flujo subterraneo.ppt

72
Flujo en medio poroso Flujo subterráneo REYES ROQUE, Esteban Pedro REYES ROQUE, Esteban Pedro

Upload: williams-leon-menacho

Post on 28-Oct-2014

122 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: FLUJO SUBTERRANEO.ppt

Flujo en medio poroso

Flujo subterráneo

REYES ROQUE, Esteban REYES ROQUE, Esteban PedroPedro

Page 2: FLUJO SUBTERRANEO.ppt

Flujo en medio poroso

Flujo Flujo subterránesubterráne

oo

Page 3: FLUJO SUBTERRANEO.ppt

Flujo en medio poroso

Water table

Potentiometric surface – elevation to which water will rise

Artesian well – water under pressure will rise up in well – flowing artesian well if water comes out at surfaceRecharge area

Page 4: FLUJO SUBTERRANEO.ppt

Flujo en medio poroso

Hydraulic head Elevation of the water column in each well

(for the same aquifer) Water pressure + elevation Water pressure comes from a higher

potential energy

P

Page 5: FLUJO SUBTERRANEO.ppt

Flujo en medio poroso

LH1-H2

RechargeArea – water in

DischargeArea –

Water out Using elevations of

water table or pot. surface

Groundwater flows to lower hydraulic head (not always to lower elevation)

Change in head (H1-H2)

over a given distance (L)

Just like stream gradient

Hydraulic gradient

Page 6: FLUJO SUBTERRANEO.ppt

Flujo en medio poroso

High P

Lower P

Hydraulic gradient

Page 7: FLUJO SUBTERRANEO.ppt

Flujo en medio poroso Groundwater

movement Movement depends on permeability – we will use the

term Hydraulic conductivity (K) The ease in which a porous medium can transmit

water Units are length/time Velocity = Hydraulic gradient I = (H1-H2)/L)

multiplied by the hydraulic conductivity (permeability)

V = K (H/L) Need to know the area of the aquifer in order to the

get the discharge

Q = KIA Darcy’s Law

Page 8: FLUJO SUBTERRANEO.ppt

Flujo en medio poroso

Darcy’s Law Darcy’s law provides an accurate description of

the flow of ground water in almost all hydrogeologic environments.

Henri Darcy established empirically that the flux of water through a permeable formation is proportional to the distance between top and bottom of the soil column. The constant of proportionality is called the hydraulic conductivity (K).

V = Q/A, v –∆h, and v 1/∆L

Page 9: FLUJO SUBTERRANEO.ppt

Flujo en medio poroso

Experimento de Experimento de DarcyDarcy

Page 10: FLUJO SUBTERRANEO.ppt

Ley de DarcyLey de Darcy

Observó que cantidad de agua que fluía a través de muestra de arena, por unidad de tiempo, era proporcional a diferencia de carga hidráulica entre entrada y salida de muestra e inversamente proporcional a longitud de muestra

En 1856 estableció Ley General de flujo de fluidos en medios porosos

Page 11: FLUJO SUBTERRANEO.ppt

Flujo en medio poroso

Q = Akdh/dlDonde:

Q = caudal que pasa a través de sección transversal A

A = área de sección transversal (m2); k = constante de proporcionalidad, equivalente a

permeabilidad o conductividad hidráulica (m/d). dh/dl = gradiente hidráulico (adim.) Q/A = representa la descarga por unidad de área de

sección transversal y se denomina velocidad aparente (v).

Por tanto, Ley de Darcy, llamada también ley de resistencia lineal, será:

v =- ki

Ley de DarcyLey de Darcy

Page 12: FLUJO SUBTERRANEO.ppt

Flujo en medio poroso Darcy experiment

Screen

²

² ²

²

h

h

1

2

L A

Screen

Q

Q

Sand

Darcy's experiment.

h = z + p

Page 13: FLUJO SUBTERRANEO.ppt

Flujo en medio poroso Darcy’s Law

V= - K dh/dlQ = - KA dh/dl

Page 14: FLUJO SUBTERRANEO.ppt

Flujo en medio poroso

Aplicación de Ley de Darcy

Q/A=K(h/l) Q = Caudal

A = Area sección transv.

K = conductiv. hidráulicah = diferencia de cargal = Distancia

Page 15: FLUJO SUBTERRANEO.ppt

Flujo en medio poroso

’ = /

= K (h/L)

Q = APoros

Sólidos

Flujo agua

AreaTotal

Velocidad aparente () y real

(’) Velocidad aparente () es calculada de descarga específica,

Q/ADescarga específica: razón del flujo y área de sección

transversal.Velocidad real (’): razón de velocidad aparente y porosidad.

Page 16: FLUJO SUBTERRANEO.ppt

Flujo en medio poroso Ejemplo

Calcular velocidad aparente (Darcy) del flujo subterráneo de un acuífero, con gradiente hidráulico de 0,002 y K = 6.9 x 10-4 m/s

m/s10 x 1.4

m/m)m/s)(0.00210x(LΔh

K

6-

4

96.v

’ = velocidad real = / = (velocidad aparente/porosidad)

’ = (1.4 x 10-6 m/s)/0.30 = 4.7 x 10-6 m/s

Tiempo = distancia/’ =d 148

s 86,400day

m/s 10 x 4.7m 60

6-

Page 17: FLUJO SUBTERRANEO.ppt

Flujo en medio poroso Conditions

In General, Darcy’s Law holds for:

1. Saturated flow and unsaturated flow

2. Steady-state and transient flow

3. Flow in aquifers and aquitards

4. Flow in homogeneous and heteogeneous systems

5. Flow in isotropic or anisotropic media

6. Flow in rocks and granular media

Page 18: FLUJO SUBTERRANEO.ppt

Flujo en medio poroso Darcy Velocity

V is the specific discharge (Darcy velocity). (–) indicates that V occurs in the direction of the

decreasing head. Specific discharge has units of velocity. The specific discharge is a macroscopic

concept, and is easily measured. It should be noted that Darcy’s velocity is different ….

..from the microscopic velocities associated with the actual paths if individual particles of water as they wind their way through the grains of sand.

The microscopic velocities are real, but are probably impossible to measure.

Page 19: FLUJO SUBTERRANEO.ppt

Flujo en medio poroso

Darcy & Seepage Velocity Darcy velocity is a fictitious velocity since it

assumes that flow occurs across the entire cross-section of the soil sample.

Flow actually takes place only through interconnected pore channels.

From the Continuity Eqn:Q = A vD = AV Vs

o Where:Q = flow rateA = cross-sectional area of materialAV = area of voids

Vs = seepage velocity

vD = Darcy velocity

Page 20: FLUJO SUBTERRANEO.ppt

Flujo en medio poroso

Darcy & Seepage Velocity

Therefore: VS = VD (A/AV)

Multiplying both sides by the length of the medium (L)

VS = VD (AL/AVL) = VD (VT/VV)

Where:VT = total volume

VV = void volume

By Definition, Vv/VT = n, the soil porosity

Thus VS = VD/n

Page 21: FLUJO SUBTERRANEO.ppt

Flujo en medio poroso

Example of Darcy’s Law

A confined aquifer has a source of recharge.

K for the aquifer is 50 m/day, and n is 0.2.

The piezometric head in two wells 1000 m apart is 55 m and 50 m respectively, from a common datum.

The average thickness of the aquifer is 30 m, and the average width is 5 km.

Page 22: FLUJO SUBTERRANEO.ppt

Flujo en medio poroso

Calculate:a) the rate of flow through the aquifer(b) the time of travel from the head of the

aquifer to a point 4 km downstream *assume no dispersion or diffusion

Page 23: FLUJO SUBTERRANEO.ppt

Flujo en medio poroso

The solution

Cross-Sectional area =

30(5)(1000) = 15 x 104 m2

Hydraulic gradient = (55-50)/1000 = 5 x 10-3

Rate of Flow for K = 50 m/day Q = (50 m/day) (75 x 101 m2) = 37,500 m3/day

Darcy Velocity:

V = Q/A = (37,500m3/day)/(15x 104

m2) = 0.25m/day

Page 24: FLUJO SUBTERRANEO.ppt

Flujo en medio poroso

And Seepage Velocity:

Vs = V/n = (0.25)/(0.2) =

1.25 m/day (about 4.1 ft/day)

Time to travel 4 km downstream: T = 4(1000m)/(1.25m/day) = 3200 days or 8.77 years

This example shows that water moves very slowly underground.

Page 25: FLUJO SUBTERRANEO.ppt

Flujo en medio poroso

Limitations of the Darcian Approach1. For Reynold’s Number, Re > 10 where the

flow is turbulent, as in the immediate vicinity of pumped wells.

2. Where water flows through extremely fine-grained materials (colloidal clay)

Page 26: FLUJO SUBTERRANEO.ppt

Flujo en medio poroso

Darcy’s Law: example 2

A channel runs almost parallel to a river, and they are 2000 ft apart.

The water level in the river is at an elevation of 120 ft and 110 ft in the channel.

A pervious formation averaging 30 ft thick and with K of 0.25 ft/hr joins them.

Determine the rate of seepage or flow from the river to the channel.

Page 27: FLUJO SUBTERRANEO.ppt

Flujo en medio poroso

Confined Aquifer

Confining Layer

Page 28: FLUJO SUBTERRANEO.ppt

Flujo en medio poroso

Example 2

Consider a 1-ft length of river (and channel).Q = KA[(h1 – h2)/L]

Where:A = (30 x 1) = 30 ft2

K = (0.25 ft/hr) (24 hr/day) = 6 ft/day

Therefore,Q = [6 (30) (120 – 110)]/2000 = 0.9 ft3/day/ft length = 0.9 ft2/day

Page 29: FLUJO SUBTERRANEO.ppt

Flujo en medio poroso

V = av. pore velocity = 20 m3 1

3 day

= 6 mday

q = n V = 0.15 * 6 = 0.9 mday

= K hx

= 0.520

K

hx

= 0.520

K = 36 mday

A tracer travels 3 days and 8 hours between 2 wells that are 20 m apart. Water elevation difference between the wells is 0.5 m, porosity n = 0.15. Estimate q, V, and K

Problem

Page 30: FLUJO SUBTERRANEO.ppt

Flujo en medio poroso

Constant head Permeameter

Apply Darcy’s Law to find K:

V/t = Q = KA(h/L)or: K =

(VL)/(Ath) Where:

V = volume flowing in time tA = cross-sectional area of the sampleL = length of sampleh = constant head

t = time of flow

Page 31: FLUJO SUBTERRANEO.ppt

Flujo en medio poroso

Darcy’s Law

Darcy’s Law can be used to compute flow rate in almost any aquifer system where heads and areas are known from wells.

Page 32: FLUJO SUBTERRANEO.ppt

Flujo en medio poroso

Groundwater Flow

Equations

qqx inx in qqx outx outdzdz

dydydxdx

ContinuumContinuum

qqzz

qqyy

Mass (t)Mass (t)

Page 33: FLUJO SUBTERRANEO.ppt

Flujo en medio poroso Assumptio

ns-Examples

xx

((KKxx

hhxx

))

yy((KK

yy

hhyy

))

zz((KK

zz

hhzz

)) == SSss

hh tt

three dimensional, anisotropic, three dimensional, anisotropic, heterogeneous, transient.heterogeneous, transient.

Page 34: FLUJO SUBTERRANEO.ppt

Flujo en medio poroso

three-dimensional. homogeneous (K everywhere same). isotropic. transient.

KK ((22

hh

xx22

22hh

yy22

22hh

zz22 )) SSsshh tt

Page 35: FLUJO SUBTERRANEO.ppt

Flujo en medio poroso

One-dimensional Homogeneous Steady-state since

KK xxdd 22 hhdxdx 22

00

hh

tt== 00

Page 36: FLUJO SUBTERRANEO.ppt

Flujo en medio poroso

Ecuación de Ecuación de LAPLACELAPLACE

0

zv

yv

xv zyx

xh

kvx

02

2

2

2

2

2

zh

yh

xh

th

TS

zh

yh

xh

2

2

2

2

2

2

Flujo permanente

Flujo no permanente

Page 37: FLUJO SUBTERRANEO.ppt

Flujo en medio poroso

)r/rln()hh(mk

Q12

122 )r/rln()hh(k

Q12

2

1

2

2

Acuífero libreAcuífero confinado

Régimen permanente

Flujo radial hacia Flujo radial hacia pozospozos

Page 38: FLUJO SUBTERRANEO.ppt

Flujo en medio poroso

Flujo radial hacia pozo en acuífero Flujo radial hacia pozo en acuífero librelibre

Page 39: FLUJO SUBTERRANEO.ppt

Flujo en medio poroso

Flujo Radial en acuífero confinado

r0

QGround surface

rer 2

r1

h0

h2

h1

h

Imprevious strata

Confinedaquifer

Cone ofdepression of

Observation bores

Original piezometric surface

Pumpedbore

s

piezometricsurface

Page 40: FLUJO SUBTERRANEO.ppt

Flujo en medio poroso

Cuando se bombea un pozo, se extrae un diferencial de volumen de agua de su interior, provocando el descenso de nivel, formándose cono de depresión.

Descenso se denomina abatimiento (s). Tiempo requerido para estabilización de abatimiento

(régimen permanente) depende de: S (Coeficiente de almacenamiento), T (Transmisividad), CL (condiciones límite) y Q (caudal bombeo).

Monitoreo de desarrollo y forma final del cono en pozos de observación, alrededor del pozo de bombeo permite determinar propiedades del acuífero (T & S), a través de Pruebas de Bombeo.

Hidráulica de pozos

Page 41: FLUJO SUBTERRANEO.ppt

Flujo en medio poroso

r1

r2

Pozo observación 1Pozo observación 2

Pozo bombeoQ

Q

s1s2

Acuífero confinado

Hidráulica de pozos

Page 42: FLUJO SUBTERRANEO.ppt

Flujo en medio poroso

Flujo radial: cono de

depresiónBombeo

Descenso de tabla de agua cerca del pozo: cono

de depresión

Page 43: FLUJO SUBTERRANEO.ppt

Flujo en medio poroso

What happens when this well is heavily pumped?

Page 44: FLUJO SUBTERRANEO.ppt

Flujo en medio poroso

Solución de Theis para

acuíferos confinados

)u(WTQ

s

4

u

u

)u( ...!.

u!.

u!.

uuuln,du

ue

W443322

57720432

Page 45: FLUJO SUBTERRANEO.ppt

Flujo en medio poroso

Solución de Jacob para acuíferos

confinados

]uln,[TQ

s

577204

u

u

)u( uln,duue

W 57720

SrTt,

logTQ,

s 2

2521830

Si uSi u 0,010,01

Page 46: FLUJO SUBTERRANEO.ppt

Flujo en medio poroso

Steady State One Dimensional Flow

Confined Aquiferso Simple application of Darcy’s Law

Unconfined Aquiferso Dupuit Assumptions

Page 47: FLUJO SUBTERRANEO.ppt

Flujo en medio poroso

Darcy’s LawQ= -KiA buto A varieso i varies

Solutiono W.T.

• Height above impermeable layer represents ‘A’• Slope of W.T. represents ‘i’

Dupuit assumptions:o All flow lines are horizontal.o Hydraulic gradient is equal to the slope of the water

table.o Consequences:

• Vertical component of flow is ignored• Problem reduced to one-dimensional• Calculation of Q simplified (need long shallow flow system)

h1L

dzdx

xh2

Q?

Unconfined Aquiferz

Dupuit Solution to Unconfined Flow

Page 48: FLUJO SUBTERRANEO.ppt

Flujo en medio poroso

Dupuit Formulation –

Darcy’s Law

2h

1h

L

0K.z.dzdx Q

:gIntegratin

.zdx

dzK.- = q'or K.i.A - = Q

L2

)h(hK=Qor

2

)h(hK- = QL

22

21

21

22

z

h1L

dzdx

x

h2

Q?

z

h1L

dzdx

x

h2

Q?h1L

dzdx

x

h2

Q?

evident aregradient and b' average' where

L2

)h).(h1

h + 2

(h-KQ as Same

:Note

12

Page 49: FLUJO SUBTERRANEO.ppt

Flujo en medio poroso

Dupuit Equation with Infiltration

z

h1L

dzdx

x

h2

Q?

z

h1L

dzdx

x

h2

Q?h1L

dzdx

x

h2

Q?

R

x2

LR

L2

)h(hK= Q and

x)xL(K

R

L

x)h(hhh

22

21

2/122

212

1

Page 50: FLUJO SUBTERRANEO.ppt

Flujo en medio poroso Example:

A canal is constructed parallel to a river 1500 ft away. Both fully penetrate a sand aquifer with K = 1.2 ft/d. The area is subject to rainfall of 1.8 ft/y and evaporation of 1.3 ft/y. The elevation of the water in the river and canal are 31 ft and 27 ft respectively. o What is the Q between the canal/river w/o infiltration?o With infiltraton

• Where is the water divide?• What is the maximum water table elevation?• What is the daily is discharge into the river and canal?

Answers:o W/o infiltration Q =.093 ft3/day/ft o With infiltration

• 816 ft from the canal, 684 ft from the river• 38.3 ft• 1.14 ft3/day/ft into the canal, 0.96 ft3/day/ft into the rive

Page 51: FLUJO SUBTERRANEO.ppt

Flujo en medio poroso

Steady Flow in a

Confined Aquifer Apply

Darcy’s Law: Q = -K I A

Notes:o Horizontal flowo i is the change in the elevation of the

potentiometric surface (change in head) over distance

o A is the aquifer height (b) times the width into the page.

Equations:

o Q = - K (h2 - h1)(b/x) or Q = - K b dh/dx

o Or h2 = h1 - (Q x) / (K b)

Page 52: FLUJO SUBTERRANEO.ppt

Flujo en medio poroso

Steady Flow in an Unconfined

Aquifer: Dupuit Formula

h1 h2L

x = 0 x = L

x

Page 53: FLUJO SUBTERRANEO.ppt

Flujo en medio poroso

Dupuit Equation

q’ = -K h dh/dx

q’ = 1/2 K (h12 - h2

2)/L

Dupuit Assumptions1. Hydraulic gradient = slope of water table.2. For small hydraulic gradients, flow lines

are horizontal and equipotential lines are vertical.

Page 54: FLUJO SUBTERRANEO.ppt

Flujo en medio poroso

Page 55: FLUJO SUBTERRANEO.ppt

Flujo en medio poroso

Page 56: FLUJO SUBTERRANEO.ppt

Flujo en medio poroso

Page 57: FLUJO SUBTERRANEO.ppt

Flujo en medio poroso

How much water has to be pumped

to keep excavation dry?

h1 h2

LIf If KK = 1.2 m/day, = 1.2 m/day, hh11 = 17 m, = 17 m, hh22 = 12 m and = 12 m and LL = = 400 m; how much water would you have to 400 m; how much water would you have to pump per meter of trench to keep the trench pump per meter of trench to keep the trench dry?).dry?).

Impermeable Base

Page 58: FLUJO SUBTERRANEO.ppt

Flujo en medio poroso

q’ = 1/2 K (hq’ = 1/2 K (h1122 - h - h22

22)/L)/L = 1/2 1.2 (17= 1/2 1.2 (1722 - 12 - 1222)/400)/400 = 0.2175 m= 0.2175 m33 / day / m of / day / m of trenchtrench = 217.5 L/day/m of trench.= 217.5 L/day/m of trench.

Need to know K.q’ = -K h dh/dxq’ = 1/2 K (h1

2 - h22)/L

q’ is the flow of water per unit width into the excavation.

Use Dupuit Formula

Page 59: FLUJO SUBTERRANEO.ppt

Flujo en medio poroso

W = 0.0002 m/day

17m12m

4525 m

Page 60: FLUJO SUBTERRANEO.ppt

Flujo en medio poroso

Equations of Ground Water Flow

Description of ground water flow is based on:

1. Darcy’s Law2. Continuity Equation - describes

conservation of fluid mass during flow through a

porous medium; results in a partial differential equation of flow.

Page 61: FLUJO SUBTERRANEO.ppt

Flujo en medio poroso

Ground water movement

Page 62: FLUJO SUBTERRANEO.ppt

Flujo en medio poroso

An unconfined aquifer

Page 63: FLUJO SUBTERRANEO.ppt

Flujo en medio poroso

Dupuit Assumptions

For unconfined ground water flow Dupuit developed a theory that allows for a simple solution based off the following assumptions:

1) The water table or free surface is only slightly inclined

2) Streamlines may be considered horizontal

and equipotential lines, vertical3) Slopes of the free surface and hydraulic gradient are equal

Page 64: FLUJO SUBTERRANEO.ppt

Flujo en medio poroso

Derivation of the Dupuit

Equation Darcy’s law gives one-dimensional flow

per unit width as:q = -Kh dh/dx

At steady state, the rate of change of q with distance is zero, or

d/dx(-Kh dh/dx) = 0(-K/2) d2h2/dx2 = 0

Which implies that,d2h2/dx2 = 0

Page 65: FLUJO SUBTERRANEO.ppt

Flujo en medio poroso

Derivation of the Dupuit

EquationIntegration yields

h2 = ax + bWhere a and b are constants. Setting the boundary Condition h = ho at x = 0, we can solve for b

b = ho2

Differentiation of h2 = ax + b allows us to solve for a: a = 2h dh/dxFrom Darcy’s law: hdh/dx = -q/K

Page 66: FLUJO SUBTERRANEO.ppt

Flujo en medio poroso

Derivation of the Dupuit

EquationSo, by substitution

h2 = h02 – 2qx/K

Setting h = hL2 = h0

2 – 2qL/K

Rearrangement givesq = K/2L (h0

2- hL2) Dupuit Equation

Then the general equation for the shape of the parabola is

h2 = h02 – x/L(h0

2- hL2) Dupuit Parabola

However, this example does not consider recharge to the aquifer.

Page 67: FLUJO SUBTERRANEO.ppt

Flujo en medio poroso

Schematic

q

Page 68: FLUJO SUBTERRANEO.ppt

Flujo en medio poroso

Dupuit Equation with Recharge W

Page 69: FLUJO SUBTERRANEO.ppt

Flujo en medio poroso Dupuit

Example: 2 rivers 1000 m apartK is 0.5 m/dayaverage rainfall is 15 cm/yrevaporation is 10 cm/yrwater elevation in river 1 is 20 mwater elevation in river 2 is 18 m

Determine the daily discharge per meter width into each

River.

Page 70: FLUJO SUBTERRANEO.ppt

Flujo en medio poroso

Derivation of the Dupuit Equation

with Recharge WDupuit equation with recharge becomes

h2 = h02 + (hL

2 - h02) + W(x - L/2)

If W = 0, this equation will reduce to the parabolicEquation found in the previous example, and

q = K/2L (h02- hL

2) + W(x-L/2)Given:

L = 1000 m K = 0.5 m/day h0 = 20 m

hL= 28 m W = 5 cm/yr = 1.369 x 10-4 m/day

Page 71: FLUJO SUBTERRANEO.ppt

Flujo en medio poroso Dupuit Equation

with Recharge W

For discharge into River 1, set x = 0 mq = K/2L (h0

2- hL2) + W(0-L/2)

= [(0.5 m/day)/(2)(1000 m)] (202 m2 – 18 m2 ) + (1.369 x 10-4 m/day)(-1000 m / 2)

q = -0.05 m2 /dayThe negative sign indicates that flow is in the

opposite directionFrom the x direction. Therefore,

q = 0.05 m2 /day into river 1

Page 72: FLUJO SUBTERRANEO.ppt

Flujo en medio poroso Dupuit Equation

with Recharge W

For discharge into River 2, set x = L = 1000 m:

q = K/2L (h02- hL

2) + W(L-L/2)

= [(0.5 m/day)/(2)(1000 m)] (202 m2 – 18 m2 ) + (1.369 x 10-4 m/day)(1000 m –(1000 m / 2))

q = 0.087 m2/day into River 2

By setting q = 0 at the divide and solving for xd, the water divide is located 361.2 m from

the edge of River 1 and is 20.9 m high