fluka radioprotection calculations

45
FLUKA radioprotection calculations Maria – Ana Popovici Politehnica University of Bucharest

Upload: mira

Post on 01-Feb-2016

41 views

Category:

Documents


0 download

DESCRIPTION

FLUKA radioprotection calculations. Maria – Ana Popovici Politehnica University of Bucharest. Dose Legal Limits in Romania. NSR-01 Monitorul Oficial al Romaniei Partea I nr. 404 bis /29.08.2000 Fundamental Norms for Radiological Safety. Overview. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: FLUKA radioprotection calculations

FLUKA radioprotection calculations

Maria – Ana PopoviciPolitehnica University of Bucharest

Page 2: FLUKA radioprotection calculations

Dose Legal Limits in Romania

Professional PublicEfective dose rate(CNCAN, NSR-06)

20 mSv /year55 μSv/day

2.3 μSv/h

1 mSv/year≈ 2.7μSv/day

≈ 0.11 μSv/h

NSR-01 Monitorul Oficial al Romaniei Partea I nr. 404 bis /29.08.2000 Fundamental Norms for Radiological Safety

Page 3: FLUKA radioprotection calculations

Overview

• FLUKA simulations of ELI-NP facility “hot spots” (from a radioprotection point of view) were performed for:

• Gamma Source

a) 600 MeV electron beam dump

b) 19.5 MeV gamma beam dump

(E7, E8 in the general layout)

• 10 PW Laser

(E1)

Page 4: FLUKA radioprotection calculations

ELI-NP Facility Layout

Page 5: FLUKA radioprotection calculations

FLUKA Settings – Defaults Precisio• EMF on

• Rayleigh scattering and inelastic form factor corrections to Compton scattering activated

• Detailed photoelectric edge treatment and fluorescence photons activated

• Low energy neutron transport on down to thermal energies included, (high energy neutron threshold at 20 MeV)

• Fully analogue absorption for low-energy neutrons

• Particle transport threshold set at 100 keV

• Multiple scattering threshold at minimum allowed energy, for both primary and secondary charged particles

Page 6: FLUKA radioprotection calculations

FLUKA Settings

• Delta ray production on with threshold 100 keV

• Heavy particle e+/e- pair production activated with full explicit production (with the minimum threshold = 2m_e)

• Heavy particle bremsstrahlung activated with explicit photon production above 300 keV

• Muon photonuclear interactions activated with explicit generation of secondaries

• Heavy fragment transport activated

Page 7: FLUKA radioprotection calculations

Materials (FLUKA input)Normal concrete (walls) Normal concrete, used at ELBE(FZD); density 2.6 g/cm3 Composition (mass fraction): HYDROGEN - 0.007; OXYGEN - 0.456;

SILICON - 0.225; SODIUM - 0.014; MAGNESIU - 0.028; ALUMINUM - 0.055; IRON - 0.058; POTASSIU - 0.005; CALCIUM - 0.106; TITANIUM - 0.005; FLUORINE - 0.0026; SULFUR - 0.0015; PHOSPHO - 0.0004; CHLORINE - 0.0001

Heavy concrete (beamdumps) MPQ Concrete; densiy 3.295 g/cm3

Composition (mass fraction): HYDROGEN – 0.01048482; BORON - 0.00943758 CARBON – 0.0129742; OXYGEN – 0.27953541; FLUORINE – 1.5175E-4; SODIUM - 3.7014E-4 ; MAGNESIU – 0.08298213; ALUMINUM – 0.02769028; SILICON – 0.06317253; PHOSPHO – 0.00176963; SULFUR – 5.8275E-4; POTASSIUM – 4.2024E-4; CALCIUM – 0.03227609; TITANIUM - 5.457E-5; MANGANES – 0.00321757; IRON – 0.47423935; STRONTIU - 6.4097E-4

Page 8: FLUKA radioprotection calculations

Materials (FLUKA input) Stainless steel (electron pipeline, laser beamdump – as an

alternative) AISI316LN; density 7.8 g/cm3

Composition (mass fraction): IRON – 0.67145; CHROMIUM - 0.185; NICKEL - 0.1125; MANGANES - 0.02; SILICON - 0.01; PHOSPHO - 4.5E-4; SULFUR - 3.E-4; CARBON - 3.E-4

Borated polyethylene (beamdump); density 0.94761 g/cm3

Composition (mass fraction): CARBON – 0.61192; HYDROGEN – 0.1153; OXYGEN – 0.22261; BORON-11 – 0.04107; BORON-10 – 0.0091

Wet air (air with moisture); density 0.00129 g/cm3

Composition (mass fraction): NITROGEN - 0.74379; OXYGEN - 0.24169; CARBON - 0.00012; ARGON - 0. 01263; HYDROGEN - 0.00177

Page 9: FLUKA radioprotection calculations

Source terms (FLUKA input)

Gamma Source ( ELI-NP White Book)

a) Electrons: 600 MeV electron beam, 250 pC/pulse, 12kHz, Div = 0.1 mrad, Gaussian, FWHM = 6 MeV b) Photons: 19.5 MeV gamma beam, 8.0E+08 g/pulse, Div = 0.1 mrad, Gaussian, FWHM = 0.0195 MeV

Page 10: FLUKA radioprotection calculations

Source terms (FLUKA input)10 PW Laser (I = 1.0E+22) - (ELI-PP White Book - draft)

- 0.1 Hz, 300 J pulse-1 a) Photons3 thermal components with CUTOFF energy at 4 MeV,

isotropic T1 = 0.035 MeV, N1 = 1.1E+14 sr-1 pulse-1 T2 = 0.58 MeV, N2 = 1.0E+14 sr-1 pulse-1 T3 = 8.8 MeV, N3 = 9.0E+11 sr-1 pulse-1 b) Electrons38 GeV Gaussian beam, FWHM = 1MeV, CUTOFF

energy at 38 GeV, N = 9.0E+13 sr-1 pulse-1, Div = 1o

Page 11: FLUKA radioprotection calculations

Source terms (FLUKA input)

c1) Protons 1 thermal component with CUTOFF energy at 2 GeV, isotropic T = 20 MeV, N = 1.0E+07 sr-1 pulse-1 c2) Protons uniform energy distribution between 0 and 2 GeV, isotropic T = 20 MeV, N = 1.0E+07 sr-1 MeV-1 pulse-1

10 PW Laser (I = 1.0E+23) – ELI-PP estimations concerning only protons First estimation 1 thermal component with CUTOFF at 100 MeV, Div = 40o

T = 20 MeV, N = 5.0E+13 sr-1 pulse-1

Second estimation uniform energy distribution between 0 and 100 MeV, Div = 40o

N = 5.0E+13 sr-1 MeV-1 pulse-1

Page 12: FLUKA radioprotection calculations

Gamma Source Electron Beamdump - Geometry

Cave dimensions: 19m x 5m x 11m Lateral walls, roof, floor – thickness = 1mException: lateral wall for beamline admitance 1.5 m Beamline: diameter = 2cm, 2mm thick, in AISI316LN, 1mm thick Al cap

Page 13: FLUKA radioprotection calculations

Gamma Source Electron Beamdump - Geometry

Beamdump: 6m x 4.5m x 8m in MPQ concrete (Martin Gross design)

Beamdump core: graphite (cone, diameter = 10cm, height = 50cm), Al (cylinder, diameter = 10cm, height = 30cm)

Page 14: FLUKA radioprotection calculations

Gamma Source Electron Beamdump – FLUKA Simulation

Page 15: FLUKA radioprotection calculations

Gamma Source Electron Beamdump – FLUKA Simulation

Page 16: FLUKA radioprotection calculations

Gamma Source Gamma cave + Beamdump Geometry

• Cave E7: 8m x 5m x 8m

• Cave E8: 8m x 5m x 5m

• Walls – 1.5 m thick

• Wall opposite to the admitance of the beamline is 2m thick

Page 17: FLUKA radioprotection calculations

Gamma Source Gamma cave + Beamdump

Geometry• Beamdump dimensions: 3m x 3m x 4m

• Beamdump in normal concrete

• Central hole in beamdump: 30 cm diameter, 1m length

• Beamline in stainless steel, diameter 2 cm, 2 mm thick walls, 1 mm thick exit cap in Al.

Page 18: FLUKA radioprotection calculations

Gamma SourceGamma cave – FLUKA Simulation

Page 19: FLUKA radioprotection calculations

10 PW Laser Laser Cave & Reaction Chamber Geometry

• Cave dimensions: 5m x 5m x 10m

Lateral walls, roof, floor – thickness = 1.5 m• Reaction chamber dimensions 1.3m x 1.5m x

2.85m

Wall thickness – 6 cm• Pipe: diameter = 40 cm, 2cm thick, 2 m length

in Al, 2mm thick Al cap

Page 20: FLUKA radioprotection calculations

10 PW Laser First Beamdump Geometry & Materials• 3m x 3m x 7.5m

MPQconcrete BD

• 50 cm Bor_Poly inside cave

• Lead core 1.3m x 1.3m x 3m

• Central hole: 2m long cylinder (diameter = 15cm) + 50 cm height cone

Page 21: FLUKA radioprotection calculations

10 PW Laser Second Beamdump Geometry &

Materials• 3m x 3m x 7.5m AISI316LN

stainless steel BD• 1m Bor_Poly inside cave• 1m Bor_Poly outside the external

region of BD• Graphite core 1m long cylinder

(diameter = 20cm) + 50 cm height cone

• Central hole: 1m long cylinder (diameter = 20cm)

Page 22: FLUKA radioprotection calculations

10 PW LaserElectrons – FLUKA Simulation

Page 23: FLUKA radioprotection calculations

10 PW LaserElectrons – FLUKA Simulation

Page 24: FLUKA radioprotection calculations

10 PW LaserElectrons – FLUKA Simulation

Page 25: FLUKA radioprotection calculations

10 PW LaserElectrons – FLUKA Simulation

Page 26: FLUKA radioprotection calculations

10 PW LaserPhotons – FLUKA Simulation

-

14 -1 -1 14 11 1

14 -1 -1 14 11 2

11 -1 -1 11 11 3

e , 1,2,3 isotropic

0.035MeV; 1.1 10 sr pulse ; 2.76 10 s

0.58MeV; 1.0 10 sr pulse ; 2.51 10 s

8.8MeV; 9.0 10 sr pulse ; 8.26 10 s

i

ETTi

i

T

T

T

Ni

T

T N

T N

T N

Page 27: FLUKA radioprotection calculations

10 PW Laser

Photons – FLUKA Simulation-

14 -1 -1 14 11 1

14 -1 -1 14 11 2

11 -1 -1 11 11 3

e , 1,2,3 isotropic

0.035MeV; 1.1 10 sr pulse ; 2.76 10 s

0.58MeV; 1.0 10 sr pulse ; 2.51 10 s

8.8MeV; 9.0 10 sr pulse ; 8.26 10 s

i

ETTi

i

T

T

T

Ni

T

T N

T N

T N

Page 28: FLUKA radioprotection calculations

10 PW LaserPhotons – FLUKA Simulation

-

14 -1 -1 14 11 1

14 -1 -1 14 11 2

11 -1 -1 11 11 3

e , 1,2,3 isotropic

0.035MeV; 1.1 10 sr pulse ; 2.76 10 s

0.58MeV; 1.0 10 sr pulse ; 2.51 10 s

8.8MeV; 9.0 10 sr pulse ; 8.26 10 s

i

ETTi

i

T

T

T

Ni

T

T N

T N

T N

Page 29: FLUKA radioprotection calculations

10 PW LaserPhotons – FLUKA Simulation

Page 30: FLUKA radioprotection calculations

10 PW Laser

Protons – FLUKA Simulation

23 210 W/cmI 22 210 W/cmI

Page 31: FLUKA radioprotection calculations

10 PW Laser - 1.0E+22 W cm-2

Protons

1 thermal component with CUTOFF energy at 2 GeV, isotropic

T = 20 MeV, N = 1.0E+07 sr-1 pulse-1

Protons

uniform energy distribution between 0 and 2 GeV, isotropic

N = 1.0E+07 sr-1 MeV-1 pulse-1

7 7

energyscalingfactor

protons 1pulse protons10 4 sr 2 2.5 10

sr pulse 10s second

2000MeV

7 10

energy0scalingfactor

1 1pulse protons10 d 4 sr 2 5 10

sr MeV pulse 10s secondE

Page 32: FLUKA radioprotection calculations

10 PW Laser - 1.0E+22 W cm-2 Protons (thermal) – FLUKA Simulation

Page 33: FLUKA radioprotection calculations

10 PW Laser - 1.0E+22 W cm-2

Protons (uniform) – FLUKA Simulation

Page 34: FLUKA radioprotection calculations

10 PW Laser - 1.0E+22 W cm-2 Protons (uniform) – FLUKA Simulation

Page 35: FLUKA radioprotection calculations

10 PW Laser - 1.0E+22 W cm-2

Protons (uniform) – FLUKA Simulation

Page 36: FLUKA radioprotection calculations

10 PW Laser - 1.0E+22 W cm-2

Protons (uniform) – FLUKA Simulation

Page 37: FLUKA radioprotection calculations

10 PW Laser - 1.0E+22 W cm-2 Protons (uniform) – FLUKA Simulation

Page 38: FLUKA radioprotection calculations

10 PW Laser - 1.0E+22 W cm-2 Protons (uniform) – FLUKA Simulation

Page 39: FLUKA radioprotection calculations

10 PW Laser - 1.0E+23 W cm-2 Protons (thermal) – FLUKA Simulation

Page 40: FLUKA radioprotection calculations

10 PW Laser - 1.0E+23 W cm-2 ELI-PP estimations concerning only protons

• 1 thermal component with CUTOFF at 100 MeV, Div = 40o, T = 20 MeV, N = 5.0E+13 sr-1 pulse-1,

• uniform energy distribution between 0 and 100 MeV, Div = 40o, N = 5.0E+13 sr-1 MeV-1 pulse-1

14 protons3.7892 10

second

12 protons3.76 10

second

Page 41: FLUKA radioprotection calculations

10 PW Laser - 1.0E+23 W cm-2 Protons (uniform) – FLUKA Simulation

Page 42: FLUKA radioprotection calculations

10 PW Laser - 1.0E+23 W cm-2 Protons (uniform) – FLUKA Simulation

Page 43: FLUKA radioprotection calculations

10 PW Laser - 1.0E+23 W cm-2 Protons (uniform) – FLUKA Simulation

Page 44: FLUKA radioprotection calculations

Conclusions

All the radiation sources at the ELI-NP facility are shieldable in the present simplified layout, even in an uninterrupted 0.1 Hz working regime.

An important exception: protons with a rectangular energy distribution. If this source term definition will prove to be valid, then a limitation of the number of shots per day will become necessary.

In order to avoid such unwanted limitations, more realistic source definitions would be very helpful.

Page 45: FLUKA radioprotection calculations

Conclusions

The present calculations are schematic and changes in these results are naturally expected once building and experimental setup details are taken into account.

Shielding calculations with FLUKA transport code can and need to be refined, but this requires the cooperation of members of the experimental groups, who need to provide detailed description of their setups. Also, the problem of the source term definition should find a realistic solution for each type of experiment which is to be performed.