formulas electricas - tabla calculo de barraje

34
Direct-current ampacities may differ from AC° ampacities because of AC° skin effect: where I DC° is DC° ampacity at 60 Hz (amp), and S is the skin effect ratio at 60 Hz. Table 1. Ampacities of Copper No. 110 Bus Bars Dimensions, Area DC 30 C° Rise 50 C° Rise 65 C° Rise In. Per Foot, Lb Microhms Circular Per Ft 60-Hz 60-Hz 60-Hz Mils, Ratio at Ratio at Ratio at 70° C Amp 90° C Amp 105° C Amp 1/16 x 1/2 0.0312 39.7 0.121 1.00 103 1.00 136 1.00 157 1/16 x 3/4 0.0469 59.7 0.181 1.00 145 1.00 193 1.00 225 1/16 x 1 0.0625 79.6 0.241 1.00 187 1.00 250 1.00 285 1/16 x 1 1/2 0.0938 0.362 1.00 270 1.00 355 1.00 410 1/16 x 2 0.483 1.01 345 1.01 460 1.01 530 1/8 x 1/2 0.0625 79.6 0.241 1.00 153 1.00 205 1.00 235 1/8 x 3/4 0.0938 0.362 1.00 215 1.00 285 1.00 325 1/8 x 1 0.483 1.01 270 1.01 360 1.01 415 1/8 x 1 1/2 0.726 1.01 385 1.01 510 1.01 590 1/8 x 2 0.966 1.02 495 1.02 660 1.02 760 1/8 x 2 1/2 1.02 600 1.02 800 1.02 920 1/8 x 3 1.03 710 1.03 940 1.03 1.1 1/8 x 3 1/2 1.04 810 1.03 1.1 1.03 1.25 1/8 x 4 1.04 910 1.04 1.2 1.04 1.4 3/16 x 1/2 0.0938 0.362 1.00 195 1.00 260 1.00 300 3/16 x 3/4 0.545 1.01 270 1.01 360 1.01 415 3/16 x 1 0.726 1.01 340 1.01 455 1.01 520 3/16 x 1 1/2 1.02 480 1.02 630 1.02 730 3/16 x 2 1.03 610 1.03 810 1.03 940 3/16 x 2 1/2 1.04 740 1.04 980 1.03 1.15 3/16 x 3 1.05 870 1.05 1.15 1.04 1.35 The ampacity tables presented here are for rectangular bus bars of Copper No. 110 whose surface condition is similar to that of busses at typical installations. Ampacities were calculated using a nominal conductivity of 99% IACS and should also be applicable to other coppers with the same electrical conductivity. Listed for 60 Hz at temperature rises of 30, 60, and 65 C° ambient, they ere determined from accurate emissivity coefficients measured by calorimetriC° techniques. The Ampacity Calculations - Accurate emissivity is essential because it is used to calculate the heat dissipated by radiation, a factor in the general equation for ampacity: where I is ampacity (amp), WR is heat dissipated by radiation (watts), WC is heat dissipated by natural convection (watts), and R is resistance (ohms) at operating temperature and 60 Hz. Table 1. Ampacities of Copper No. 110 Bus Bars - Ampacities in this table are for bus bars having an emissivity of 0.4. This was observed on samples exposed for 60 days in an industrial environment, and it is probably identical to that of bus bars in service. http://busbar.copper.org/ampacity/busT1.htm Weigh t Resistan ce at 20° C, Square In. Skin Effect Skin Effect Skin Effect Ampacity ,* Ampacity ,* Ampacity ,* Thousand s 264.0 175.0 132.0 119 87.7 0.125 159 65.8 132.0 119 87.7 0.125 159 65.8 0.188 239 43.8 0.250 318 32.9 0.312 397 1.21 26.4 0.375 477 1.45 21.9 0.438 558 1.69 18.8 0.500 636 1.93 16.5 119 87.7 0.141 179 58.4 0.188 239 43.8 0.281 358 1.09 29.3 0.375 477 1.45 21.9 0.469 597 1.81 17.5 0.562 715 2.17 14.6

Upload: andres-zuniga

Post on 19-Jan-2016

60 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: Formulas Electricas - Tabla Calculo de Barraje

Direct-current ampacities may differ from AC° ampacities because of AC° skin effect:

where I DC° is DC° ampacity at 60 Hz (amp), and S is the skin effect ratio at 60 Hz.

Table 1. Ampacities of Copper No. 110 Bus Bars

Dimensions,

Area

Weight DC

30 C° Rise 50 C° Rise 65 C° Rise

In. Per

Foot, at 20° C,

Lb Microhms

Circular Per Ft Skin Effect 60-Hz Skin Effect 60-Hz Skin Effect 60-Hz

Mils, Ratio at Ratio at Ratio at

70° C Amp 90° C Amp 105° C Amp

1/16 x 1/2 0.0312 39.7 0.121 1.00 103 1.00 136 1.00 157

1/16 x 3/4 0.0469 59.7 0.181 1.00 145 1.00 193 1.00 225

1/16 x 1 0.0625 79.6 0.241 1.00 187 1.00 250 1.00 285

1/16 x 1 1/2 0.0938 0.362 1.00 270 1.00 355 1.00 410

1/16 x 2 0.483 1.01 345 1.01 460 1.01 530

1/8 x 1/2 0.0625 79.6 0.241 1.00 153 1.00 205 1.00 235

1/8 x 3/4 0.0938 0.362 1.00 215 1.00 285 1.00 325

1/8 x 1 0.483 1.01 270 1.01 360 1.01 415

1/8 x 1 1/2 0.726 1.01 385 1.01 510 1.01 590

1/8 x 2 0.966 1.02 495 1.02 660 1.02 760

1/8 x 2 1/2 1.02 600 1.02 800 1.02 920

1/8 x 3 1.03 710 1.03 940 1.03 1.1

1/8 x 3 1/2 1.04 810 1.03 1.1 1.03 1.25

1/8 x 4 1.04 910 1.04 1.2 1.04 1.4

3/16 x 1/2 0.0938 0.362 1.00 195 1.00 260 1.00 300

3/16 x 3/4 0.545 1.01 270 1.01 360 1.01 415

3/16 x 1 0.726 1.01 340 1.01 455 1.01 520

3/16 x 1 1/2 1.02 480 1.02 630 1.02 730

3/16 x 2 1.03 610 1.03 810 1.03 940

3/16 x 2 1/2 1.04 740 1.04 980 1.03 1.15

3/16 x 3 1.05 870 1.05 1.15 1.04 1.35

The ampacity tables presented here are for rectangular bus bars of Copper No. 110 whose surface condition is similar to that of busses at typical installations. Ampacities were calculated using a nominal conductivity of 99% IACS and should also be applicable to other coppers with the same electrical conductivity. Listed for 60 Hz at temperature rises of 30, 60, and 65 C° ambient, they ere determined from accurate emissivity coefficients measured by calorimetriC° techniques. The methods are described in "Electrical Coils and Conductors", by H.B. Dwight (McGraw-Hill Publishing Co., New York, 1945, Chapter 19).

Ampacity Calculations - Accurate emissivity is essential because it is used to calculate the heat dissipated by radiation, a factor in the general equation for ampacity:

where I is ampacity (amp), WR is heat dissipated by radiation (watts), WC is heat dissipated by natural convection (watts), and R is resistance (ohms) at operating temperature and 60 Hz.

Table 1. Ampacities of Copper No. 110 Bus Bars - Ampacities in this table are for bus bars having an emissivity of 0.4.

This was observed on samples exposed for 60 days in an industrial environment, and it is probably identical to that of bus bars in service.

http://busbar.copper.org/ampacity/busT1.htm

Resistance

Square In.

Ampacity,*

Ampacity,*

Ampacity,*

Thousands

264.0    

175.0    

132.0    

119    87.7    

0.125   159    65.8    

132.0    

119    87.7    

0.125   159    65.8    

0.188   239    43.8    

0.250   318    32.9    

0.312   397    1.21   26.4    

0.375   477    1.45   21.9    

0.438   558    1.69   18.8    

0.500   636    1.93   16.5    

119    87.7    

0.141   179    58.4    

0.188   239    43.8    

0.281   358    1.09   29.3    

0.375   477    1.45   21.9    

0.469   597    1.81   17.5    

0.562   715    2.17   14.6    

Page 2: Formulas Electricas - Tabla Calculo de Barraje

3/16 x 3 1/2 1.07 990 1.06 1.3 1.06 1.5

3/16 x 4 1.09 1.1 1.08 1.45 1.07 1.7

1/4 x 1/2 0.483 1.01 240 1.01 315 1.01 360

1/4 x 3/4 0.726 1.01 320 1.01 425 1.01 490

1/4 x 1 0.966 1.02 400 1.02 530 1.02 620

1/4 x 1 1/2 1.03 560 1.03 740 1.03 860

1/4 x 2 1.04 710 1.04 940 1.04 1.1

1/4 x 2 1/2 1.06 850 1.06 1.15 1.06 1.3

1/4 x 3 1.08 990 1.08 1.3 1.07 1.55

1/4 x 3 1/2 1.10 1.15 1.09 1.5 1.09 1.75

1/4 x 4 1.12 1.25 1.11 1.7 1.10 1.95

1/4 x 5 1.16 1.5 1.15 2 1.14 2.35

1/4 x 6 1.18 1.75 1.17 2.35 1.17 2.7

1/4 x 8 1.23 2.25 1.22 3 1.21 3.45

1/4 x 10 1.27 2.7 1.26 3.6 1.25 4.2

1/4 x 12 1.31 3.15 1.30 4.2 1.28 4.9

3/8 x 3/4 1.02 415 1.02 550 1.02 630

3/8 x 1 1.03 510 1.03 680 1.03 790

3/8 x 1 1/2 1.05 710 1.04 940 1.04 1.1

3/8 x 2 1.08 880 1.08 1.15 1.07 1.35

3/8 x 2 1/2 1.12 1.05 1.10 1.4 1.09 1.6

3/8 x 3 1.15 1.2 1.14 1.6 1.13 1.85

3/8 x 3 1/2 1.18 1.35 1.16 1.8 1.15 2.1

3/8 x 4 1.20 1.5 1.19 2 1.18 2.35

3/8 x 5 1.24 1.8 1.23 2.4 1.22 2.8

3/8 x 6 1.27 2.1 1.26 2.8 1.24 3.25

3/8 x 8 1.33 2.65 1.31 3.55 1.30 4.1

3/8 x 10 1.38 3.2 1.36 4.3 1.35 4.9

3/8 x 12 1.42 3.7 1.40 5 1.38 5.8

1/2 x 1 1.04 620 1.04 820 1.04 940

1/2 x 1 1/2 1.08 830 1.08 1.1 1.07 1.25

1/2 x 2 1.12 1 1.11 1.35 1.10 1.55

1/2 x 2 1/2 1.16 1.2 1.15 1.6 1.14 1.85

1/2 x 3 1.20 1.4 1.19 1.85 1.18 2.15

1/2 x 3 1/2 1.24 1.55 1.22 2.1 1.21 2.4

1/2 x 4 1.26 1.7 1.25 2.3 1.24 2.65

1/2 x 5 1.32 2.05 1.30 2.75 1.29 3.15

1/2 x 6 1.36 2.4 1.34 3.15 1.33 3.65

1/2 x 8 1.42 3 1.40 4 1.39 4.6

1/2 x 10 1.47 3.6 1.45 4.8 1.44 5.5

1/2 x 12 1.52 4.2 1.51 5.6 1.50 6.4

3/4 x 4 1.42 2.05 1.40 2.75 1.38 3.15

3/4 x 5 1.48 2.4 1.46 3.25 1.44 3.75

3/4 x 6 1.52 2.8 1.50 3.75 1.48 4.3

3/4 x 8 1.60 3.5 1.58 4.7 1.56 5.4

3/4 x 10 1.67 4.2 1.64 5.6 1.62 6.5

3/4 x 12 0.914 1.72 4.9 1.69 6.5 1.67 7.5

0.656   835    2.53   12.5    

0.750   955    2.90   11.0    

0.125   159    65.8    

0.188   239    43.8    

0.250   318    32.9    

0.375   477    1.45   21.9    

0.500   637    1.93   16.5    

0.625   796    2.41   13.2    

0.750   955    2.90   11.0    

0.875   1,110    3.38   9.40  

1.00     1,270    3.86   8.23  

1.25     1,590    4.83   6.58  

1.50     1,910    5.80   5.49  

2.00     2,550    7.73   4.11  

2.50     3,180    9.66   3.29  

3.00     3,820    11.6     2.74  

0.281   358    1.09   29.3    

0.375   477    1.45   21.9    

0.562   715    2.17   14.6    

0.750   955    2.90   11.0    

0.938   1,190    3.62   8.77  

1.12     1,430    4.35   7.35  

1.31     1,670    5.06   6.28  

1.50     1,910    5.80   5.49  

1.88     2,390    7.26   4.38  

2.25     2,860    8.69   3.66  

3.00     3,820    11.6     2.74  

3.75     4,770    14.5     2.19  

4.50     5,730    17.4     1.83  

0.500   637    1.93   16.5    

0.750   955    2.90   11.0    

1.00     1,270    3.86   8.23  

1.25     1,590    4.83   6.58  

1.50     1,910    5.80   5.49  

1.75     2,230    6.76   4.70  

2.00     2,550    7.73   4.11  

2.50     3,180    9.66   3.29  

3.00     3,820    11.6     2.74  

4.00     5,090    15.5     2.06  

5.00     6,360    19.3     1.65  

6.00     7,640    23.2     1.37  

3.00     3,820    11.6     2.74  

3.75     4,770    14.5     2.19  

4.50     5,730    17.4     1.83  

6.00     7,640    23.2     1.37  

7.50     9,550    29.0     1.10  

9.00     11,500    34.8    * Applicable to typical in-service conditions (indoors, 40C° ambient temperature), horizontal run on edge, and free from external magnetiC° influences.

Page 3: Formulas Electricas - Tabla Calculo de Barraje

Amp COBRE ALUMINIO

AWG/MCM desnudo TF-TW 600V ASC ASCR TF-TW 600V0.750.80

18 0.82 11.83 6.000.901.00

16 1.31 19.00 8.001.50

14 2,08 30.00 16.00 16.002.50

12 3.31 40.00 20.00 20.004.00

10 5.26 55.00 30.00 30.006.00

8 8.37 70.00 40.00 50.00 50.00 55.0010

6 13.30 100.00 55.00 65.00 65.00 70.00 70.0016.00

4 21.15 130.00 70.00 85.00 85.00 100.00 100.0025.00

3 26.70 150.00 115.002 33.62 175.00 95.00 115.00 115.00 130.00

35.001 42.40 205.00 150.00

50.001/0 53.51 235.00 125.00 150.00 150.00 175.002/0 67.44 275.00 145.00 175.00 175.00 205.00

70.00 285.443/0 85.02 320.00 165.00 200.00 200.00 235.00

95.004/0 107.22 340.00 195.00 230.00 230.00 275.00

120.00250 126.68 410.00 215.00 255.00 255.00 320.00

150.00300 152.01 460.00 240.00 285.00 285.00350 177.35 510.00 260.00 310.00 310.00

185.00400 202.68 555.00 280.00 335.00 335.00

240.00500 253.35 630.00 320.00 380.00 380.00 460.00

300.00600 304.02 710.00 355.00 420.00 420.00700 354.59 780.00 385.00 460.00 460.00750 380.03 810.00 400.00 475.00 475.00

400.00800 405.36 845.00 410.00 490.00 490.00

500.001000 506.70 965.00 455.00 520.00 545.00 745.00

630.001250 633.38 845.001500 760.05 941.00

800.001750 886.73

1,000.002000 1,013.40

IEC mm 2

THW 600V

TTU 2000V

THW 600V

TTU 2000V

Page 4: Formulas Electricas - Tabla Calculo de Barraje

ARRANQUE DIRECTO

POTENCIA KW 0.09 0.12 0.18 0.25 0.37 0.55 0.75 1.1 1.5 1.8 2.2 3 3.7 4 4.5 5.2 5.5 7.5 11 15DEL MOTOR HP 1./8 1./6 1./4 1./3 1./2 3./4 1 1.5 2 2.5 3 4 5 5.5 6 7 7.5 10 15 20

115 V. 2.8 3.2 4.6 5.2 7.4 10.2 13 18.4 24 34 56 80 100LRD 08 08 10 10 12 16 16 22 22 3355 3359 3365 5367

MONOFASICO 220/240 V. 1.4 1.6 2.3 2.6 3.7 5.1 6.5 9.2 12 15.7 17 24.3 28 29.6 34.7 39.8 40 50 70 92LRD 06 06 07 08 08 10 12 14 16 21 21 22 32 32 3355 3357 3357 3359 3363 3365

POTENCIA KW 0.25 0.37 0.55 0.75 1.1 1.5 1.8 2.2 3 4 4.5 5.5 7.5 9 11 15 18.5 22 25 30 33 37 45 51 55 59 63 75DEL MOTOR HP 1./3 1./2 3./4 1 1.5 2 2.5 3 4 5.5 6 7.5 10 12 15 20 25 30 34 40 45 50 60 70 75 80 85 100

220/240 V. 1.4 1.8 2.75 3.5 4.4 6.1 7.5 8.7 11.5 14.5 18.9 20 27 32 39 52 64 75 85 103 113 126 150 170 182 195 203 240LRD 06 07 08 08 10 12 14 14 16 21 22 22 32 35 3355 3359 3361 3363 3365 4367 4369 4369 F5371 F5371 F5371 F5371 F7375 F7375

TRIFASICO 415/440 V. 0.76 0.99 1.36 2 2.5 3.5 4.2 5 6.5 8.4 10.5 11 14 17 21 28 35 40 47 55 60 66 80 90 100 105 115 135LRD 05 05 06 07 08 08 10 10 14 14 16 16 21 21 22 32 3353 3357 3357 3359 3361 3361 3365 3365 4367 4367 4369 4369

660 V. 0.6 0.9 1.1 1.5 2 2.3 2.8 3.8 4.9 6.4 6.6 8.9 10.6 14 17.3 21.3 25.4 30.3 34.6 39 42 49 57 61 66 69 82LRD 04 05 06 06 07 07 08 08 10 12 12 14 16 21 22 22 32 35 3355 3357 3357 3359 3359 3361 3361 3363 3365

220 v. ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### 138.728ESTRELLA LRD 10 12 14 16 16 21 22 32 35 3357 3357 3359 3359 3361 3363 3365 4367 4367 4369 4369 F5371

TRIANGULO 415/440 V. ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### 78.0LRD 10 12 12 14 16 21 21 22 22 32 35 3355 3357 3357 3359 3359 3359 3363 3363

LC1D 9 12 18 25 32 40 50 65 80 90 115 150 X

LC1F X X X X X X X X X X X X 185/225

LR9 X X X X X X X X X X X X

Page 5: Formulas Electricas - Tabla Calculo de Barraje

AC/DC FormulasTo Find Direct Current AC / 1phase AC / 1phase AC 3 phase

115v or 120v 208,230, or 240v All VoltagesAmps when HP x 746 HP x 746 HP x 746 HP x 746Horsepower is Known E x Eff E x Eff X PF E x Eff x PF 1.73 x E x Eff x PFAmps when kW x 1000 kW x 1000 kW x 1000 kW x 1000Kilowatts is known E E x PF E x PF 1.73 x E x PFAmps when kVA x 1000 kVA x 1000 kVA x 1000kVA is known E E 1.73 x EKilowatts I x E I x E x PF I x E x PF I x E x 1.73 PF

1000 1000 1000 1000Kilovolt-Amps I x E I x E I x E x 1.73

1000 1000 1000Horsepower I x E x Eff I x E x Eff x PF I x E x Eff x PF I x E x Eff x 1.73 x PF(output) 746 746 746 746

Three Phase ValuesFor 208 volts x 1.732, use 360For 230 volts x 1.732, use 398For 240 volts x 1.732, use 416For 440 volts x 1.732, use 762For 460 volts x 1.732, use 797For 480 Volts x 1.732, use 831

AC Efficiency and Power Factor FormulasTo Find Single Phase Three Phase

Efficiency746 x HP 746 x HPE x I x PF E x I x PF x 1.732

Power FactorInput Watts Input Watts

V x A E x I x 1.732

Power - DC Circuits

Ohm's Law / Power Formulas

E = Voltage / I = Amps /W = Watts / PF = Power Factor / Eff = Efficiency / HP = Horsepower

E = Voltage / I = Amps /W = Watts / PF = Power Factor / Eff = Efficiency / HP = Horsepower

Watts = E xIAmps = W / E

P = watts

I = amps

R = ohms

E = Volts

Page 6: Formulas Electricas - Tabla Calculo de Barraje

Voltage Drop FormulasSingle Phase

VD =

2 x K x I x L(2 or 3 wire) CM

(Copper = 12.9 at 75°)

Note:

CM=2K x L x I

VD

Three Phase

VD=1.73 x K x I x L

CM

CM=1.73 x K x L x I

VD

Calculating Motor Speed:

A squirrel cage induction motor is a constant speed device. It cannot operate for any length of time at speeds below those shown on the nameplate without danger of burning out.

Calculating Braking Torque:

Full-load motor torque is calculated to determine the required braking torque of a motor.

K = ohms per mil foot 

(Alum = 21.2 at 75°) K value changes with temperature. See Code chapter 9, Table 8

L = Length of conductor in feet

I  = Current in conductor (amperes)

CM = Circular mil area of conductor

To Calculate the speed of a induction motor, apply this formula:

Srpm = 120 x F            P

Srpm = synchronous revolutions per minute.120   = constantF       = supply frequency (in cycles/sec)P       = number of motor winding poles

Example: What is the synchronous of a motor having 4 poles connected to a 60 hz power supply?

Srpm = 120 x F            P

Srpm = 120 x 60            4

Srpm = 7200             4

Srpm = 1800 rpm

To Determine braking torque of a motor, apply this formula:

Page 7: Formulas Electricas - Tabla Calculo de Barraje

Calculating Work:

Work is applying a force over a distance. Force is any cause that changes the position, motion, direction, or shape of an object. Work is done when a force overcomes a resistance. Resistance is any force that tends to hinder the movement of an object.If an applied force does not cause motion the no work is produced.

To calculate the amount of work produced, apply this formula:

Calculating Torque:

Torque is the force that produces rotation. It causes an object to rotate. Torque consist of a force acting on distance. Torque, like work, is measured is pound-feet (lb-ft). However, torque, unlike work, may exist even though no movement occurs.

To calculate torque, apply this formula:

T = 5252 x HP    rpm

T      = full-load motor torque (in lb-ft)5252 = constant (33,000 divided by 3.14 x 2 = 5252)HP    = motor horsepowerrpm = speed of motor shaft

Example: What is the braking torque of a 60 HP, 240V motor rotating at 1725 rpm?

T = 5252 x HP    rpm

T = 5252 x 60     1725

T = 315,120     1725

T = 182.7 lb-ft

W = F x D

W = work (in lb-ft)F  = force (in lb)D  = distance (in ft)

Example: How much work is required to carry a 25 lb bag of groceries vertically from street level to the 4th floor of a building 30' above street level?

W = F x DW = 25 x 30W = 750 -lb

T = F x D

T = torque (in lb-ft)F = force (in lb)D = distance (in ft)

Example: What is the torque produced by a 60 lb force pushing on a 3' lever arm?

Page 8: Formulas Electricas - Tabla Calculo de Barraje

Calculating Full-load Torque:

To calculate motor full-load torque, apply this formula:

Calculating Horsepower:

Electrical power is rated in horsepower or watts. A horsepower is a unit of power equal to 746 watts or 33,0000 lb-ft per minute (550 lb-ft per second). A watt is a unit of measure equal to the power produced by a current of 1 amp across the potential difference of 1 volt. It is 1/746 of 1 horsepower. The watt is the base unit of electrical power. Motor power is rated in horsepower and watts.Horsepower is used to measure the energy produced by an electric motor while doing work.

To calculate the horsepower of a motor when current and efficiency, and voltage are known, apply this formula:

Example: What is the horsepower of a 230v motor pulling 4 amps and having 82% efficiency?

T = F x DT = 60 x 3

T = 180 lb ft

Full-load torque is the torque to produce the rated power at full speed of the motor. The amount of torque a motor produces at rated power and full speed can be found by using a horsepower-to-torque conversion chart. When using the conversion chart, place a straight edge along the two known quantities and read the unknown quantity on the third line.

T = HP x 5252    rpm

T = torque (in lb-ft)HP = horsepower5252 = constantrpm = revolutions per minute

Example: What is the FLT (Full-load torque) of a 30HP motor operating at 1725 rpm?

T = HP x 5252    rpm

T = 30 x 5252     1725

T = 157,560     1725

T = 91.34 lb-ft

HP = V x I x Eff        746

HP = horsepowerV    = voltageI     = curent (amps)Eff. = efficiency

HP = V x I x Eff        746

HP = 230 x 4 x .82        746

Page 9: Formulas Electricas - Tabla Calculo de Barraje

Eff = efficiency / HP = horsepower / V = volts / A = amps / PF = power factor

Horsepower Formulas

To Find Use FormulaExample

Given Find Solution

HP HP HP=5.5

I

10HP, 240V,

I90% Eff., 88% PF

I = 39 A

To calculate the horsepower of a motor when the speed and torque are known, apply this formula:

Example: What is the horsepower of a 1725 rpm motor with a FLT 3.1 lb-ft?

Calculating Synchronous Speed:

AC motors are considered constant speed motors. This is because the synchronous speed of an induction motor is based on the supply frequency and the number of poles in the motor winding. Motor are designed for 60 hz use have synchronous speeds of 3600, 1800, 1200, 900, 720, 600, 514, and 450 rpm.

To calculate synchronous speed of an induction motor, apply this formula:

rpmsyn = synchronous speed (in rpm)

HP = 754.4        746

HP = 1 Hp

HP = I X E X Eff.

240V, 20A, 85% Eff.

HP = 240V x 20A x 85%

       746        746

I = HP x 746 I = 10HP x 746

     E X Eff x PF       240V x 90% x 88%

HP = rpm x T(torque)         5252(constant)

HP = rpm x T         5252

HP = 1725 x 3.1         5252

HP = 5347.5         5252HP = 1 hp

rpmsyn = 120 x f              Np

f           = supply frequency in (cycles/sec)Np       =  number of motor poles

Example: What is the synchronous speed of a four pole motor operating at 50 hz.?

rpmsyn = 120 x f              Np

rpmsyn = 120 x 50              4

Page 10: Formulas Electricas - Tabla Calculo de Barraje

Options:

To better understand the following formulas review the rule of transposition in equations.A multiplier may be removed from one side of an equation by making it a division on the other side, or a division may be removed from one side of an equation by making it a multiplier on the other side.

Power(p) = power (s) or Ep x Ip = Es x Is

A. Ep =Es x Is

B.Ip

C. Is =Ep x Ip

D.Es

Voltage (p) x Turns (s) = Voltage (s) x Turns (p)or Ep x Ts = Es x Ip

A. Ep =Es x Ip

B.Ts

C. Tp =Ep x Ts

D.Es

Amperes (p) x Turns (p) = Amperes (s) x Turns (s)or Ip x Tp = Is x Ts

A. Ip =Is x Ts

B.Tp

C. Ts =Ip x Tp

D.Is

rpmsyn = 6000              4

rpmsyn = 1500 rpm

- Useful Formulas- Motor Formulas

1. Voltage and Current: Primary (p) secondary (s)

2. Voltage and Turns in Coil:

3. Amperes and Turns in Coil:

FLA Motor Chart Options: DC motors AC Single Phase   

Page 11: Formulas Electricas - Tabla Calculo de Barraje

DC MotorsHorse-

90v 120v 180v 240vpowerAmperes

1/4 4.0 3.1 2.0 1.61/3 5.2 4.1 2.6 2.01/2 6.8 5.4 3.4 2.73/4 9.6 7.6 4.8 3.81 12.2 9.5 6.1 4.7

1-1/2 -- 13.2 8.3 6.62 -- 17 10.8 8.53 -- 25 16 12.25 -- 40 27 20

7 - 1/2 -- 58 -- 29Horse-

90v 120v 180v 240vpowerAmperes

10 -- 76 -- 3815 -- -- -- 3820 -- -- -- 5525 -- -- -- 8930 -- -- -- 10640 -- -- -- 140

Horse-90v 120v 180v 240vpower

Amperes50 -- -- -- 17360 -- -- -- 20675 -- -- -- 255

100 -- -- -- 341125 -- -- -- 425150 -- -- -- 506200 -- -- -- 675

AC Single Phase MotorsHorse-

115v 200v 208v 230vpowerAmperes

1/6 4.4 2.5 2.4 2.21/4 5.8 3.3 3.2 2.91/3 7.2 4.1 4.0 3.61/2 9.8 5.6 5.4 4.93/4 13.8 7.9 7.6 6.91 16 9.2 8.8 8.0

1 - 1/2 20 11.5 11 102 24 13.8 13.2 123 34 19.6 18.7 175 56 32.2 30.8 28

AC 2 Phase (4 wire)  Induction Type Squirrel Cage and Wound Rotor AC 3 Phase Induction Type Squirrel Cage and Wound Rotor AC 3 Phase Synchronous Type Unity Power Factor

Page 12: Formulas Electricas - Tabla Calculo de Barraje

7 1/2 80 46 44 4010 100 57.5 55 50

Horse-115v 200v 208v 230vpower

2 Phase (4 wire) AC Induction TypeSquirrel Cage and Wound Rotor

Horse-115v 230v 460v 575vpower

Amperes1/2 4.0 2.0 1.0 0.83/4 4.8 2.4 1.2 1.01 6.4 3.2 1.6 1.3

1 1/2 9.0 4.5 2.3 1.82 11.8 5.9 3.0 2.43 -- 8.3 4.2 3.35 -- 13.2 6.6 5.3

10 -- 24 12 1015 -- 36 18 1420 -- 47 23 1925 -- 59 29 2430 -- 69 35 2840 -- 90 45 36

Horse-115v 230v 460v 575vpower

Amperes50 -- 113 56 4560 -- 133 67 5375 -- 166 83 66

100 -- 218 109 87125 -- 270 135 108150 -- 312 156 125200 -- 416 208 167

AC 3 Phase Induction Type Squirrel Cage and Wound RotorHorse-

115V 200V 208V 230VpowerAmperes

1/2 4.4 2.5 2.4 2.23/4 6.4 3.7 3.5 3.21 8.4 4.8 4.6 4.2

1 1/2 12.0 6.9 6.6 6.02 13.6 7.8 7.5 6.83 -- 11.0 10.6 9.65 -- 17.5 16.7 15.2

7 1/2 -- 25.3 24.2 22Horse-

115v 200v 208v 230vpower10 -- 32.2 30.8 2815 -- 48.3 46.2 4220 -- 62.1 59.4 5425 -- 78.2 74.8 68

Page 13: Formulas Electricas - Tabla Calculo de Barraje

30 -- 92 88 8040 -- 120 114 104

Horse-115v 200v 208v 230vpower

50 -- 150 143 13060 -- 177 169 15475 -- 221 211 192

100 -- 285 273 248125 -- 359 343 312150 -- 414 396 360200 -- 552 528 480

Horse-115v 200v 208v 230vpower

Amperes250 -- -- -- --300 -- -- -- --350 -- -- -- --400 -- -- -- --450 -- -- -- --500 -- -- -- --

Horse-230v 460v 575v 2300vpower

Amperes25 53 26 21 --30 63 32 26 --40 83 41 33 --50 104 52 42 --60 123 61 49 1275 155 78 62 15

100 202 101 81 20125 253 126 101 25150 302 151 121 30200 400 201 161 40

Horse-230v 460v 575v 2300vpower

AC 3 Phase Synchronous Type Unity Power Factor

Page 14: Formulas Electricas - Tabla Calculo de Barraje

A squirrel cage induction motor is a constant speed device. It cannot operate for any length of time at speeds below those shown on the nameplate without danger of burning out.

Page 15: Formulas Electricas - Tabla Calculo de Barraje

Work is applying a force over a distance. Force is any cause that changes the position, motion, direction, or shape of an object. Work is done when a force overcomes a resistance. Resistance is any force that tends to hinder the movement of an object.If an applied force does not cause motion the no work is produced.

Torque is the force that produces rotation. It causes an object to rotate. Torque consist of a force acting on distance. Torque, like work, is measured is pound-feet (lb-ft). However, torque, unlike work, may exist even though no movement occurs.

What is the braking torque of a 60 HP, 240V motor rotating at 1725 rpm?

How much work is required to carry a 25 lb bag of groceries vertically from street level to the 4th floor of a building 30' above street level?

What is the torque produced by a 60 lb force pushing on a 3' lever arm?

Page 16: Formulas Electricas - Tabla Calculo de Barraje

Electrical power is rated in horsepower or watts. A horsepower is a unit of power equal to 746 watts or 33,0000 lb-ft per minute (550 lb-ft per second). A watt is a unit of measure equal to the power produced by a current of 1 amp across the potential difference of 1 volt. It is 1/746 of 1 horsepower. The watt is the base unit of electrical power. Motor power is rated in horsepower and watts.Horsepower is used to measure the energy produced by an electric motor while doing work.

To calculate the horsepower of a motor when current and efficiency, and voltage are known, apply this formula:

Example: What is the horsepower of a 230v motor pulling 4 amps and having 82% efficiency?

Full-load torque is the torque to produce the rated power at full speed of the motor. The amount of torque a motor produces at rated power and full speed can be found by using a horsepower-to-torque conversion chart. When using the conversion chart, place a straight edge along the two known quantities and read the unknown quantity on the third line.

What is the FLT (Full-load torque) of a 30HP motor operating at 1725 rpm?

Page 17: Formulas Electricas - Tabla Calculo de Barraje

To calculate the horsepower of a motor when the speed and torque are known, apply this formula:

Example: What is the horsepower of a 1725 rpm motor with a FLT 3.1 lb-ft?

AC motors are considered constant speed motors. This is because the synchronous speed of an induction motor is based on the supply frequency and the number of poles in the motor winding. Motor are designed for 60 hz use have synchronous speeds of 3600, 1800, 1200, 900, 720, 600, 514, and 450 rpm.

To calculate synchronous speed of an induction motor, apply this formula:

What is the synchronous speed of a four pole motor operating at 50 hz.?

Page 18: Formulas Electricas - Tabla Calculo de Barraje

To better understand the following formulas review the rule of transposition in equations.A multiplier may be removed from one side of an equation by making it a division on the other side, or a division may be removed from one side of an equation by making it a multiplier on the other side.

Ip =Es x Is

Ep

Es =Ep x Ip

Is

Ts =Es x Tp

Ep

Es =Ep x Ts

Tp

Tp =Is x Ts

Ip

Is =Ip x Tp

Ts

Page 19: Formulas Electricas - Tabla Calculo de Barraje

DC Motors

500v 550vAmperes

-- ---- ---- ---- ---- ---- ---- ---- ---- --

13.6 12.2

500v 550vAmperes

18 1618 1627 2443 3851 4667 61

500v 550vAmperes

83 7599 90

123 111164 148205 185246 222330 294

Page 20: Formulas Electricas - Tabla Calculo de Barraje

2 Phase (4 wire) AC Induction TypeSquirrel Cage and Wound Rotor

2300vAmperes

--------------------------

2300vAmperes

--141823283243

AC 3 Phase Induction Type Squirrel Cage and Wound Rotor

460V 575V 2300VAmperes

1.1 0.9 --1.6 1.3 --2.1 1.7 --3.0 2.4 --3.4 2.7 --4.8 3.9 --7.6 6.1 --11 9 --

460v 575v 2300v14 11 --21 17 --27 22 --34 27 --

Page 21: Formulas Electricas - Tabla Calculo de Barraje

40 32 --52 41 --

460v 575v 2300v65 52 --77 62 1696 77 20

124 99 26156 125 31180 144 37240 192 49

460v 575v 2300vAmperes

302 242 60361 289 72414 336 83477 382 95515 412 103590 472 118

Page 22: Formulas Electricas - Tabla Calculo de Barraje

Work is applying a force over a distance. Force is any cause that changes the position, motion, direction, or shape of an object. Work is done when a force overcomes a resistance. Resistance is any force that tends to hinder the movement of an object.If an applied force does not cause motion the no work is produced.

Torque is the force that produces rotation. It causes an object to rotate. Torque consist of a force acting on distance. Torque, like work, is measured is pound-feet (lb-ft). However, torque, unlike work, may exist even though no movement occurs.

Page 23: Formulas Electricas - Tabla Calculo de Barraje

Electrical power is rated in horsepower or watts. A horsepower is a unit of power equal to 746 watts or 33,0000 lb-ft per minute (550 lb-ft per second). A watt is a unit of measure equal to the power produced by a current of 1 amp across the potential difference of 1 volt. It is 1/746 of 1 horsepower. The watt is the base unit of electrical power. Motor power is rated in horsepower and watts.

Full-load torque is the torque to produce the rated power at full speed of the motor. The amount of torque a motor produces at rated power and full speed can be found by using a horsepower-to-torque conversion chart. When using the conversion chart, place a straight edge along the two known quantities and read the unknown quantity on the third line.

Page 24: Formulas Electricas - Tabla Calculo de Barraje

AC motors are considered constant speed motors. This is because the synchronous speed of an induction motor is based on the supply frequency and the number of poles in the motor winding. Motor are designed for 60 hz use have synchronous speeds of 3600, 1800, 1200, 900, 720, 600, 514, and 450 rpm.

Page 25: Formulas Electricas - Tabla Calculo de Barraje

A multiplier may be removed from one side of an equation by making it a division on the other side, or a division may be removed from one side of an equation by making it a multiplier on the other side.

Page 26: Formulas Electricas - Tabla Calculo de Barraje

Work is applying a force over a distance. Force is any cause that changes the position, motion, direction, or shape of an object. Work is done when a force overcomes a resistance. Resistance is any force that tends to hinder the movement of an object.If an applied force does not cause motion the no work is produced.

Page 27: Formulas Electricas - Tabla Calculo de Barraje

Electrical power is rated in horsepower or watts. A horsepower is a unit of power equal to 746 watts or 33,0000 lb-ft per minute (550 lb-ft per second). A watt is a unit of measure equal to the power produced by a current of 1 amp across the potential difference of 1 volt. It is 1/746 of 1 horsepower. The watt is the base unit of electrical power. Motor power is rated in horsepower and watts.

Full-load torque is the torque to produce the rated power at full speed of the motor. The amount of torque a motor produces at rated power and full speed can be found by using a horsepower-to-torque conversion chart. When using the conversion chart, place a straight edge along the two known quantities and read the unknown quantity on the third line.

Page 28: Formulas Electricas - Tabla Calculo de Barraje

AC motors are considered constant speed motors. This is because the synchronous speed of an induction motor is based on the supply frequency and the number of poles in the motor winding. Motor are designed for 60 hz use have synchronous speeds of 3600, 1800, 1200, 900, 720, 600, 514, and 450 rpm.

Page 29: Formulas Electricas - Tabla Calculo de Barraje

Electrical power is rated in horsepower or watts. A horsepower is a unit of power equal to 746 watts or 33,0000 lb-ft per minute (550 lb-ft per second). A watt is a unit of measure equal to the power produced by a current of 1 amp across the potential difference of 1 volt. It is 1/746 of 1 horsepower. The watt is the base unit of electrical power. Motor power is rated in horsepower and watts.