frequency response of circuit - cal poly pomona

14
Frequency Response of a Circuit Z. Aliyazicioglu Electrical and Computer Engineering Department Cal Poly Pomona ECE307 ECE 307-4 2 Frequency Response of a Circuit Analysis of a circuit with varying frequency of a sinusoidal sources is called the frequency response of a circuit Some Preliminaries , Frequency selection in the circuits are called filters because of their ability to filter out certain input signals on the basis of frequency Filter Input signal Output signal

Upload: others

Post on 12-Sep-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Frequency response of circuit - Cal Poly Pomona

1

Frequency Response of a Circuit

Z. Aliyazicioglu

Electrical and Computer Engineering DepartmentCal Poly Pomona

ECE307

ECE 307-4 2

The Laplace TransformFrequency Response of a Circuit

Analysis of a circuit with varying frequency of a sinusoidal sources is called the frequency response of a circuit

Some Preliminaries

, Frequency selection in the circuits are called filters because of their ability to filter out certain input signals on the basis of frequency

FilterFilterInput signal Output signal

Page 2: Frequency response of circuit - Cal Poly Pomona

2

ECE 307-4 3

Frequency Response of a Circuit

We remember that the transfer function is the output voltage to the input voltage of a circuit in s-domain is.

0( )( )( )i

V sH sV s

=

0( )( )( )i

V jH jV j

ωωω

=

Using sinusoidal source, the transfer function will be the magnitude and phase of output voltage to the magnitude and phase of input voltage of a circuit .

In this case we will use (jω) instead of s .

Some Preliminaries

ECE 307-4 4

Frequency Response of a Circuit

Using transfer function of circuit, we plot a frequency response of the circuit for both amplitude and phasewith changing source frequency

One graph of |H(jω)| versus frequency jω. It is called the Magnitude plot.One graph of θ(jω) versus frequency ω. It is called the Phase Angle plot

Frequency Response

Passband

ωc

ω

|H(jω)|

Stopband

ωc

ωθ(jω)

θ(jωc)

ωc : Cutoff frequency

Page 3: Frequency response of circuit - Cal Poly Pomona

3

ECE 307-4 5

Frequency Response of a Circuit

A Low-Pass filter passes signals at frequencies lower than the cutoff frequency from the input to the output

Filter

A High-Pass filter passes signals at frequencies higher than the cutoff frequency from the input to the output

Passbandω

|H(jω)|

Stopband

ωcθ(jω)

θ(jωc)

ωc Cutoff frequency

Passbandω

|H(jω)|

Stopband

ωcθ(jω)

θ(jωc)

Ideal Low-Pass Filter Ideal High-Pass Filter

00

ECE 307-4 6

Passband

Frequency Response of a CircuitFilter

A Band-reject filter passes signals outside the band defined by two cutoff frequencies from the input to the output

Passbandω

|H(jω)|

Stopband

ωc2θ(jω)θ(jωc1)

ωc Cutoff frequency

Passband

ω

|H(jω)|

Stopband

θ(jω)

θ(jωc1)

Ideal Band-Pass Filter Ideal Band-Reject Filter

Stopband

ωc1

θ(jωc1)

ωc2ωc1θ(jωc1)

0

A Band-Pass filter passes signals within the band defined by two cutoff frequencies from the input to the output

Page 4: Frequency response of circuit - Cal Poly Pomona

4

ECE 307-4 7

Frequency Response of a Circuit

ω = max1( )2cH j H

The transfer function magnitude is decreased by the factor 1/√2 from its maximum value is called cutoff frequency

Cutoff Frequency

|Hmax | is the maximum magnitude of the transfer function

ECE 307-4 8

Frequency Response of a Circuit

A Serial RL CircuitLow-Pass Filter

( )

RLH s RsL

=+

0( )( )i

V s RV s sL R

=+

( )

RLH j RjL

ωω

=+

To find frequency response, substitute s=jω in equation

22

( )

RLH jRL

ω

ω

= +

1( ) tan LjRωθ ω − = −

Phase ResponseMagnitude Response

RVi(s)

-

+

sL1 2

Vo(s)

Page 5: Frequency response of circuit - Cal Poly Pomona

5

ECE 307-4 9

Frequency Response of a Circuit

When ω=0

22

( 0) 1

0

RLH jRL

= = +

1 0( 0) tan 0LjR

θ − = − =

To find Cutoff Frequency

When ω=∞

22

( ) 0

RLH jRL

∞ = = ∞ +

1( ) tan 90LjR

θ − ∞ ∞ = − = −

22

1( )2c

c

RLH jRL

ω

ω

= = +

cRL

ω =

A Serial RL Circuit

Result

ECE 307-4 10

Frequency Response of a Circuit

Example

1000 0.1592 * *1000c

RL Hω π

= = =

R=1KΩ F=1KHz. L=? Plot H(jω). 10000.159( ) 1000

0.159

H jj

ωω

=+

>> R=1000;>> L=0.159;>> f=0:25:10000;>> w=2*pi*f;>> subplot (2,1,1)>> h=abs((R/L)./(j*w+(R/L)));>> semilogx(w,h)>> grid on>> title('|H(j\omega)|')>> xlabel ('\omega')>> ylabel ('|H(j\omega)|')>> theta=angle((R/L)./(j*w+(R/L)));>> subplot (2,1,2)>> degree=theta*180/pi;>> semilogx(w,degree)>> grid on>> title('\theta(j\omega)')>> xlabel('\omega')>> ylabel('\theta(j\omega)')

Page 6: Frequency response of circuit - Cal Poly Pomona

6

ECE 307-4 11

Frequency Response of a Circuit

Example

/( )/

R LH ss R L

=+

R=1KΩ F=1KHz. L=? Plot H(jω).

>> syms s

>> n=[0 1000/0.159];

>> d=[1 1000/0.159];

>> g=tf(n,d)

Transfer function:

6289

--------

s + 6289

>> bode (g)

>> grid on

Matlab

ECE 307-4 12

Frequency Response of a Circuit

V11Vac0Vdc

L1

0.159H1 2

R1

1k

VV

0

Fr e q u e n c y

1 0 0 Hz 3 0 0 Hz 1 . 0 KHz 3 . 0 KHz 1 0 KHz 3 0 KHz 1 0 0 KHzV( L1 : 2 ) V( V1 : +)

0 V

0 . 5 V

1 . 0 V

Example

fc=1KHz

Page 7: Frequency response of circuit - Cal Poly Pomona

7

ECE 307-4 13

Frequency Response of a Circuit

A Serial RC CircuitLow-Pass Filter

1

( ) 1RCH s

sRC

=+

0

1( )

1( )i

V s sCV s R

sC

=+

1

( ) 1RCH j

jRC

ωω

=+

To find frequency response, substitute s=jω in equation

22

1

( )1

RCH j

RC

ω

ω

= +

( )1( ) tanj RCθ ω ω−= −

Phase ResponseMagnitude Response

-Vo(s)+

R

1/sCVi(s)

ECE 307-4 14

Frequency Response of a Circuit

When ω=0

22

1

( 0) 110

RCH j

RC

= = +

( )1( 0) tan 0 0j RCθ −= − =

To find Cutoff Frequency

When ω=∞

22

1

( ) 01

RCH j

RC

∞ = = ∞ +

( )1( ) tan 90j RCθ −∞ = − ∞ = −

22

11( )21

c

c

RCH j

RC

ω

ω

= = +

1c RC

ω =

A Serial RC Circuit

Result

Page 8: Frequency response of circuit - Cal Poly Pomona

8

ECE 307-4 15

Frequency Response of a Circuit

Example A series RC low-pass filter cutoff frequency is 8KHz. R=10KΩ Find the capacitor value

1c RC

ω =1c

CRω

= 1 1.992 * * 8000 10000

C nFxπ

= =

Example A series RL low-pass filter cutoff frequency is 2KHz. R=5KΩ Find the inductor value. Find |H(jω)| at 50 KHz?

cRL

ω =c

RLω

=5000 2.52000

L H= =

50 2 22 2

50002.5( ) 0.0635

5000(2 * * 50000)2.5

KHz

RLH jRL

ω

ω π

= = = + +

ECE 307-4 16

Frequency Response of a Circuit

Example A series RC low-pass filter cutoff frequency is 8KHz. R=10KΩ, C=1.99 nF

r=10000;c=19.9*10^-9;

f=0:25:100000;w=2*pi*f;h=abs((1/(r*c))./(j*w+1/(r*c)));subplot (2,1,1)semilogx(w,h)grid ontitle('|H(j\omega)')xlabel ('\omega')ylabel ('|H(j\omega)')theta=angle((1/(r*c))./(j*w+1/(r*c)));subplot (2,1,2)degree=theta*180/pi;semilogx (w, degree)grid ontitle('\theta(j\omega)')xlabel('\omega')ylabel('\theta(j\omega)')

Page 9: Frequency response of circuit - Cal Poly Pomona

9

ECE 307-4 17

Frequency Response of a Circuit

V

R1

10k

C1

1.99n

0

V

V11Vac0Vdc

Fr e q u e n c y

1 0 0 Hz 1 . 0 KHz 1 0 KHz 1 0 0 KHz 1 . 0 MHzV( R1 : 1 ) V( V1 : +)

0 V

0 . 5 V

1 . 0 V

Example

fc=8KHz =1( )2cH f

ECE 307-4 18

Frequency Response of a Circuit

A Serial RC CircuitHigh-Pass Filter

( ) 1sH s

sRC

=+

0( )1( )i

V s RV s R

sC

=+

( ) 1jH j

jRC

ωωω

=+

To find frequency response, substitute s=jω in equation

22

( )1

H j

RC

ωω

ω

= +

( )1( ) 90 tanj RCθ ω ω−= −

Phase ResponseMagnitude Response

1/sC

Vi(s)-

R Vo(s)+

Page 10: Frequency response of circuit - Cal Poly Pomona

10

ECE 307-4 19

Frequency Response of a Circuit

When ω=0

22

0( 0) 010

H j

RC

= = +

1 0( 0) 90 tan 90jRC

θ − = − =

To find Cutoff Frequency

When ω=∞

22

( ) 11

H j

RC

∞∞ = =

∞ +

1( ) 90 tan 0jRC

θ − ∞ ∞ = − =

22

1( )21

cc

c

H j

RC

ωω

ω

= = +

1c RC

ω =

A Serial RC Circuit

Result

ECE 307-4 20

Frequency Response of a Circuit

A Serial RL CircuitHigh-Pass Filter

( ) sH s RsL

=+

0( )( )i

V s sLV s sL R

=+

( ) jH j RjL

ωωω

=+

To find frequency response, substitute s=jω in equation

22

( )H jRL

ωω

ω

= +

1( ) 90 tan LjRωθ ω − = −

Phase ResponseMagnitude Response

Vi(s) sL

1

2 -Vo(s)

+

R

Page 11: Frequency response of circuit - Cal Poly Pomona

11

ECE 307-4 21

Frequency Response of a Circuit

When ω=0

22

0( 0) 0

0

H jRL

= = +

1 0( 0) 90 tan 90LjR

θ − = − =

To find Cutoff Frequency

When ω=∞

22

( ) 1H jRL

∞∞ = =

∞ +

1( ) 90 tan 0LjR

θ − ∞ ∞ = − =

22

1( )2

cc

c

H jRL

ωω

ω

= = +

cRL

ω =

A Serial RL Circuit

Result

ECE 307-4 22

Frequency Response of a Circuit

Example Define R and L values for a high pass filter with a cutoff frequency of 10KHz. Find |H(jω)|at 5 KHz

Let

We can’t calculate R and L values independently. We can select R or L values then define the other

1R K= Ω

c

RLω

= 1000 15.92 * *10000

L mHπ

= =

5 2 22 2

2 * * 5000( ) 0.44691000(2 * * 5000)

0.0159

KHzH jRL

ω πω

ω π

= = = + +

cRL

ω =

Result

Page 12: Frequency response of circuit - Cal Poly Pomona

12

ECE 307-4 23

Frequency Response of a Circuit

Example A RL high pass filter with a cutoff frequency of 10KHz. 1R K= Ω 1000 15.9

2 * *10000L mH

π= =

R=1000;L=15.9*10^-3;

f=0:25:70000;w=2*pi*f;h=abs((j*w)./(j*w+R/L));subplot (2,1,1)semilogx(w,h)grid ontitle('|H(j\omega)')xlabel ('\omega')ylabel ('|H(j\omega)')theta=angle((j*w)./(j*w+R/L));subplot (2,1,2)plot (w, theta)degree=theta*180/pi;semilogx (f, degree)grid ontitle('\theta(j\omega)')xlabel('\omega')ylabel('\theta(j\omega)')

ECE 307-4 24

Frequency Response of a Circuit

V11Vac0Vdc

V

L2

15.9mH

1

2

R1

1K V

0

Fr e q u e n c y

1 0 0 Hz 1 . 0 KHz 1 0 KHz 1 0 0 KHz 1 . 0 MHzV( R1 : 2 ) V( V1 : +)

0 V

0 . 5 V

1 . 0 V

fc=8KHz

Example

=1( )2cH f

Page 13: Frequency response of circuit - Cal Poly Pomona

13

ECE 307-4 25

Frequency Response of a Circuit

L2

15.9mH

1

2

V11Vac0Vdc

VPVP

0

R1

1K

Plotting phase: Take the probe Phase of Voltage, which is under Pspice, Markers, and Advanced. Marked the node you want to see phase

Fr e q u e n c y

1 0 0 Hz 1 . 0 KHz 1 0 KHz 1 0 0 KHz 1 . 0 MHzVP( V1 : +) VP( R1 : 2 )

0 d

5 0 d

1 0 0 d

fc=8KHz =( ) 45cH f

ECE 307-4 26

Frequency Response of a Circuit

Example Let’s place load resister in parallel to inductor in RL high-pass filter shown in the figure a. Find the transfer functionb. Rs=RL=1KΩ, find L value for cutoff frequency at

10KHz.

cRKL

ω =

0( )( )

L

L

Li

L

R sLV s R sL

R sLV s RR sL

+=

++

( )

L

L

L

L

R sR R KsH s R R Rs s KR R L L

+= =

+ ++

L

L

RKR R

=+

where 1 0.51 1

K = =+

10.5 7.952 * *10c

RL K mHω π

= = =

Result

-

Vo(s)

R

+sL

1

2

Vi(s) RL

Page 14: Frequency response of circuit - Cal Poly Pomona

14

ECE 307-4 27

Frequency Response of a Circuit

Example Rs=RL=1KΩ, L=7.95 mH High-pass filter cutoff frequency at 10KHz.

( ) j KH j Rj KL

ωωω

=+

R=1000;RL=1000;L=7.95*10^-3;K=RL/(R+RL)

f=0:25:70000;w=2*pi*f;h=abs((j*w*K)./(j*w+K*R/L));subplot (2,1,1)semilogx(w,h)grid ontitle('|H(j\omega)')xlabel ('\omega')ylabel ('|H(j\omega)')theta=angle((j*w*K)./(j*w+K*R/L));subplot (2,1,2)plot (w, theta)degree=theta*180/pi;semilogx (f, degree)grid ontitle('\theta(j\omega)')xlabel('\omega')ylabel('\theta(j\omega)')grid on