frequency)stability)analysis)for)inverters)) in)low)voltage...

16
Frequency Stability Analysis for Inverters in Low Voltage Distribu;on Systems ChungChing Chang EE292K Final Presenta;on June 12, 2012 * Under the instruc;on of Prof. Dimitry Gorinevsky and Prof. Sanjay Lall ** Based on the previous work by Eric Glover

Upload: others

Post on 27-Feb-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Frequency)Stability)Analysis)for)Inverters)) in)Low)Voltage ...web.stanford.edu/class/ee292k/presentations/Chung-Ching...Analysis)Results) • Range)of)parameters) 6 TABLE I SURROGATEMODEL

Frequency  Stability  Analysis  for  Inverters    in  Low  Voltage  Distribu;on  Systems  

Chung-­‐Ching  Chang  EE292K  Final  Presenta;on  

June  12,  2012  

   *  Under  the  instruc;on  of  Prof.  Dimitry  Gorinevsky  and  Prof.  Sanjay  Lall  **  Based  on  the  previous  work  by  Eric  Glover  

Page 2: Frequency)Stability)Analysis)for)Inverters)) in)Low)Voltage ...web.stanford.edu/class/ee292k/presentations/Chung-Ching...Analysis)Results) • Range)of)parameters) 6 TABLE I SURROGATEMODEL

Tradi;onal  Power  Grid  

•  Unidirec;onal  •  Transform  LV/HV  for  transmission  

Genera;on   Transmission   Load  Distribu;on  

Page 3: Frequency)Stability)Analysis)for)Inverters)) in)Low)Voltage ...web.stanford.edu/class/ee292k/presentations/Chung-Ching...Analysis)Results) • Range)of)parameters) 6 TABLE I SURROGATEMODEL

Frequency  Control  in  Genera;on  

•  Primary  control  – Regulates  frequency  vs.  output  power  

•  Secondary  control  – Restores  frequency  by  adjus;ng  turbine  valves  

Generator  Controller  Genera;on  

Transmission  

Page 4: Frequency)Stability)Analysis)for)Inverters)) in)Low)Voltage ...web.stanford.edu/class/ee292k/presentations/Chung-Ching...Analysis)Results) • Range)of)parameters) 6 TABLE I SURROGATEMODEL

Distributed  Genera;on  

•  Grid;e  Inverters  •  Droop  Inverters  

Transmission   Feeder   Distribu;on  

Load  

Inverters  

Distributed    Genera;on  

Page 5: Frequency)Stability)Analysis)for)Inverters)) in)Low)Voltage ...web.stanford.edu/class/ee292k/presentations/Chung-Ching...Analysis)Results) • Range)of)parameters) 6 TABLE I SURROGATEMODEL

Detailed  Simula;on  •  SimPowerSystems:  3-­‐phase  U;lity  Grid,  Inverter,  Controls  

Page 6: Frequency)Stability)Analysis)for)Inverters)) in)Low)Voltage ...web.stanford.edu/class/ee292k/presentations/Chung-Ching...Analysis)Results) • Range)of)parameters) 6 TABLE I SURROGATEMODEL

Detailed  Stability  Analysis  

•  Run  detailed  simula;on  to  ensure  the  system  is  stable  – With  all  reasonable  combina;ons  of  20  parameters  – 5  samples  for  each  parameter  – Each  simula;on  takes  3  minutes  

•   Total  simula;on  ;me  is  0.5  Billion  Years    – 520⋅  180s    =  1.72⋅1016s  =  544  Million  Years  

Page 7: Frequency)Stability)Analysis)for)Inverters)) in)Low)Voltage ...web.stanford.edu/class/ee292k/presentations/Chung-Ching...Analysis)Results) • Range)of)parameters) 6 TABLE I SURROGATEMODEL

Surrogate  Model  

•  Single  phase  system  •  System  linearized  around  the  steady-­‐state  •  Lower  computa;onal  complexity  

Detailed  model   Surrogate  model  

Number  of  samples   520   58  

Simula;on  ;me   ~  3  minutes   ~  1  second  

Total  ;me   1.72  ⋅  1016    second   3.9  ⋅  105  second  

Speed-­‐up   ~  x  1011  

*  More  speed-­‐up  with  sparser  parameter  samples  

Page 8: Frequency)Stability)Analysis)for)Inverters)) in)Low)Voltage ...web.stanford.edu/class/ee292k/presentations/Chung-Ching...Analysis)Results) • Range)of)parameters) 6 TABLE I SURROGATEMODEL

Surrogate  Model  

2012.03.25.01

Grid-Tie and Droop Inverter Control

Chung-Ching Chang

1 System Models

Grid InterfaceCircuit

InverterSystem

VG Pset, Qset

IN , VN

Figure 1: High-Level Model of Distribution System

VG

ZG

ZL

VN

IG IN

Figure 2: Grid Interface Circuit

Control Logic Block

LCLINInverterGain

PQ Mea-surement

PowerController

PLLVN

PhaseConverter

P,Q d, q

VM

VPVC

Pset, Qset

Figure 3: Gridtie Inverter Systems

• PQ measurement

The three-phase PQ measurement block takes per-phase RMS input current IN and

1

2012.03.25.01

Grid-Tie and Droop Inverter Control

Chung-Ching Chang

1 System Models

Grid InterfaceCircuit

InverterSystem

VG Pset, Qset

IN , VN

Figure 1: High-Level Model of Distribution System

VG

ZG

ZL

VN

IG IN

Figure 2: Grid Interface Circuit

Control Logic Block

LCLINInverterGain

PQ Mea-surement

PowerController

PLLVN

PhaseConverter

P,Q d, q

VM

VPVC

Pset, Qset

Figure 3: Gridtie Inverter Systems

• PQ measurement

The three-phase PQ measurement block takes per-phase RMS input current IN and

1

2012.03.25.01

Grid-Tie and Droop Inverter Control

Chung-Ching Chang

1 System Models

Grid InterfaceCircuit

InverterSystem

VG Pset, Qset

IN , VN

Figure 1: High-Level Model of Distribution System

VG

ZG

ZL

VN

IG IN

Figure 2: Grid Interface Circuit

Control Logic Block

LCLINInverterGain

PQ Mea-surement

PowerController

PLLVN

PhaseConverter

P,Q d, q

VM

VPVC

Pset, Qset

Figure 3: Gridtie Inverter Systems

• PQ measurement

The three-phase PQ measurement block takes per-phase RMS input current IN and

1

Page 9: Frequency)Stability)Analysis)for)Inverters)) in)Low)Voltage ...web.stanford.edu/class/ee292k/presentations/Chung-Ching...Analysis)Results) • Range)of)parameters) 6 TABLE I SURROGATEMODEL

Grid;e  Inverters  

•  Inject  power  into  the  grid  with  unity  power  factor:  

 P  =  Pset,    Q  =  Qset  =  0  

2012.03.25.01

Grid-Tie and Droop Inverter Control

Chung-Ching Chang

1 System Models

Grid InterfaceCircuit

InverterSystem

VG Pset, Qset

IN , VN

Figure 1: High-Level Model of Distribution System

VG

ZG

ZL

VN

IG IN

Figure 2: Grid Interface Circuit

Control Logic Block

LCLINInverterGain

PQ Mea-surement

PowerController

PLLVN

PhaseConverter

P,Q d, q

VM

VPVC

Pset, Qset

Figure 3: Gridtie Inverter Systems

• PQ measurement

The three-phase PQ measurement block takes per-phase RMS input current IN and

1

Page 10: Frequency)Stability)Analysis)for)Inverters)) in)Low)Voltage ...web.stanford.edu/class/ee292k/presentations/Chung-Ching...Analysis)Results) • Range)of)parameters) 6 TABLE I SURROGATEMODEL

Droop  Inverters  2012.03.25.01

Control Logic Block

LCLINInverterGain

PQ Mea-surement

DroopRegulator

PLLVN

VoltageController

P,Qfset, Vset

fN , |VN |, VM

VPVC

Pset, Qset

Figure 4: Droop Inverter Systems

voltage VN and calculate P and Q as

P = �(3VNI∗N ),

Q = �(3VNI∗N ).

The linearized model around the steady-state VN and IN can be represented in theform

�δPδQ

�= 3

��IN �IN �VN �VN

−�IN �IN �VN −�VN

�δVN

�δVN

�δIN�δIN

.

• Phase Lock Loop (PLL)The PLL block measures frequency from the input VN and generate output V �

Mwith unit amplitude. A Standard model, for example in [reference], is considered.Let the input be VN = |VN |∠θi and the output VM = 1∠θo. At steady-state, theamplitude of input is a constant |VN |, the output phase θo = θi, the output frequencyfN = 60 + 1

2πddtθo, which is a constant.

For the transient analysis around the steady-state, we consider the follows: First,the amplitude of the input is given by |VN | =

�(�VN )2 + (�VN )2. Thus, for any

perturbation δVN ,

δ|VN | = 1

|VN |��VN �VN

� ��δVN

�δVN

�.

Second, θi = tan−1(�(VN )/�(VN )). Thus, for any perturbation δVN ,

δθi =1

|VN |2�−�VN �VN

� ��δVN

�δVN

�.

Third, suppose the PLL uses PI feedback of the tracking error with the transferfunction 2ζpwp + w2

p/s, then

δθo =2ζpwps+ w2

p

s2 + 2ζpwps+ w2p

δθi.

2

•  Droop  equa;ons:      fset  =  f0  –  Kp  (P  -­‐  Pset),        Vset  =  V0  –  Kv(Q  –  Qset)  

 

•  This  adds  the  iner;a  to  the  inverters  as  that  of  the  primary  control  in  generators  

Page 11: Frequency)Stability)Analysis)for)Inverters)) in)Low)Voltage ...web.stanford.edu/class/ee292k/presentations/Chung-Ching...Analysis)Results) • Range)of)parameters) 6 TABLE I SURROGATEMODEL

Control  Framework  •  Stability  issues  in  transient:  –  Set  points  Pset,  Qset  –  Exogenous  frequency  disturbance  ΔfG  

PI  Controllers  

PN,  QN  

d,  q  

Pset    Qset  

20

0

20

40

60

80

100From: In(1)

To: O

ut(1

)

0 0.05 0.1 0.15 0.2 0.25100

50

0

50

100

To: O

ut(2

)

From: In(2)

0 0.05 0.1 0.15 0.2 0.25

Step Response

Time (seconds)

Ampl

itude

d àPN  

d àQN  

q àPN  

q àQN  

ΔfG    

Page 12: Frequency)Stability)Analysis)for)Inverters)) in)Low)Voltage ...web.stanford.edu/class/ee292k/presentations/Chung-Ching...Analysis)Results) • Range)of)parameters) 6 TABLE I SURROGATEMODEL

Stability  Analysis  

•  H∞  norm  measures  the  worst  case  disturbance  amplifica;on  from  the  frequency  of  VG  to  that  of  VN    

Grid  Frequency  Varia;on  

Distribu;on  Frequency  Varia;on  

2012.03.25.01

Grid-Tie Inverter Control

Chung-Ching Chang

1 System Models

Grid Interface

CircuitInverter System

VG Pset, QsetVN , IN

Figure 1: High-Level Model of Distribution System

VG

ZG

ZL

VN

IG IN

Figure 2: Grid Interface Circuit

Control Logic Block

LCL

PQ

Measure

Inverter

Gain

PI Con-

troller

PLL

Phase

Converter

VC

P,Q

VP

d, q

V �M

IN

VN

Pset, Qset

Figure 3: Inverter Systems

1

T!= sup

"!VG !

"!VN !

!!VN= T (!!VG

)

Page 13: Frequency)Stability)Analysis)for)Inverters)) in)Low)Voltage ...web.stanford.edu/class/ee292k/presentations/Chung-Ching...Analysis)Results) • Range)of)parameters) 6 TABLE I SURROGATEMODEL

Surrogate  Model  Verifica;on  

•  Surrogate  model  matches  the  detailed  simula;on  model  reasonably  well  

0 2 4 6 8 10 12 14 16 18 200.2

0

0.2

0.4

0.6

0.8

1

1.2

P and Q Step Response for the Analysis Model

PQ

0 2 4 6 8 10 12 14 16 18 200.2

0

0.2

0.4

0.6

0.8

1

1.2

P and Q Step Response for the Detailed Simulation

PQ

Surrogate  model   Simula;on  model  

Page 14: Frequency)Stability)Analysis)for)Inverters)) in)Low)Voltage ...web.stanford.edu/class/ee292k/presentations/Chung-Ching...Analysis)Results) • Range)of)parameters) 6 TABLE I SURROGATEMODEL

Analysis  Results  

•  Range  of  parameters  

6

TABLE ISURROGATE MODEL PARAMETERS

Parameters Minimum Value Maximum ValuePenetration a 0.05 0.95

Load power PL 5kW 40kWPower factor cos(ψ) 0.9 1.00

Line length l 0.25km 1kmPLL rise time 0.02s 0.1sPLL overshoot 23% 45%LCL power loss 1 · 10−2Watt 5WattLCL settling time 0.12s 0.22s

response over all explored parameter values. It is a surprisingresult that the system remains stable under all reasonableoperating conditions. This shows that it is possible, withreasonably tuned PI controllers, to build a very stable system.For each combination of these parameters, the H∞ norm

of the closed-loop transfer function from δωVG to δωVN wascalculated for the resultant transfer function. The H∞ normshows the maximum gain by which the frequency variation isamplified at any frequency of the disturbance. Overall 25,000combinations of the system parameters were explored. Withabout 1s per run this took about 7 hours. The analysis resultsshow that the H∞ is always less than 1.6 for all sample pointswe considered and is less than 1.2 if line length l < 0.5km.

Fig. 8. Transient analysis results: the H∞ norm variation along eachparameter in Table I, from left to right, from top to bottom. At each samplevalue of the parameter, the crosses plotted represent the values of the H∞norm over all analyzed combinations of other parameters.

In all simulations the PI controller (7), (8) used the I(integral) gains KdI = 2.25 · 10−4 Volt/(Watt·s) in the direct(active power P ) control channel (7) and K qI = −3 · 10−5

Volt/(Watt·s) in the quadrature (reactive power Q) controlchannel (8). The P (proportional) controller gains were set tozero. The controller gains were initially tuned using SimulinkControl System Toolbox tools. This required building thesurrogate model as a Simulink block diagram. Building thealternative Simulink version of the surrogate model providedan additional method to verify that it was integrated correctly.The same fixed controller tuning was used in all the analysis

run. This controller tuning could be, and likely is, suboptimal

for many of the system parameter sets explored. Howeverthe results obtained show that the system is stable and thedisturbance amplification is not unreasonably large even forthis suboptimal controller. A better tuning of the controllermight further improve the disturbance amplification numbersbut would not change the conclusions.

VI. CONCLUSIONA grid-connected distribution system with an aggregated

load and inverter-connected distributed generation was an-alyzed. The system was broken into its component blocksand linearized models (transfer functions) were developed foreach of these blocks. A transient analysis shows that thesystem has a stable response and no excessive amplification ofgrid frequency disturbances. These results are obtained over afull exploration of the parameter space. Based on the modelstudied, the distribution system has no stability issues for allreasonable operating parameters even with high penetrationof inverter-connected generation. The lack of rotating inertiadoes seem to be a limiting factor.These results are applicable only if the system parameters

allow an acceptable steady state solution. One of the reasonswhy such solution might be unavailable is related to the activepower supply. Due to regulation, a grid-tie inverter can onlysupply power at unity power factor. Therefore, as the invertersupplies a larger percentage of the load, the power factor ofthe distribution system as seen by the grid will necessarilydecrease as long as there is any reactive component to theload. Typically any power factor above 0.9 is acceptable toa utility, although this varies based on local regulations. Incases such as this, power factor restrictions might define thepractical limits of inverter penetration.

REFERENCES[1] J. Smith, W. Sunderman, R. Dugan, and B. Seal, “Smart inverter volt/var

control functions for high penetration of pv on distribution systems,” inIEEE Power Systems Conference and Exposition (PSCE), 2011.

[2] R. Tonkoski, L. Lopes, and T. El-Fouly, “Coordinated active powercurtailment of grid connected pv inverters for overvoltage prevention,”IEEE Trans. on Sustainable Energy, vol. 2, no. 2, pp. 139–147, 2011.

[3] Interconnecting Distributed Resources with Electric Power Systems,IEEE Std. 1547, 2003.

[4] P. Channegowda and V. John, “Filter optimization for grid interactivevoltage source inverters,” IEEE Trans. on Industrial Electronics, vol. 57,no. 12, pp. 4106–4114, 2010.

[5] I. Gabe, V. Montagner, and H. Pinheiro, “Design and implementation ofa robust current controller for vsi connected to the grid through an lclfilter,” IEEE Trans. on Power Electronics, vol. 24, no. 6, pp. 1444–1452,2009.

[6] C.-L. Chen, J.-S. Lai, Y.-B. Wang, S.-Y. Park, and H. Miwa, “Design andcontrol for lcl-based inverters with both grid-tie and standalone paralleloperations,” in IEEE Industry Applications Society Annual Meeting,2008.

[7] J. Morren, S. de Haan, and J. Ferreira, “Primary power/frequency controlwith wind turbines and fuel cells,” in IEEE Power Engineering SocietyGeneral Meeting, 2006.

[8] Mathworks. (2011) Recorded webinar: Modeling and sim-ulation of pv solar power inverters. [Online]. Available:http://www.mathworks.com/wbnr57525

[9] T. C. Wang, S. Lall, and T. Y. Chiou., “Polynomial method for pllcontroller optimization,” Sensors, vol. 11, no. 7, pp. 6575–6592, 2011.

[10] A. Engler and N. Soultanis, “Droop control in lv-grids,” in InternationalConference on Future Power Systems, 2005.

Page 15: Frequency)Stability)Analysis)for)Inverters)) in)Low)Voltage ...web.stanford.edu/class/ee292k/presentations/Chung-Ching...Analysis)Results) • Range)of)parameters) 6 TABLE I SURROGATEMODEL

Analysis  Results  

0 0.5 11

1.2

1.4

Penetration

5k 10k 20k 40k1

1.2

1.4

Load Power

0.5 0 0.51

1.2

1.4

Phase of Power Factor

50100 300 1k1

1.2

1.4

Line Distance

0 20 40 601

1.2

1.4

w in PLL

0.4 0.61

1.2

1.4

in PLL

0 0.5 11

1.2

1.4

R in LCL

0 5 10x 10 3

1

1.2

1.4

L in LCL

0 0.5 1

1

1.1

1.2

1.3

1.4

1.5

Penetration

5k 10k 20k 40k

1

1.1

1.2

1.3

1.4

1.5

Load Power

0.5 0 0.5

1

1.1

1.2

1.3

1.4

1.5

Phase of Power Factor

50 100 300 1k

1

1.1

1.2

1.3

1.4

1.5

Line Distance

0 20 40 60

1

1.1

1.2

1.3

1.4

1.5

w in PLL

0.4 0.6

1

1.1

1.2

1.3

1.4

1.5

in PLL

0 0.5 1

1

1.1

1.2

1.3

1.4

1.5

R in LCL

0 5 10x 10 3

1

1.1

1.2

1.3

1.4

1.5

L in LCL

Grid;e  Inverter   Droop  Inverter  

H∞  norm  is  always  less  than  2  in  all  samples  explored!  

Page 16: Frequency)Stability)Analysis)for)Inverters)) in)Low)Voltage ...web.stanford.edu/class/ee292k/presentations/Chung-Ching...Analysis)Results) • Range)of)parameters) 6 TABLE I SURROGATEMODEL

Conclusion  

•  Frequency  stability  analysis  is  evaluated  for  both  grid;e  and  droop  inverters  

•  Grid  frequency  disturbance  is  amplified  roughly  in  propor;onal  to  penetra;on,  load  power,  and  line  distance  

•  For  a  well-­‐tuned  inverter,  this  amplifica;on  is  reasonably  small  

•  However,  the  power  factor  may  drop  below  0.85  as  viewed  from  the  upstream  as  penetra;on  increases,  viola;ng  IEEE  1547