freescale – t4240 rdb irf proven power design with ...ir3565b , 4+2-phase dual output digital...

22
1 Freescale – T4240 RDB IRF Proven Power Design with Freescale’s T-Series QorIQ http://mypower.irf.com/Freescale For Complete Design Information

Upload: others

Post on 16-May-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Freescale – T4240 RDB IRF Proven Power Design with ...IR3565B , 4+2-Phase Dual Output Digital Controller IR3550, 60A PowIRstage FP1007R3-R15-R Inductor on 4-Phase VCORE (Fsw = 500kHz)

1

Freescale – T4240 RDB IRF Proven Power Design with Freescale’s T-Series QorIQ

http://mypower.irf.com/Freescale

For Complete Design Information

Page 2: Freescale – T4240 RDB IRF Proven Power Design with ...IR3565B , 4+2-Phase Dual Output Digital Controller IR3550, 60A PowIRstage FP1007R3-R15-R Inductor on 4-Phase VCORE (Fsw = 500kHz)

Contents & Guidelines of Report • Results show design of scaling processor cores vs. power design from 24 Cores to 4 Cores

• IRF and Freescale collaboration of a Power design to scale from T4 to T1 processors – T4240 used to scale the design

• Design was verified with Freescale on the RDB/QSS/HSSI designs and given to ODM/IDH partners to seed production level reference designs

• This report highlights the advantages of the Digital Power design to “Tune” for actual load parameters and system level processor modes for high performance scaling.

• International Rectifier now offers PRE-CALIBRATED Multi-phase Power devices optimized for Freescale T-Series QorIQ Processors to meet the dynamic, tight design requirements from 10A to 80A for the core and memory rails.

• All other IR devices in the power solution are standard (SupIRBucks & FETs) for the peripheral & I/O rails.

2

Core and Memory Power Rails For T4 Designs: IR3565BMFS01TRP For T2/T1 Designs: Core+DDR: IR36021MFS01TRP Core Only: IR36021MFS02TRP

IRF Power on the following: T4240, T2080, T1042, T1040, more coming…

Page 3: Freescale – T4240 RDB IRF Proven Power Design with ...IR3565B , 4+2-Phase Dual Output Digital Controller IR3550, 60A PowIRstage FP1007R3-R15-R Inductor on 4-Phase VCORE (Fsw = 500kHz)

IR3565B , 4+2-Phase Dual Output Digital Controller

IR3550, 60A PowIRstage

FP1007R3-R15-R Inductor on 4-Phase VCORE (Fsw = 500kHz) L = 150nH / DCR = 0.29mOhm & Csen = 220nF Set Rsen = 2.40kOhm (Rsen >= L/DCR/Csen) Rcs = 3.40kOhm, Rs1_s2 = 2.87kOhm, Ccs = 100pF Rll ~ 1.0mOhm & AVP BW ~ 192kHz

IHLP-4040-DZ Powdered Iron Inductor on 2-Phase DDR (Fsw = 500kHz) L = 360nH / DCR = 1.30mOhm & Csen = 220nF Set Rsen = 1.30kOhm (Rsen >= L/DCR/Csen) Rcs = 2.43kOhm, Rs1_s2 = 1.80kOhm, Ccs = 120pF Rll ~ 2.5mOhm & AVP BW ~ 200kHz

T4240 – VCORE & DDR Sol’n Overview

3 3

Page 4: Freescale – T4240 RDB IRF Proven Power Design with ...IR3565B , 4+2-Phase Dual Output Digital Controller IR3550, 60A PowIRstage FP1007R3-R15-R Inductor on 4-Phase VCORE (Fsw = 500kHz)

T4240 – VCORE (Loop 1) – NTC & LL Comp

4 4

Page 5: Freescale – T4240 RDB IRF Proven Power Design with ...IR3565B , 4+2-Phase Dual Output Digital Controller IR3550, 60A PowIRstage FP1007R3-R15-R Inductor on 4-Phase VCORE (Fsw = 500kHz)

T4240 – DDR (Loop 2) – NTC & LL Comp

5 5

Page 6: Freescale – T4240 RDB IRF Proven Power Design with ...IR3565B , 4+2-Phase Dual Output Digital Controller IR3550, 60A PowIRstage FP1007R3-R15-R Inductor on 4-Phase VCORE (Fsw = 500kHz)

Loop_1_iscale = 581 dec = 0x0245 ~ 92.87% of nominal Rll scaling Loop_1_i_gain = 1 dec = 0x01 ~ 4x AFE Gain 1.0mOhm * 0.9287 = 0.9287mOhm Actual Rll from RCSP/RCSM Circuit (DCR is acting ~ 7.7% high… 0.29mOHm * 1.077 ~ 0.312mOhm effective DCR)

Offsets 0.0A Offset Req’d (0.5A LSB optional +3.5A/-4.0A) 0.0mV Offset Req’d (5mV LSB optional +40mV/-35mV)

Loop_2_iscale = 215 dec = 0x00D7 ~ 85.92% of nominal Rll scaling Loop_2_i_gain = 0 dec = 0x00 ~ 2x AFE Gain 2.5mOhm * 0.8592 = 2.148 mOhm Actual Rll from RCSP/RCSM Circuit (DCR is acting ~ 16.4% high… 1.30mOHm * 1.164 ~ 1.513mOhm effective DCR)

Offsets 0.0A Offset Req’d (0.5A LSB optional +3.5A/-4.0A) 0.0mV Offset Req’d (5mV LSB optional +40mV/-35mV)

iScale, iGain, and Offsets – DC Calibration

6 6

Page 7: Freescale – T4240 RDB IRF Proven Power Design with ...IR3565B , 4+2-Phase Dual Output Digital Controller IR3550, 60A PowIRstage FP1007R3-R15-R Inductor on 4-Phase VCORE (Fsw = 500kHz)

T4240 – VCORE – Load Model

7 7

Page 8: Freescale – T4240 RDB IRF Proven Power Design with ...IR3565B , 4+2-Phase Dual Output Digital Controller IR3550, 60A PowIRstage FP1007R3-R15-R Inductor on 4-Phase VCORE (Fsw = 500kHz)

T4240 – VCORE – PID Tuning & Bode Model

8 8

Page 9: Freescale – T4240 RDB IRF Proven Power Design with ...IR3565B , 4+2-Phase Dual Output Digital Controller IR3550, 60A PowIRstage FP1007R3-R15-R Inductor on 4-Phase VCORE (Fsw = 500kHz)

T4240 – VCORE – Actual BODE – Stable PIDs

9 9

Page 10: Freescale – T4240 RDB IRF Proven Power Design with ...IR3565B , 4+2-Phase Dual Output Digital Controller IR3550, 60A PowIRstage FP1007R3-R15-R Inductor on 4-Phase VCORE (Fsw = 500kHz)

T4240 – VCORE – Actual BODE – Unstable PIDs

10 10

Page 11: Freescale – T4240 RDB IRF Proven Power Design with ...IR3565B , 4+2-Phase Dual Output Digital Controller IR3550, 60A PowIRstage FP1007R3-R15-R Inductor on 4-Phase VCORE (Fsw = 500kHz)

VCORE STABLE SETTINGS (Bode Optimized – used these!) Kp = 34, Ki = 30, Kd = 48, LPF1 = 4, LPF2 = 9

Modeled Data Real Data PM = 35.1deg 77.6deg GM = 22.5dB 20.8dB BW = 36.5kHz 71.6kHz

VCORE UNSTABLE SETTINGS (Response Optimized) Although the Vout response looked marginally better, overall stability and robustness / loop-stability is a concern. Loop stability calls for Loop BW << 1/5 Fsw. Fsw = 500kHz. So, our Loop BW should be << 100kHz.

Kp = 36, Ki = 32, Kd = 53, LPF1 = 4, LPF2 = 9 Modeled Data Real Data PM = 62.1deg 78.8deg GM = 15.5dB 10.3dB BW = 50.0kHz 149.6kHz

T4240 – Vcore – PID Tuning & BODE Analysis

11 11

Page 12: Freescale – T4240 RDB IRF Proven Power Design with ...IR3565B , 4+2-Phase Dual Output Digital Controller IR3550, 60A PowIRstage FP1007R3-R15-R Inductor on 4-Phase VCORE (Fsw = 500kHz)

ORIGINAL PIDs – 16A Loadstep (37.5A – 53.5A) 24 COREs using Freescale Dhrystone Code

Vmin = 1.026V

Droop ~ 24.0mV

TOB = +/- 30.0mV

Margin = 6.0mV

12

Vmax = 1.084V

Overshoot ~ 34.0mV

TOB = +/- 30.0mV

Margin = (-)4.0mV

Page 13: Freescale – T4240 RDB IRF Proven Power Design with ...IR3565B , 4+2-Phase Dual Output Digital Controller IR3550, 60A PowIRstage FP1007R3-R15-R Inductor on 4-Phase VCORE (Fsw = 500kHz)

STABLE PIDs – 16A Loadstep (37.5A – 53.5A) 24 COREs using Freescale Dhrystone Code

Vmin = 1.0250V

Droop ~ 25.0mV

TOB = +/- 30.0mV

Margin = 5.0mV

13

Vmin = 1.0255V

Droop ~ 24.5mV

TOB = +/- 30.0mV

Margin = 5.5mV

Page 14: Freescale – T4240 RDB IRF Proven Power Design with ...IR3565B , 4+2-Phase Dual Output Digital Controller IR3550, 60A PowIRstage FP1007R3-R15-R Inductor on 4-Phase VCORE (Fsw = 500kHz)

UNSTABLE PIDs – 16A Loadstep (37.5A – 53.5A) 24 COREs using Freescale Dhrystone Code

Vmin = 1.0300V

Droop ~ 20.0mV

TOB = +/- 30.0mV

Margin = 10.0mV

14

Vmin = 1.0322V

Droop ~ 17.8mV

TOB = +/- 30.0mV

Margin = 12.2mV

Page 15: Freescale – T4240 RDB IRF Proven Power Design with ...IR3565B , 4+2-Phase Dual Output Digital Controller IR3550, 60A PowIRstage FP1007R3-R15-R Inductor on 4-Phase VCORE (Fsw = 500kHz)

STABLE PIDs – 16A Load-Release (53.5A – 37.5A) 24 COREs using Freescale Dhrystone Code

Vmax = 1.0796V

Overshoot ~ 29.6mV

TOB = +/- 30.0mV

Margin = 0.4mV

15

Vmax = 1.080V

Overshoot ~ 30.0mV

TOB = +/- 30.0mV

Margin = 0.0mV

Page 16: Freescale – T4240 RDB IRF Proven Power Design with ...IR3565B , 4+2-Phase Dual Output Digital Controller IR3550, 60A PowIRstage FP1007R3-R15-R Inductor on 4-Phase VCORE (Fsw = 500kHz)

UNSTABLE PIDs – 16A Load-Release (53.5A – 37.5A) 24 COREs using Freescale Dhrystone Code

Vmax = 1.0760V

Overshoot ~ 26.0mV

TOB = +/- 30.0mV

Margin = 4.0mV

16

Vmax = 1.0788V

Overshoot ~ 28.8mV

TOB = +/- 30.0mV

Margin = 1.2mV

Page 17: Freescale – T4240 RDB IRF Proven Power Design with ...IR3565B , 4+2-Phase Dual Output Digital Controller IR3550, 60A PowIRstage FP1007R3-R15-R Inductor on 4-Phase VCORE (Fsw = 500kHz)

STABLE PIDs – 5A Loadstep (37.5A – 42.5A) 8 COREs using Freescale Dhrystone Code

Vmin = 1.0409V

Droop ~ 9.1mV

TOB = +/- 30.0mV

Margin = 20.9mV

17

Vmin = 1.0402V

Droop ~ 9.8mV

TOB = +/- 30.0mV

Margin = 20.2mV

Page 18: Freescale – T4240 RDB IRF Proven Power Design with ...IR3565B , 4+2-Phase Dual Output Digital Controller IR3550, 60A PowIRstage FP1007R3-R15-R Inductor on 4-Phase VCORE (Fsw = 500kHz)

STABLE PIDs – 5A Load Release (42.5A – 37.5A) 8 COREs using Freescale Dhrystone Code

Vmax = 1.0638V

Overshoot ~ 13.8mV

TOB = +/- 30.0mV

Margin = 16.2mV

18

Vmax = 1.0629V

Overshoot ~ 12.9mV

TOB = +/- 30.0mV

Margin = 17.1mV

Page 19: Freescale – T4240 RDB IRF Proven Power Design with ...IR3565B , 4+2-Phase Dual Output Digital Controller IR3550, 60A PowIRstage FP1007R3-R15-R Inductor on 4-Phase VCORE (Fsw = 500kHz)

T4240 – DDR Load Model

19 19

Page 20: Freescale – T4240 RDB IRF Proven Power Design with ...IR3565B , 4+2-Phase Dual Output Digital Controller IR3550, 60A PowIRstage FP1007R3-R15-R Inductor on 4-Phase VCORE (Fsw = 500kHz)

T4240 – DDR PID Tuning & Bode Model

20 20

Page 21: Freescale – T4240 RDB IRF Proven Power Design with ...IR3565B , 4+2-Phase Dual Output Digital Controller IR3550, 60A PowIRstage FP1007R3-R15-R Inductor on 4-Phase VCORE (Fsw = 500kHz)

T4240 – DDR Actual BODE Stable (used!)

21 21

Page 22: Freescale – T4240 RDB IRF Proven Power Design with ...IR3565B , 4+2-Phase Dual Output Digital Controller IR3550, 60A PowIRstage FP1007R3-R15-R Inductor on 4-Phase VCORE (Fsw = 500kHz)

DDR STABLE SETTINGS (Bode Optimized – used these!) Kp = 35, Ki = 32, Kd = 52, LPF1 = 4, LPF2 = 9

Modeled Data Real Data PM = 56.1deg 61.7deg GM = 17.3dB 24.1dB BW = 41.0kHz 32.4kHz

T4240 – DDR – PID Tuning & BODE Analysis

22 22