

Continuous Reactor based on patented Spinning Disc Technology

SpinPro ExtractorCounter current Extractor based on patented Spinning Disc Technology

Process Development & TestingFully to customers specs, testing in house possible on lab and pilot scale

30

FlowFlex

Spinning  Disk  ReactorCon2nuous  Reactors

Metric tons/DayFast chemistry

Extremely inert material

High heat transferMulti-stage reactions

Metric tons/DayFast ChemistryExtreme mixing efficiencyHandles gas/liquid/solids

Multi-stage reactions

“Lab to Manufacture” Platforms

Production ScaleSpinning  Disk  ReactorCon2nuous  Reactors

flowid®

Production ScaleSpinning  Disk  ReactorCon2nuous  Reactors

fast and predictable scale up to the most suitable platform

•Multiple modules on one platform•One user interface•Data logging•Available as a service or purchase

F&F Process Development Platform

3 liquid inlets

- Highly viscous

- Highly volatile

- Small acid stream

Development time of new products reduced from 6 months to 6 weeks

Pharma Development Platform

Engineering and construction of set-up that can produce micro-particles.

EmulTech Infinity is engineered and built

37

FlowFlex With SpinPro R300

Control panel

Pumps

Flow controllers

SpinPro Reactor

38

Chimex

Control panel

ART reactor

Pumps

Flow controllers

ATEX

39

SpinPro Reactor

40

41

SpinPro Reactor

42

Easy to cleanEasy to assemble and inspectEasy to re-machine the surfacesEasy to scale to R1000

SpinPro R10

43

Number of stages: 3

Temperature: -20 - 160 °C

Pressure: 10 bar (g)

Reactor volume: 8-20 ml

Body material: SiC

Seal material: None

O-ring material: None

Rotation: 8000 rpm

Linear scale up to R300 and R1000

SpinPro R300

44

Number of stages: 3

Temperature: -20 - 160 °C

Pressure: 10 bar (g)

Flowrate: up to 600 l/hr

Reactor volume: 135/230 ml

Body material: SS316 / Hastelloy C

Seal material: PTFE

O-ring material: FFKM

Rotation: 3000 rpm

SpinPro R1000

45

Number of stages: 7

Temperature: -20-160 °C

Pressure: 10 bar (g) (100bar autoclave)

Flowrate: up to 3600 L/hr

Reactor volume: 430 ml

Body material: Hastelloy-C

Seal material: Teflon (PTFE)

O-ring material: Kalrez (FFKM)

Rotation: 4500 rpm

46

47

48

49

51

Pilot Production FacilitiesSpinPro Reactor & Extractor, up to a liter a second at maximum of 100 Bar, 180°C, 24/7

Factory Continuous Style

52

Batch vessel SpinPro

Production 25 ton/day 25 ton/day

# Reactors 1 3

Reaction volume 50.000 liter 0,9 liter

Residence time 8 hours 3 seconds

Temperature 85°C 195°C

Pressure 1 bar 12 bar

Energy usage estimate 4MW -0,3MW

Product Concentration 47 wt% 59wt% (max)

Added value simplified examples: Yield

53

Different plants:

Dedicated, steady state adds few percent

Multipurpose, 5%, 10%, 25%

Results of 3% more yield:

3% less raw materials

Less waste and processing

20% more margin

Yield adds directly to bottom line profit

Configuration 0% 3%Product price [€/kg] 100% €20,00 €20,00Raw material 50% €10,00 €9,70Production cost 20% €4,00 €3,90Downstream -0,05Less chemical waste -0,05Overhead 20% €4,00 €4,00Margin 10% €2,00 €2,40

Yearly Production [ton] 1000Yearly Benefit €400.000

Logistics, Energy, Decentralization

Added value simplified examples: Safety

Safety benefits:

Less complex safety systems

Lower risk profile

Less people in operator crew allowed

54

Configuration Batch Continuous DeltaCAPEX [k€] 900 300 600Reactor 150 150Safety systems 750 150OPEX [k€/Y] 750 300 450Operator crew 5 2Shifts 3 3k€/y/fte 50 50

2013 April 18th, Texas fertilizer plant explosion

2013 May 4th, Derailment Wetteren

Reaction Example: Halogen/Lithium Exchange

Batch

Reaction Example: Halogen/Lithium Exchange

56

Batch Continuous lab97% Yield 97% Yield

-78 C required, slow addition

Scalable, room temp 2.7 Kg/hr @ Feedrates 200+ mL/min

Feed reagent concentrations of 2.0M, lithium products were quenched with TMSCl and analyzed by GC. Tet. Lett., 2010, 51, p. 4793.

Cl

SiMe3

Cl

Br

Li

2.0M

+

Cl

Li

Lab to Manufacture Scalability

Tet. Lett., 2010, 51, p. 4793.

15 mL experiments

97.5% 1.1 eq BuLi200 uM gap and 5500 rpm on a 2.5"disk

100 kg finished API/day 97% 1.1 eq BuLi1mm gap and 2500 rpm on a 6" disk

Set-up production scale Component BBuLi

Quench

Reaction and quench in one system

V = 135 ml. 45 ml per disc

Flow at 100 LPH

Batch reactor

The SpinPro allows for safe operation at high temperaturesArrhenius law: higher temperature equals a higher production rate

SpinPro reactor

Reaction Example: Halogen/Lithium Exchange

60

Wouter StamManaging Director

[email protected]+316 2467 9774www.Flowid.nl