fourier analysis techniques

61
FOURIER ANALYSIS TECHNIQUES rier series permit the extension of steady state analysis to general periodi nal. FOURIER SERIES LEARNING GOALS FOURIER TRANSFORM ier transform allows us to extend the concepts of frequency domain to trary non-periodic inputs

Upload: argyle

Post on 23-Jan-2016

129 views

Category:

Documents


3 download

DESCRIPTION

FOURIER ANALYSIS TECHNIQUES. LEARNING GOALS. FOURIER SERIES. Fourier series permit the extension of steady state analysis to general periodic signal. FOURIER TRANSFORM. Fourier transform allows us to extend the concepts of frequency domain to arbitrary non-periodic inputs. FOURIER SERIES. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: FOURIER ANALYSIS TECHNIQUES

FOURIER ANALYSIS TECHNIQUES

Fourier series permit the extension of steady state analysis to general periodicsignal.

FOURIER SERIES

LEARNING GOALS

FOURIER TRANSFORM

Fourier transform allows us to extend the concepts of frequency domain toarbitrary non-periodic inputs

Page 2: FOURIER ANALYSIS TECHNIQUES

FOURIER SERIES

The Fourier series permits the representation of an arbitrary periodic signal as a sum of sinusoids or complex exponentials

Periodic signal

tTtftf

Ttf

),()(

0)( that such exists there iff periodic is signal The

The smallest T that satisfies the previous condition is called the (fundamental)period of the signal

Page 3: FOURIER ANALYSIS TECHNIQUES

tnccjtnccecec nnnntjn

ntjn

n 00 sin)(cos)(09

000

n

ac

For

FOURIER SERIES RESULTS

110

10

10

0

sincos)(

)(

Re)cos()(

)(,)(

0

non

non

n

tjnn

n

tjnnn

nnon

tnbtnaatf

ectf

eDatnDatf

tfTtf

o

forms equivalent

following the of one in expressed be can then period with periodic, is If

Cosine expansion

Complex exponential expansion

Trigonometric series

Phasor for n-th harmonic0

02

T

nnnnn jbacD 2

na nb

Relationship between exponential and trigonometric expansions

nnn

nnn

jbac

jbac

2

2

*)( nn cctf then valued-real is If

GENERAL STRATEGY: . Approximate a periodic signal using a Fourier series. Analyze the network for each harmonic using phasors or complex exponentials. Use the superposition principle to determine the response to the periodic signal

sin2

cos2

sincos

jee

ee

je

jj

jj

j

Page 4: FOURIER ANALYSIS TECHNIQUES

Original Periodic Signal

Approximation with 2 terms

Approximation with 4 terms

Approximation with 100 terms

2

1

2

102 sincos)(

non

non tnbtnaatf

100

1

100

10 sincos

non

non tnbtnaa

N

Nn

tjnnN ectf 0)(

EXAMPLE OFQUALITY OFAPPROXIMATION

Page 5: FOURIER ANALYSIS TECHNIQUES

EXPONENTIAL FOURIER SERIES

Any “physically realizable” periodic signal, with period To, can be represented overthe interval by the expression 011 Tttt

00

2;)( 0

Tectf

n

n

tjnn

The sum of exponential functions is always a continuous function. Hence, the righthand side is a continuous function.Technically, one requires the signal, f(t), to be at least piecewise continuous. In thatcase, the equality does not hold at the points where the signal is discontinuous

Computation of the exponential Fourier series coefficients

n

n

tjnnectf 0)(

01

1

Tt

t

tjke 0

dteecdtetf tjkTt

t

n

n

tjnn

Tt

t

tjk 0

01

1

0

01

1

0)(

knT

kndte

Tt

t

tknj

for

for

0

)( 001

1

0

01

1

0)(1

0

Tt

t

tjkk dtetf

Tc

simpler nscomputatio make to chosen be can andarbitray is 1t

Page 6: FOURIER ANALYSIS TECHNIQUES

LEARNING EXAMPLEDetermine the exponential Fourier series

00

2;)( 0

Tectf

n

n

tjnn

01

1

0)(1

0

Tt

t

tjnn dtetf

Tc

nintegratio the Do 3.

convenient aSelect 2.

and Determine 1.

:strategyA

0

1

0

t

T

TTT

200

2/1 Tt

2

4

4

2

4

4

2

2

000011

)(1

)(1

T

T

tjn

T

T

T

T

tjntjn

T

T

tjnn dtVe

TdtVe

TdteV

Tdtetv

Tc

2/

4/

4/

4/

4/

2/0

000

)(

T

T

tjnT

T

tjnT

T

tjnn eee

jnT

Vc

424424

0

000000T

jnT

jnT

jnT

jnT

jnT

jn

n eeeeeejTn

Vc

20 T

)sin(22

sin42

222

22

nn

n

Veeee

nj

Vc jnjn

nj

nj

n

sin2

j

ee jj

oddn

n

n

Vevenn

cn2

sin2

0

case this in

for is This

0

!0

0

c

n

Page 7: FOURIER ANALYSIS TECHNIQUES

LEARNING EXTENSIONDetermine the exponential Fourier series

nintegratio the Do 3.

convenient aSelect 2.

and Determine 1.

:strategyA

0

1

0

t

T

00

2;)( 0

Tectf

n

n

tjnn

01

1

0)(1

0

Tt

t

tjnn dtetf

Tc

20 T 0

01 t

;2

1

2

1

2

1)(

2

1 1

0

1

0

2

0 nj

ee

njdtedttvc

njntjntj

n

0nFor

2

1

0

0

c

nFor

Page 8: FOURIER ANALYSIS TECHNIQUES

LEARNING EXTENSIONDetermine the exponential Fourier series

nintegratio the Do 3.

convenient aSelect 2.

and Determine 1.

:strategyA

0

1

0

t

T

00

2;)( 0

Tectf

n

n

tjnn

01

1

0)(1

0

Tt

t

tjnn dtetf

Tc

60 T30

21 t

2)(6

1 2

20

dttvc

2

1

31

1

31

2

34

2

4246

1)(

6

1dtedtedtedttvct

njt

njt

nj

n

3

233333

2

4422442

nj

nj

nj

nj

nj

nj

n eeeeeej

nc

3sin2

3

2sin4

nnncn

sin2

j

ee jj

Page 9: FOURIER ANALYSIS TECHNIQUES

TRIGONOMETRIC FOURIER SERIES

1102 sincos)(

non

non tnbtnaatf

tnccjtnccecec nnnntjn

ntjn

n 00 sin)(cos)(00

000

n

ac

For

na nb

Relationship between exponential and trigonometric expansions

nnn

nnn

jbac

jbac

2

2

*)( nn cctf then valued-real is If

sin2

cos2

sincos

jee

ee

je

jj

jj

j

0

02

T

01

1

0)(1

0

Tt

t

tjnn dtetf

Tc

01

1

01

1

01

1

00

00

00

sin)(2

cos)(2

)(1

Tt

tn

Tt

tn

Tt

t

dttntfT

b

dttntfT

a

dttfT

a

The trigonometric form permits the use of symmetry properties of the function to simplify the computation of coefficients

Even function symmetry )()( tftf

x

x

dttfdttf0

0

)()(

x x

Odd function symmetry )()( tftf

x

x

dttfdttf0

0

)()(

Page 10: FOURIER ANALYSIS TECHNIQUES

,2,1,0sin)(2 2

2

00

0

0

ndttntfT

b

T

Tn

,2,1,cos)(4 2

00

0

0

ndttntfT

a

T

n

20

1T

t

TRIGONOMETRIC SERIES FOR FUNCTIONS WITH EVEN SYMMETRY

01

1

01

1

01

1

00

00

00

sin)(2

cos)(2

)(1

Tt

tn

Tt

tn

Tt

t

dttntfT

b

dttntfT

a

dttfT

a

TRIGONOMETRIC SERIES FOR FUNCTIONS WITH ODD SYMMETRY

nnnnnn

nnn

accjbac

jbac

2

2

,1,0,0cos)(2 2

2

00

0

0

ndttntfT

a

T

Tn

,2,1,sin)(4 2

00

0

0

ndttntfT

b

T

n ,2,1,

0*

0

njbcc

c

nnn

3sin2

3

2sin4

nnncn

,2,1, nan

20 a

2

000

0

)(2T

dttfT

a

Page 11: FOURIER ANALYSIS TECHNIQUES

FUNCTIONS WITH HALF-WAVE SYMMETRY

tT

tftf

,

2)( 0

Each half cycle is an inverted copy of the adjacent half cycle

Examples of signals with half-wave symmetry

odd nfor

odd nfor

even nfor

2

00

0

2

00

0

0

0

0

sin)(4

cos)(4

0

0

T

n

T

n

nn

dttntfT

b

dttntfT

a

ba

a

There is further simplification if the functionis also odd or even symmetric

Page 12: FOURIER ANALYSIS TECHNIQUES

LEARNING EXAMPLEFind the trigonometric Fourier series coefficients

This is an even function with half-wave symmetry

,2,1,0 nbneven

even nfor

odd nfor symmetry wave-half

0

cos)(4 2

00

0

0

n

T

n

a

dttntfT

a

dttkVT

dttkVdttkVT

a

TT

T

T

k 0

4

00

2

4

0

4

012 12cos

812cos12cos

4

2

)12(sin

)12(

4

4)12sin(

)12(

80

012

k

k

VTk

kTa k

22

00 TT

Page 13: FOURIER ANALYSIS TECHNIQUES

LEARNING EXAMPLEFind the trigonometric Fourier series coefficients

This is an odd function with half-wave symmetry

,2,1,0;0 nan odd

odd nfor

odd nfor symmetry wave-half

0

sin)(4 2

00

0

0

n

T

n

b

dttntfT

b

2

4

00

0

4

00

0012

0

0

0

])12sin[()2

(4

])12sin[(44

T

T

T

k dttkT

tT

Vdttkt

T

V

Tb

Use change of variableto show that the twointegrals have the same value

4

002

012

0

])12sin[(48

T

k dttktT

Vb

2

sincossin

ttt

dttt

4

02

0

0

0

02

012

0

)12(

])12sin[(

)12(

)12cos[(32T

kk

tk

k

tkt

T

Vb

2400

T

2

)12(sin

])12[(

8212

k

k

Vb k

Page 14: FOURIER ANALYSIS TECHNIQUES

LEARNING EXAMPLEFind the trigonometric Fourier series coefficients

symmetry wave-half with odd is 2

3)( tf

odd nfor

odd nfor symmetry wave-half

0

sin)(4 2

00

0

0

n

T

n

b

dttntfT

b

2

0

200

000

012

0

0

])12cos[()12(

2])12sin[(

2

14T

T

k tkkT

dttkT

b

)12(

2]))12cos[(1(

)12(

112

kk

kb k

tkk

tfk

00

)12sin()12(

2

2

3)(

,2,1,0;0 nan odd

Page 15: FOURIER ANALYSIS TECHNIQUES

LEARNING EXTENSION Determine the type of symmetry of the signals

Page 16: FOURIER ANALYSIS TECHNIQUES

LEARNING EXTENSIONDetermine the trigonometric Fourier series expansion

0 nb function even

,2,1,cos)(4 2

00

0

0

ndttntfT

a

T

n

2

000

0

)(2T

dttfT

a

60 T

2)42(3

10 a

dttndttnan 0

1

0

2

10 cos4

3

2cos2

3

2

30

3sin

3

2sin2

4

nn

nan

Page 17: FOURIER ANALYSIS TECHNIQUES

LEARNING EXTENSIONDetermine the trigonometric Fourier series expansion

odd nfor

odd nfor

even nfor

2

00

0

2

00

0

0

0

0

sin)(4

cos)(4

0

0

T

n

T

n

nn

dttntfT

b

dttntfT

a

ba

a

Half-wave symmetry

40 T20

odd nfor ,2

cos2

cos22

1

1

0

dttn

dttn

an

odd nfor ,2

sin2

sin22

1

1

0

dttn

dttn

bn

2

)12(sin

)12(

212

k

ka k

))12cos(2()12(

212

k

kb k

Page 18: FOURIER ANALYSIS TECHNIQUES

Fourier Series Via PSPICE Simulation

1. Create a suitable PSPICE schematic2. Create the waveform of interest3. Set up simulation parameters4. View the results

LEARNING EXAMPLE

Determine the Fourier Series of this waveform

1. PSPICE schematic

VPWL_FILE in PSPICE librarypiecewise linear periodic voltage source

File specifying waveform

Page 19: FOURIER ANALYSIS TECHNIQUES

Text file defining corners of piecewiselinear waveform

comments

Use transient analysis

Fundamentalfrequency (Hz)

Page 20: FOURIER ANALYSIS TECHNIQUES

Schematic used for Fourier series example

To view result:From PROBE menu

View/Output Fileand search until you find theFourier analysis data

Accuracy of simulation is affected by setup parameters.

Decreases with number of cyclesincreases with number of points

Page 21: FOURIER ANALYSIS TECHNIQUES

FOURIER COMPONENTS OF TRANSIENT RESPONSE V(V_Vs)

DC COMPONENT = -1.353267E-08

HARMONIC FREQUENCY FOURIER NORMALIZED PHASE NORMALIZED NO (HZ) COMPONENT COMPONENT (DEG) PHASE (DEG)

1 1.000E+00 4.222E+00 1.000E+00 2.969E-07 0.000E+00 2 2.000E+00 1.283E+00 3.039E-01 1.800E+02 1.800E+02 3 3.000E+00 4.378E-01 1.037E-01 -1.800E+02 -1.800E+02 4 4.000E+00 3.838E-01 9.090E-02 4.620E-07 -7.254E-07 5 5.000E+00 1.079E-04 2.556E-05 1.712E-03 1.711E-03 6 6.000E+00 1.703E-01 4.034E-02 1.800E+02 1.800E+02 7 7.000E+00 8.012E-02 1.898E-02 -9.548E-06 -1.163E-05 8 8.000E+00 8.016E-02 1.899E-02 5.191E-06 2.816E-06 9 9.000E+00 5.144E-02 1.218E-02 -1.800E+02 -1.800E+02 10 1.000E+01 1.397E-04 3.310E-05 1.800E+02 1.800E+02 11 1.100E+01 3.440E-02 8.149E-03 -1.112E-04 -1.145E-04 12 1.200E+01 3.531E-02 8.364E-03 1.800E+02 1.800E+02 13 1.300E+01 2.343E-02 5.549E-03 1.800E+02 1.800E+02 14 1.400E+01 3.068E-02 7.267E-03 -3.545E-05 -3.960E-05 15 1.500E+01 3.379E-04 8.003E-05 -3.208E-03 -3.212E-03 16 1.600E+01 2.355E-02 5.579E-03 -1.800E+02 -1.800E+02 17 1.700E+01 1.309E-02 3.101E-03 2.905E-04 2.854E-04 18 1.800E+01 1.596E-02 3.781E-03 -5.322E-05 -5.856E-05 19 1.900E+01 1.085E-02 2.569E-03 -1.800E+02 -1.800E+02 20 2.000E+01 2.994E-04 7.092E-05 1.800E+02 1.800E+02

TOTAL HARMONIC DISTORTION = 3.378352E+01 PERCENT

* file pwl1.txt* example 14.5 * BECA 7* ORCAD 9.1* By J.L. Aravena0,00.1,10.2,30.3,60.4,30.5,00.6,-30.7,-60.8,-30.9,-11.0,0

RELEVANT SEGMENT OFOUTPUT FILE

Page 22: FOURIER ANALYSIS TECHNIQUES

TIME-SHIFTINGIt is easier to study the effect of time-shift with the exponentialseries expansion

n

n

tjnnectf 0)(

n

n

tjntjnn

n

n

ttjnn eececttf 00000 )(

0 )(

Time shifting the function only changes the phase of the coefficients

nctn

tft

for shift phase

for shift time

00

0 )(

240

000 nT

ntn

200 T

)4

()( 0Ttftv

)(tf

LEARNING EXAMPLE

0TT

oddn

n

n

Vevenn

cn2

sin2

0

n

n

tjnvnectv 0)(

oddne

n

n

V

evennc n

jvn 2

2sin

2

0

12

sin

2sin

2cos

2

2

n

njnejn

n

Vjc kv 2

12,

Page 23: FOURIER ANALYSIS TECHNIQUES

Time shifting and half-wave periodic signals

00

0

1

011

0

20

20)(

)(

2)()(

)(

TtT

Tttf

tf

Ttftftf

T

tf

with

as expressed be can , period,

with , signal, periodic wave-halfEvery

n

n

tjnnectf 0)(1

Assume

n

n

tjnT

jn

n eecT

tf 0

00 20

1 )2

(

200 T

ne njn ,1

k

tkjk ectf 0)12(

122)(

Only the odd coefficients of f1 are used

Page 24: FOURIER ANALYSIS TECHNIQUES

LEARNING EXTENSION

)1( tv

It was shown beforethat for v(t)

0,2

1

2

10

nnj

ec

c

jn

n

. of those from angle aby differ they

that show and for tscoefficien the compute

v(t)πn

)v(t-1

2

1)1(

2

1 2

00 dttvc d

function delayed theFor

0

002

2T

T

njn

nd cec

jn

jn

enj

e

12

2

1

2

0 2

1)1(

2

1dtedtetvc tjntjn

nd

njjn ee

nj2

2

1

0nFor

Page 25: FOURIER ANALYSIS TECHNIQUES

WAVEFORM GENERATION

If the Fourier series for f(t) is known then one caneasily determine the expansion for any time-shifted and time-scaled version of f(t)

n

n

tnjnectf 0)(

n

n

tjnnectf 0)( Assume Time scaling does not change the

values of the series expansion

n

n

tjntjnn

n

n

ttjnn eececttf 00000 )(

0)( Time-shifting modifies the phase ofthe coefficients

n

n

tnjtjnn eecttf 000)( 0

The coefficients of a linear combination of signals are the linear combination ofthe coefficients

nccc nnn 213

One can tabulate the expansions for some basic waveforms and use them to determinethe expansions or other signals

Page 26: FOURIER ANALYSIS TECHNIQUES

Signals withFourier seriestabulated in BECA 8

Page 27: FOURIER ANALYSIS TECHNIQUES
Page 28: FOURIER ANALYSIS TECHNIQUES
Page 29: FOURIER ANALYSIS TECHNIQUES
Page 30: FOURIER ANALYSIS TECHNIQUES
Page 31: FOURIER ANALYSIS TECHNIQUES

LEARNING EXTENSION

2,6,2

)2/()(

)(

0

1

1

TA

tftv

tvFor

tjn

n

en

ntv 3

1 3sin

2)(

2

0

0

sin)(

tjn

n

eT

n

n

Atf

From the table of Fourier series

00 T

Ac

3

20 c

Strictly speaking the value for n=0 mustbe computed separately.

3

2,1,3,4

2)(

)(

00

02

2

TA

Ttftv

tvFor

3

40 c

21

213

32

0

2 3sin

4)(

tjn

nn

en

ntv

tjnjn

nn

een

ntv 3

2

0

2 3sin

4)(

njne )1(

Use the table of Fourier series to determine the expansionsof these functions

Page 32: FOURIER ANALYSIS TECHNIQUES

FREQUENCY SPECTRUM

The spectrum is a graphical display of the coefficients of the Fourier series.The one-sided spectrum is based on the representation

10

10 Re)cos()(

n

tjnnn

nnon

oeDatnDatf

The amplitude spectrum displays Dn as the function of the frequency.The phase spectrum displays the angle as function of the frequency.The frequency axis is usually drawn in units of fundamental frequency

n

n

tjnnectf 0)(

The two-sided spectrum is based on the exponential representation

In the two-sided case, the amplitude spectrum plots |cn| while the phase spectrumplots versus frequency (in units of fundamental frequency)nc

nnnnn jbacD 2*nn cc

Both spectra display equivalent information

Page 33: FOURIER ANALYSIS TECHNIQUES

LEARNING EXAMPLE

)cos40

sin20

)( 02201

tnn

tnn

tv

oddnn

The Fourier series expansion, when A=5,is given by

Determine and plot the first four termsof the spectrum

nnnnn jbacD 2

1225.72040

211 jD 1022.2

3

20

9

4023

jD

9592.0,973.1 7755 DD

Amplitude spectrum

Phase spectrum

Page 34: FOURIER ANALYSIS TECHNIQUES

LEARNING EXTENSIONDetermine the trigonometric Fourier series and plot thefirst four terms of the amplitude and phase spectra

10sin

2)(

n

tnn

AAtf

From the table ofseries

nnnnn jbacD 2

tnn

tv

2sin1

2

1)(

1

0;1

;2

10 n

njDD n n |Dn| Arg(Dn)

0 0.5 01 0.318309 -902 0.159155 -903 0.106103 -904 0.079577 -90

|Dn|

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5

|Dn|

Page 35: FOURIER ANALYSIS TECHNIQUES

STEADY STATE NETWOK RESPONSE TO PERIODIC INPUTS

1. Replace the periodic signal by its Fourier series2. Determine the steady state response to each harmonic3. Add the steady state harmonic responses

)( jH

)( 1|| tjec ))((1

11|)(||| tjejHc

)cos(|| 1 tD ))(cos(|)(||| 111 tjHD

)(|)(||)(|)( )( jHejHjH j

}|Re{| 1tjeD })(|)(||Re{| 111

tejHD

Page 36: FOURIER ANALYSIS TECHNIQUES

0,5:)( TAtv

LEARNING EXAMPLE

oddnn

tnn

tnn

tv1

22 2cos40

2sin20

)(

j1

)1

||2(j)( jI

)(44

2)(

212

2

212

)(1

jVj

jV

j

jjV

)(1 jVj21

2

10 2

1VV

1

2tan

1616

1

44

1)(

jjH

1

2

tan)44(

1616|44|

j

j

nj

njbaD nnn

204022

22

22

2040||

nnDn

)2

tan180(2

tan180 11 nnDn

nn 2

)1802tan2

tan2cos(6416

12040)( 11

2

22

22

n

nnt

nnntvon

Page 37: FOURIER ANALYSIS TECHNIQUES

LEARNING EXTENSION )(ticurrent thefor expression statesteady the Find

12 2cos

)14(

4020)(

nS nt

ntv

nnn

DD nn 2;1,180)14(

40;

2020

jZ

2||21

)()()(

)()(

jVjYjZ

jVjI S

S

j

j

j

j

jj

jjZ

1

3

22

26

22

41

22

4

1)(

harmonic th-nfor phasor nn Dnj

njDnjYnjI

23

21)2()2(

))3/2(tan2tan(49

41)2(

3

1)0(

112

2

nnn

nnjY

Y

j

jjY

3

1)(

10 )2cos(||||)0()(

nnnn YntDYDYti

Page 38: FOURIER ANALYSIS TECHNIQUES

AVERAGE POWER

In a network with periodic sources (of the same period) the steady state voltageacross any element and the current through are all of the form

10

10

)cos()(

)cos()(

ninndc

nvnndc

tnIIti

tnVVtv

Tt

t

o

o

dttitvT

P )()(1

Power Average

)cos()cos(

)cos()cos()()(

2

1 2

121 01 1

01

10

10

inn n

vnnn

nvnndc

ninndcdcdc

tntnIV

tnVItnIVIVtitv

))()cos((

))()cos((

2)cos()cos(

21

21

1 2

2

1 2

121021

021

1 1

210

1 101

invn

invn

n n

nnin

n nvnnn tnn

tnnIVtntnIV

0

00)cos(

2 0

0

00 kT

kdttk

T

Tt

t

Tt

t

0

0

21)cos( nnforT invn

)cos(21

inn

vnnn

dcdcIV

IVP

Power Average

The average power is thesum of the average powersfor each harmonic

Page 39: FOURIER ANALYSIS TECHNIQUES

LEARNING EXTENSION

])[100754cos(2.1)45377cos(8.1)(

])[102754cos(24)60377cos(3664)(

Attti

Vtttv

Determine the average power

)180cos(cos

))100180102cos(2.124)15cos(8.136(5.0 P

][91.162

78.2859.62WP

Page 40: FOURIER ANALYSIS TECHNIQUES

LEARNING EXAMPLE

])[20754cos(12)30377cos(1642)( Vtttv

network theby

absorbedpower average the and , current, the Determine )(ti

jCjLRjZ

1)(

)(

)()(

jZ

jVjI

88.7964.053.2654.716

3016)377(

37710

1377020.016)377(

,3016)377(

377

4

jjjI

jjjZ

jV

49.2675.026.1308.1516

2012)754(

75410

1754020.016)754(

,2012)754(

754

4

jjjI

jjjZ

jV

0)0(

0

jI

)(Zcircuit open as actscapacitor

)49.26754cos(75.0)88.79377sin(64.0)( ttti

2

)49.6cos(75.012)88.49cos(64.016)0(42

P

)cos(21

inn

vnnn

dcdcIV

IVP

Power Average

Page 41: FOURIER ANALYSIS TECHNIQUES

FOURIER TRANSFORM

dtetfF tj )()(

2)()(

deFtf tj

][ )()( tfF F )]([)( Ftf 1-F

A heuristic view of the Fourier transform

A non-periodic function can be viewed as the limit of a periodic function when theperiod approaches infinity

n

tT

jn

np ectf2

)(

2/

2/

2

)(1 T

T

tT

jn

n dtetfT

c

TTectf

n

tT

jn

np1

)(2

2/

2/

2

)(T

T

tT

jn

n dtetfTc

nnT

2

dtetf tj)(

2)(

deF tj

T

Page 42: FOURIER ANALYSIS TECHNIQUES

LEARNING EXAMPLE Determine the Fourier transform

2/

2/

)()(

dteVdtetvV tjtj

2/

2/

1)(

tjej

VV

j

eeV

jj 2/2/

2

2sin

)(

VV

2

2sin

0

T

Vcn

For comparison we show the spectrumof a related periodic function

50 T for Spectrum

Page 43: FOURIER ANALYSIS TECHNIQUES

LEARNING EXAMPLES

Determine the Fourier transform of theunit impulse function

2)()(

deFtf tj

dtetfF tj )()(

][ )()( tfF F

ajtj edteatt

)()]([F

impulse the

of property sampling or Sifting

)()()( afdttfat

time of function ingcorrespond the

find and Consider )(2)( 0 F

2)(2)( 0

detf tj

tjetf 0)(

)πδ(ω-ωeF tjω02)( 0 ][F

LEARNING EXTENSION

Determine t][ 0sin)( FF

j

eettf

tjtj

2sin)(

00

0

j

F2

)(2)(2)( 00

)()()( 00 jF

tj oetf )(

of transformFourier the Determine

Page 44: FOURIER ANALYSIS TECHNIQUES
Page 45: FOURIER ANALYSIS TECHNIQUES
Page 46: FOURIER ANALYSIS TECHNIQUES

Proof of the convolution property

dxxtfxftftftf )()()()()( 2121

dtedxxtfxf

dtetfF

tj

tj

)()(

)()(

21

dxdtextfxfF tj

)()()( 21

Exchanging orders of integration

Change integration variable

xutxtu

And limits of integration remain the same

dxdueufxfF xuj

)(

21 )()()(

dxdueeufxfF xjuj

)()()( 21

dueufdxexfF ujxj )()()( 21

)()()( 21 FFF

Page 47: FOURIER ANALYSIS TECHNIQUES

A Systems application of the convolution property

)(th)(tvi

dxxvxthtv io )()()(

LEARNING EXTENSION

)()( tuetv ti

)()( 2 tueth t

(And all initial conditions are zero)

)(tvo determine to transform Fourier Use

From the table of transforms

1

1

2

1

)()()(

jj

VHV io

12)1)(2(

1 21

s

A

s

A

ss

Use partial fractionexpansion!

1|)()1(

1|)()2(

12

21

so

so

sVsA

sVsA

)()(

2

1

1

1)(

2 tueetv

jjV

tto

o

The output (response) of a network canbe computed using the Fourier transform

Page 48: FOURIER ANALYSIS TECHNIQUES

PARSEVAL’S THEOREM

2|)(||)(| 22 d

Fdttf

Think of f(t) as a voltage applied to a one Ohm resistor2|)(|)()()( tftitvtp

By definition, the left hand side is the energy of the signal

time) in density energy (or power2|)(| tf

domain frequency the in density Energy2|)(| F

Intuitively, if the Fourier transform has a large magnitude over a frequency rangethen the signal has significant energy over that range

And if the magnitude of the Fourier transform is zero (or very small) then the signal has no significant energy in that range

Parseval’s theorem permits the determination of the energy of a signal in agiven frequency range

Page 49: FOURIER ANALYSIS TECHNIQUES

LEARNING BY APPLICATIONExamine the effect of this low-pass filter in thequality of the input signal

20

20)(

jVi

1

11

1

)(

RCjR

Cj

CjH

)()()( io VHV

One can use Bode plots to visualizethe effect of the filter

High frequencies in the input signal are attenuatedin the output

The effect is clearly visible in the time domain

Page 50: FOURIER ANALYSIS TECHNIQUES

The output signal is slower and with less energy than the input signal

Page 51: FOURIER ANALYSIS TECHNIQUES

EFFECT OF IDEAL FILTERS

Effect of low-pass filter

Effect of high-pass filter

Effect of band-pass filter

Effect of band-stop filter

Page 52: FOURIER ANALYSIS TECHNIQUES

EXAMPLEAMPLITUDE MODULATED (AM) BROADCASTING

Audio signals do not propagate well in atmosphere – they get attenuated very quickly

Original Solution: Move the audio signals to a different frequency range for broadcasting.The frequency range 540kHz – 1700kHz is reserved for AM modulated broadcasting

Audio signal

Carrier signals

Broadcastedsignal

AM receivers pick a faint copy of v(t)

1000 ; 900a cf kHz f kHz

( ) (1 ( ))cos2c

v t s t f t

Nothing in audio range!

Page 53: FOURIER ANALYSIS TECHNIQUES

Audio signal has been AM modulated to the radio frequency range

1000 ; 900a cf kHz f kHz

( ) (1 ( ))cos2c

v t s t f t

Page 54: FOURIER ANALYSIS TECHNIQUES

EXAMPLE HARMONICS IN POWER SYSTEMS

0.2lineR

Harmonics account for 301.8W or 9.14% of the total power

Page 55: FOURIER ANALYSIS TECHNIQUES

LEARNING BY DESIGN “Tuning-out” an AM radio station

Fourier transform of signal broadcastby two AM stations

)()(

cos)](1[)(

cos)](1[)(

21

222

111

tsts

ttstv

ttstv

assume simplicity For

:2 station from signal

:1 station from signal

kHzfkHzf 960,900 21

)]()([)( 21 tvtvKtvr :antenna at signal

strength; equal with

receiver the reach stations both Assuming

Fourier transform of received signal

Ideal filter to tune out one AM station

Proposed tuning circuit

CsLsR

R

sv

svsG

r

ov 1)(

)()(

)/(

)/(

Ls

Ls

LCLRss

LRs

sGv 1)(

2 Next we show how to design the tuning circuit

by selecting suitable R,L,C

Page 56: FOURIER ANALYSIS TECHNIQUES

Designing the tuning circuit

LCLRss

LRs

sGv 1)(

2

LCfo 2

1 :frequency center

L

RBW

2

1 :bandwidth

Design equations

Design specifications

kHzorkHzf

kHzBW

o 960,900

60

Fourier transform of received signal

Ideal filter to tune out one AM station

More unknowns than equations. Makesome choices

10

10

R

kHzBWHL

L

RBW

2.159

2

1

kHzfpFC

kHzfpFC

LCf

o

o

9606.172

9004.196

2

10

Frequency response of circuit tuned to 960kHz

Page 57: FOURIER ANALYSIS TECHNIQUES

LEARNING EXAMPLE An example of band-pass filter

]102sin[1.0]102sin[01.0]102sin[1.0)( 543 ttttvS signalnoise noise

Proposedtwo-stageband-passwith twoidenticalstages

0V

01

:2

Cj

V

R

V Ao

-V KCL@

011

:1

Cj

V

Cj

VV

R

VV AAoAS

AV KCL@

212

2

2

11

12

1

)(

RRCj

CR

jCR

V

VjA

S

o

21 )()( jAV

VjA

S

out

S

o

V

VjA )(1

Design requirement: Make the signal 100 times stronger than the noise

Page 58: FOURIER ANALYSIS TECHNIQUES

202

0

o

o

jQ

jQ

AG

pass-band a of form General

212

2

2

11

12

1

)(

RRCj

CR

jCR

V

VjA

S

o

1

2

1

2

221

22

1

21

R

RA

R

RQ

CRQRRC

o

o

o

equations Design

Equating terms one gets a set of equations that can be used for design

filter the of factor quality

frequency center at gain

frequency center

Q

Ao

oIn a log scale, this filteris symmetric around the center frequency.Hence, focus on 1kHz

1kHz, 100kHz are noise frequencies10kHz is the signal frequency

Qj

QAj

oo

oo

10)

1001

1(

10: 2

2

2

10 at Gain o

1000

1

10)

1001

1(

102

2

2

Qj

Qj

oo

o

Design constraint

After two stagesthe noise gain is1000 timessmaller

Since center frequency is giventhis equation constrains the quality factor

1010001001 2 QQ

Q for Solving

We use the requirements to constraint Q

401

2 R

R

kRkR 401 21 Picking

nFCo 5.2102 4

Page 59: FOURIER ANALYSIS TECHNIQUES

Resulting Bode plot obtained with PSPICE AC sweep

Page 60: FOURIER ANALYSIS TECHNIQUES

Filter outputobtained withPSPICE

Fourier transform of output signal obtainedwith PSPICE

Page 61: FOURIER ANALYSIS TECHNIQUES

EXAMPLE MULTIPLE FREQUENCY “TRAP” CIRCUIT

BASIC NOTCH FILTER

1( )

( )1( )

O

in

jLV j C

HV R jL

j C

2

2

1

1

LC

LC j RC

1O

LC

Multiple frequency trap

1 2 310L L L H

Eliminates 10kHz, 20kHz and 30kHz

Tuned for 10kHz

Fourier