from chernozem to luvisol or from luvisol to chernozem? a ... · cords or ice core records (e.g....

28
From Chernozem to Luvisol or from Luvisol to Chernozem? A discussion about the relationships and limits of the two types of soils. A case study of the soil catena of Hrušov, Czechia BARBORA STROUHALOVÁ1, ANNE GEBHARDT2,3, DAMIEN ERTLEN2, LUDĚK ŠEFRNA4, KRISTÝNA FLAŠAROVÁ4, PETR KOLAŘÍK4, DOMINIQUE SCHWARTZ2 GEOGRAFIE 125/4 (2020) 1 Institute of Archaeology of the Czech Academy of Sciences, Prague, v.v.i., Prague, Czechia; e-mail: [email protected] 2 University of Strasbourg, Faculté de Géographie et d’Aménagement, Laboratoire Image, Strasbourg, France; e-mail: [email protected], [email protected]. fr, [email protected] 3 Institut National de Recherches Archéologiques Préventives Grand Est Nord, Ludres, France 4 Charles University in Prague, Faculty of Science, Department of Physical Geography and Geoecology, Prague, Czechia; e-mail: [email protected], kristyna.flasarova@natur. cuni.cz, [email protected] ABSTRACT e patchy character of the distribution of Chernozems and Luvisols formed on loess is oſten observable on the pedological maps, on a large scale, in Czechia. e focus of the paper is to examine the features of the soil catena of Hrušov (Czechia), which is characterized by the simultaneous presence of Chernozem, Luvisol and Luvic Chernozem – without obvious environmental reasons. A catena of only 330 meters is considered a system of transformation between these soils. Along with field work and the pedological analysis, we used the soil micro- morphology method to understand the processes of pedogenesis. We concluded that the presence of considerably different soil types on a small scale is due to intensive agriculture. We found that the present Chernozem is formed on the Luvisol by retrograde soil evolution, which included a shiſt in the vegetation, erosion, and recarbonation. e evolution of Luvisol in the lower part of the catena has been considerably modified. KEY WORDS soil catena – chernozem – luvisol – soil micromorphology – Czechia STROUHALOVÁ, B., GEBHARDT, A., ERTLEN, D., ŠEFRNA, L., FLAŠAROVÁ, K., KOLAŘÍK, P., SCHWARTZ, D. (2020): From Chernozem to Luvisol or from Luvisol to Chernozem? A discussion about the relationships and limits of the two types of soils. Acase study of the soil catena of Hrušov, Czechia. Geografie, 125, 4, 473–500. https://doi.org/10.37040/geografie2020125040473 Received February 2020, accepted July 2020. © Česká geografická společnost, z. s., 2020

Upload: others

Post on 07-Aug-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: From Chernozem to Luvisol or from Luvisol to Chernozem? A ... · cords or ice core records (e.g. Muhs 2007; Sheldon, Tabor 2009). Paleosols formed at the Earth’s surface were in

From Chernozem to Luvisol or from Luvisol to Chernozem? A discussion about the relationships and limits of the two types of soils. A case study of the soil catena of Hrušov, Czechia

BARBORA STROUHALOVÁ1, ANNE GEBHARDT2,3, DAMIEN ERTLEN2, LUDĚK ŠEFRNA4, KRISTÝNA FLAŠAROVÁ4, PETR KOLAŘÍK4, DOMINIQUE SCHWARTZ2

GEOGRAFIE 125/4 (2020)

1 InstituteofArchaeologyoftheCzechAcademyofSciences,Prague,v.v.i.,Prague,Czechia;e-mail:[email protected]

2 UniversityofStrasbourg,FacultédeGéographie etd’Aménagement,Laboratoire Image,Strasbourg,France;e-mail:[email protected],[email protected],[email protected]

3 InstitutNationaldeRecherchesArchéologiquesPréventivesGrandEstNord,Ludres,France4 CharlesUniversityinPrague,FacultyofScience,DepartmentofPhysicalGeographyand

Geoecology,Prague,Czechia;e-mail:[email protected],[email protected],[email protected]

ABSTRACT ThepatchycharacterofthedistributionofChernozemsandLuvisolsformedonloessisoftenobservableonthepedologicalmaps,onalargescale,inCzechia.ThefocusofthepaperistoexaminethefeaturesofthesoilcatenaofHrušov(Czechia),whichischaracterizedbythesimultaneouspresenceofChernozem,LuvisolandLuvicChernozem–withoutobviousenvironmentalreasons.Acatenaofonly330metersisconsideredasystemoftransformationbetweenthesesoils.Alongwithfieldworkandthepedologicalanalysis,weusedthesoilmicro-morphologymethodtounderstandtheprocessesofpedogenesis.Weconcludedthatthepresenceofconsiderablydifferentsoiltypesonasmallscaleisduetointensiveagriculture.WefoundthatthepresentChernozemisformedontheLuvisolbyretrogradesoilevolution,whichincludedashiftinthevegetation,erosion,andrecarbonation.TheevolutionofLuvisolinthelowerpartofthecatenahasbeenconsiderablymodified.

KEY WORDS soilcatena–chernozem–luvisol–soilmicromorphology–Czechia

STROUHALOVÁ,B.,GEBHARDT,A.,ERTLEN,D.,ŠEFRNA,L.,FLAŠAROVÁ,K.,KOLAŘÍK,P.,SCHWARTZ,D.(2020):FromChernozemtoLuvisolorfromLuvisoltoChernozem?Adiscussionabouttherelationshipsandlimitsofthetwotypesofsoils.AcasestudyofthesoilcatenaofHrušov,Czechia.Geografie,125,4,473–500.https://doi.org/10.37040/geografie2020125040473ReceivedFebruary2020,acceptedJuly2020.

©Českágeografickáspolečnost,z.s.,2020

Page 2: From Chernozem to Luvisol or from Luvisol to Chernozem? A ... · cords or ice core records (e.g. Muhs 2007; Sheldon, Tabor 2009). Paleosols formed at the Earth’s surface were in

474 GEOGRAFIE 125/4 (2020) / B. STROUHALOVÁ, A. GEBHARDT, D. ERTLEN ET AL.

1. Introduction

Loess is awidespread type of sediment,which covers about one-fifth of thesurfaceofEurope(Haaseetal.2007).Itistheparentmaterialofseveraltypesofsoils.ChernozemsandLuvisolsareespeciallywidelyrepresentedinEurope(Figure1).Inthispaper,wereviewtheexistingconceptsabouttherelationshipbetweenthesesoilswhichisdescribedintheliteratureas(i)spatialor(ii)tem-poral.WecontinuebypresentingnewdataonaLuvisol-ChernozemcatenainHrušov(Czechia)wheretheChernozemandLuvisolcoexistinverytightcontactdespiteidenticalenvironmentalconditions.Wehypothesisethatthesiteisazoneoftransformationwhereonetypetransformstoanotheranddiscusstheprocessesparticipatingonthesoil’sevolution.Thestudyisbasedonthefielddescriptions,soilmicromorphologicalobservationsandthebulksoilanalysis.

1.1. Spatial distribution of Luvisols and Chernozems

Chernozems–withtheirthickblackorgano-mineralhorizon–areconsideredaszonalsoilsthataretypicalforadrycontinentalclimate(Dokuchaev1883,FAO2015).Onthecontrary,theformationofLuvisolsisconditionedbyatemperateoceanicclimateandforestvegetation(Duchaufour1998,Němečeketal.2001,FAO,ISRIC,ISSS2006;Baize,Girard2008).TheseenvironmentalconditionsmaketheilluviationofclaysandthetexturaldifferentiationbetweentheeluviationEho-rizonandilluviationBthorizonpossible.OnthecontinentalscaleofEurope,thedistributionofthetwosoilsseemstofollowtheclimaticvariationsbetweentheoceanicconditionsintheWestandthecontinentalconditionsintheEast(Fig.1).

WhenwefocusonCzechiainCentralEurope,weseethatbothtypesofloesssoilsarepresent.Theenvironmentalconditionsoftheirdistributionoverlap(Table1),thegeographicaldistributionofLuvisolsandChernozemsdifferintheregionalclimaticconditions.TwofactorsareomittedforChernozemsinthedefinedcon-ditions:thetopographyandpastvegetation(Němečeketal.2011).AccordingtoHauptmannetal.(2009),bothtypesofsoilsaremostlyformedinplainareas,buttheycanbealsoformedinhillyareasandonplateaus.However,therearenot currently existingChernozemsabove300ma.s.l. of altitude inCzechia.Theclimaxvegetationoftheregionswiththepresenceofbothtypesofsoilsislandpredominatedbyoaks(Quercetea)oroak-hornbeams(Carpinus – Quercetea; Chytrý,Kučera,Kočí2001;Neuhäuselová1998).Onlarge-scalesoilmaps,amosaicofChernozemsandLuvisolscanoftenbeobserved.Onthelocalscaleandinthefield,theoriginofthespatialdistributionofChernozemsandLuvisolsisdifficulttoexplain,becausetheclimatic,topographicalandgeologicalconditionsseemtobeidentical(Bailly1972;Ložek,Smolíková1978;Vysloužilováetal.2014).These

Page 3: From Chernozem to Luvisol or from Luvisol to Chernozem? A ... · cords or ice core records (e.g. Muhs 2007; Sheldon, Tabor 2009). Paleosols formed at the Earth’s surface were in

FROM CHERNOZEM TO LUVISOL OR FROM LUVISOL TO CHERNOZEM? … 475

Tab. 1 – The environmental characteristics of the Chernozems and Luvisols in Czechia (Němeček et al. 2011)

Environmental characteristic

Chernozem Luvisol

Climate Climate region B 1–3Mean annual precipitation (7) 8–9°CMax. 650 (700) mm

Climate region B 3–5(6)Mean annual precipitation 7–9°C450–900 mm

Vegetation altitude zonation

1–2Oak zone (Quercus spp. mainly Quercus petraea agg.) and – Beech–Oak zone (Fagus sylvatica–Quercus petraea agg.)

1–2 (3)Oak zone (Quercus spp. mainly Quercus petraea agg.), Beech–Oak zone (Fagus sylvatica–Quercus petraea agg.) and Oak–Beech zone (Quercus petraea agg. – Fagus sylvatica)

Soil moisture regime Ustic Limit between ustic and udic

Parent material Loess, sandy loess, marls Loess, polygenic silts

Topography Not defined Flat, gently undulating terrain

Native vegetation Not defined Oak, oak-hornbeam forest

Fig. 1 – The spatial relationship of Chernozems and Luvisols. The distribution of loess (in red), Cher-nozems and Luvisols in Europe (Haase et al. 2007, ESDC 2013).

Page 4: From Chernozem to Luvisol or from Luvisol to Chernozem? A ... · cords or ice core records (e.g. Muhs 2007; Sheldon, Tabor 2009). Paleosols formed at the Earth’s surface were in

476 GEOGRAFIE 125/4 (2020) / B. STROUHALOVÁ, A. GEBHARDT, D. ERTLEN ET AL.

observationsshowthatthereisaneedformorein-depthstudiestounderstandtheroleofenvironmentalfactors,inparticularvegetationandpaleo-environmentalconditions,ontheformationofthesetypesofsoils(Eckmeieretal.2007).

1.2. Temporal relationship of Chernozems and Luvisols in the Holocene

Nexttothespatialrelationshipofthetwosoils,thereisatemporalrelationship.Bothsoilsareplacedinthesameseriesofdevelopment(Leser,Maqsud1975).TheHoloceneevolutionmodelfromtheinitialloesstoaLuvisoltakesplaceun-dernaturalvegetation(Fig.2,accordingtoLorz,Saile2011).Accordingtotheseauthors,after thesedimentationof theupperWeichselian (Würm) loess, theinitialcalcareoussoildevelopsunder thesteppevegetation.ThewarmerandwetterclimateintheEarlyHolocene(PreborealandBoreal)allowstheforma-tionofaCalcicRegosol.ThehumichorizonthickensandattheendoftheBorealandtheChernozemwasformed(Leser,Maqsud1975;Lorz,Saile2011;Scheffer,Meyer1963).Forestconditionsinduceddecarbonationandleachingofclays.Theclayilluviationdownwardsthesoilprofilecausedtheloweringofthedecalcifica-tionlimit.Thisresultedfirstintheformationofacambichorizon,thenargillichorizonwhilepreservingthesuperficialAhorizon.Finally,ChernozemtakesitsLuvisolmorphologywithdevelopedEandBthorizons(Lorz,Saile2011;Němeček,Smolíková,Kutílek1990).

ThetransformationofaChernozemintoaLuvisolhasbeenwellstudiedintheNorthCaucasus:thesuccessiveconstructionsoftumulihasmadeitpossibletopre-servethestagesofthegenesisofaLuvisolfollowingthereplacementofasteppebyaforest(Alexandrovskiy2000).ThetransformationofaChernozemtoaLuvisolhasalsobeenhypothesiseduponbyHejcmanetal.(2013)whodiscoveredaburiedAhorizonofaChernozemunderabell-beakerbarrow(2500–2200BC)inCentralMoravia,eveniftheLuvisolsaredominantintheregionnowadays.Intheirview,theincreasingannualprecipitationanddecreasingtemperaturesinducedthedegradationofChernozemstoLuvisols.ThesameevolutioninducedbytheclimatewasdescribedrecentlybyKabaƚaetal.(2019)insouthwesternPoland.

SchefferandMeyer(1963)describethedevelopmentofaninitialsoilloessto-wardsaChernozemandaPhaeozeminsouthernLowerSaxony,Germany.Therateofdevelopmentofthisseriesanditscontrolmechanismarecarbonatedynamicsandtheloweringofthedecarbonationlimit(Scheffer,Meyer1963;Rohdenburg,Meyer1968).DecarbonationwascontrolledbyclimatechangeintheHolocene.ItwasminimalatthebeginningoftheHolocene,itstrengthenedatthebeginningoftheAtlanticwithanincreaseinthepluviometryandthedevelopmentofthefor-ests.However,conversely,thedecarbonationmechanismlinkedtoclimatechangecanbesloweddownbyvariousfactorssuchasahighcarbonatecontentofthe

Page 5: From Chernozem to Luvisol or from Luvisol to Chernozem? A ... · cords or ice core records (e.g. Muhs 2007; Sheldon, Tabor 2009). Paleosols formed at the Earth’s surface were in

FROM CHERNOZEM TO LUVISOL OR FROM LUVISOL TO CHERNOZEM? … 477

parentrockorthestorageofcalcareousgroundwaterfromtheAtlanticperiod.Inthiscase,GleyicandpseudogleyicChernozemsareformed(Scheffer,Meyer1963;Fischer-Zujkov,Schmidt,Brande1999).CarbonatedynamicsarealsoconsideredasacrucialfactorinpersistenceofChernozemsbyvonSuchodoletzetal.(2019).

ThetightcontactbetweentheChernozemsandLuvisols(distinctChernozempatches in the Luvisol area) is not explained by this evolutionary approach.Accordingtotheevolutionarymodel,theChernozemispreventedfromdegrada-tionbydeforestationorbyaclimatechange.DistinctpatchesofChernozemsintheLuvisolareashavebeendescribedaszonesofancientsettlementsandintensiveagriculture(Ložek1973,Kabaƚaetal.2019),theheterogeneityoftheparentmate-rialinhighercarbonatecontents(Altermannetal.2005,vonSuchodoletzetal.2019)orastheconsequenceofprehistoricburningpractices(Eckmeieretal.2007,Kasielke,Poch,Wiedner2019).

1.3. Spatiotemporal relationship of Chernozems and Luvisols in the Pleistocene

InCentralEurope,loess-paleosolsequences(Flašarováetal.2020,Antoineetal.2013)containseveraldifferentsoiltypes.ThemostobviousareLuvisols,represent-inginterglacialclimaticconditions,similarastotoday,andChernozems,reflectingdrierandcoolerclimateatthebeginningoftheglacialperiods.However,thepale-oclimatewasoscillatingalsoduringtheglacialperiods,andlesswell-developedsoilssuchasRegosols,weakCambisolsortundraGleyswereformedaswell(Ložek1973,Hošeketal.2015).

Fig. 2 – The temporal relationship of the Chernozems and Luvisols in the Holocene. Source: after Lorz, Saile 2011.

Page 6: From Chernozem to Luvisol or from Luvisol to Chernozem? A ... · cords or ice core records (e.g. Muhs 2007; Sheldon, Tabor 2009). Paleosols formed at the Earth’s surface were in

478 GEOGRAFIE 125/4 (2020) / B. STROUHALOVÁ, A. GEBHARDT, D. ERTLEN ET AL.

Loess-paleosolsequencesareimportantpaleoenvironmentalarchivesbecauseoftheirlong-termcontinuouspaleoclimaterecord,analogoustomarineproxyre-cordsoricecorerecords(e.g.Muhs2007;Sheldon,Tabor2009).PaleosolsformedattheEarth’ssurfacewereindirectcontactwiththeenvironmentalconditionsprevailingatthetimeoftheirformationandtheyreflecttheprevailingtempera-tureandprecipitation.Paleosolscanbeconsideredasanequivalenttorecentsoilswiththecorrespondingmorphologicalsigns(Němeček,Smolíková,Kutílek1990).

2. Materials and methods

2.1. Study site of Hrušov

ThestudiedcatenaissituatedinthewestfromthevillageofHrušov(50°21'N,14°50'E)inCzechia.Thecatenaislocatedinaflatzone,attheupperpartofapla-teaucoveredbyaloess.Thelengthofthestudiedtransectis331.2meters, itsmaximalslopeinclinationreaches0.6%.ThespatialdistributionoftheexaminedsoilsisdescribedinFigure3.

Theparentmaterialisformedbyaloess(Českágeologickáslužba2013).Theannualprecipitationreachesbetween500and600mm,themeanannualtem-peraturevariesbetween8°Cand9°C.Theevapotranspirationreaches550 to600mm(Tolaszetal.2007).

TheMacro-physical Climatemodel (Bryson,McEnaney DeWall 2007) forPrague-Karlov(ca.50kmsouthwestfromHrušov)showsthatfromtheWeichselLate-glacialtoBorealperiod,theprecipitationishigherthantheevaporation,butthedifferenceislow(Fig.4).Between7500and5500BP,thevaluesofthepotentialevapotranspirationmightevenexceedtherainfallinthegrowingseason.During

Fig. 3 – The location of the studied soils. Source: ČÚZK 2019.

Page 7: From Chernozem to Luvisol or from Luvisol to Chernozem? A ... · cords or ice core records (e.g. Muhs 2007; Sheldon, Tabor 2009). Paleosols formed at the Earth’s surface were in

FROM CHERNOZEM TO LUVISOL OR FROM LUVISOL TO CHERNOZEM? … 479

theAtlanticperiod,theevaporationdecreasedwhiletheprecipitationstayedrela-tivelyconstantwithmorefluctuations.Theclimatehasbecomerelativelymorehumidandcolderwithsomefluctuations(Dreslerová2012).

Nowadays,thezoneisanarablelandwiththealternationofvariouscrops:wheat,corn,colza,sugarbeet.TheregionhasbeensettledsincetheNeolithicperiod(Pavlů,Zápotocká2007).ThearchaeologicalevidenceofHrušovisquitescarce, thereareobjectsof stroke-ornamentedware ceramics (Neolithic, ca.5000BC),objectsfromtheÚněticeculture(ca.2200–1600BC).MostoftheobjectsfoundcomefromtheLusatiancultureandtheHallstattone(ca.1000–400BC)(unpublishedarchivesoftheArchaeologicalInstitute,Prague).Thevillagewasdocumentedinhistoricaldocumentsforthefirsttimein1346.

2.2. Soils in the catena

Throughthepaper,weusetheWRB2014soilclassification(FAO2015).SevenpitslabelledHRU20,HRU21,HRU22,HRU23,HRU24,HRU25andHRU26(Fig.5)wereduginordertoproceedwithadetailedphysicalandchemicalanalysisandamicromorphologicalstudyofsoilsinthecatena.Theexactlocationofthepits(determinedbyGPSandTST)isindicatedinTable2andFigure5.

Accordingtothesoilmorphology,therearethreetypesofsoilsinthecatenaofHrušov:HaplicChernozem,LuvicChernozemandLuvisol(Fig.5).TheChernozemmarkedasHRU21hasachernichorizon.Itispartlyplougheddowntothedepthof43cm–theAandChorizonsaremixedinthere.TheAhorizoniscompactedbyploughing;itispartiallydecarbonated.Thereareloessdollsandnumerouslom-bricgalleriesintheChorizon(Fig.5).TheprofilesofHRU20,HRU22andHRU23

Fig. 4 – The potential mean annual precipitation and evaporation for Prague-Karlov (alt. 261 m a.s.l.). Source: according to Bryson, McEnaney DeWall (2007). Modelled by Bryson and Cummings.

Page 8: From Chernozem to Luvisol or from Luvisol to Chernozem? A ... · cords or ice core records (e.g. Muhs 2007; Sheldon, Tabor 2009). Paleosols formed at the Earth’s surface were in

480 GEOGRAFIE 125/4 (2020) / B. STROUHALOVÁ, A. GEBHARDT, D. ERTLEN ET AL.

areLuvicChernozemswithasimilarmorphology.Thetransitionbetweenthemisclearandirregular.OnlytheHRU20profilehasapreservedpartofanaturalAhorizonbetweentheApandtheBt.TheprofilesofHRU24,HRU25andHRU26areLuvisolswhicharedeeplyreworkedbyploughing.Therefore,theEhorizonandtheupperpartoftheBthorizonaremixedtogetherandthelimitbetweentheploughinghorizonandtheBthorizonissharp(Fig.5).

2.3. Soil micromorphology

Thesoilmicromorphologystudiestheundisturbedsamplesunderapetrographicmicroscopetoidentifyvarioussoilcomponentsandtoanalysetheirorganisation.Ataveryfinescale,itallowsonetoobservetheprocessesanddynamicsthataremacroscopicallyhardlyperceptibleornotperceptibleatall(Fedoroff,Bresson,Courty1987,Stoops2003,Stoops,Marcelino,Mees2010).

Followingthefieldobservation,themicroscaleobservationhighlightsthenatu-ralevolutionofthesoils,likevariouschangesinthevegetationcover(Smolíková1969)oranthropogenicactivities,e.g.,ancientagriculturalpractices(Gebhardt1995;Deáketal.2017;Macphail,Goldberg2017).Thishelpstobetterunderstandthelocalevolutionofthelandscape(Gebhardt,Fechner,Occhietti2014).Themi-cromorphologicalapproachisbasedonthestudyof15thinsectionsofthepro-filesHRU21(HaplicChernozem),HRU20,HRU23(LuvicChernozem)andHRU24(Luvisol).Thethinsectionsaredescribedfollowingtheinternationalsoilthinsectiondescriptionmethods(Bullocketal.1985,Stoops,Marcelino,Mees2010).

Tab. 2 – The list of the studied pits at the site of Hrušov

Profile Code Coordinates Soiltype

Latitude NLongitude E

Altitude m a.s.l.

HRU20 50°20.822'14°50.393'

263.053 Luvic Chernozem

HRU21 50°20.816'14°50.367'

263.074 Haplic Chernozem

HRU22 50°20.813'14°50.345'

262.997 Luvic Chernozem

HRU23 50°20.811'14°50.331'

263.121 Luvic Chernozem

HRU24 50°20.805'14°50.293'

263.017 Luvisol

HRU25 50°20.769'14°50.228'

262.323 Luvisol

HRU26 50°20.724'14°50.171'

261.815 Luvisol

Page 9: From Chernozem to Luvisol or from Luvisol to Chernozem? A ... · cords or ice core records (e.g. Muhs 2007; Sheldon, Tabor 2009). Paleosols formed at the Earth’s surface were in

FROM CHERNOZEM TO LUVISOL OR FROM LUVISOL TO CHERNOZEM? … 481

HRU22

HRU26

HRU25

HRU24

HRU21

HRU20

HRU23

Luvic Chernozem

Luvic

Chernozem

Luvic

Chernozem

Luvisol

Luvisol

Studied thin section

Haplic

Chernozem

Luvisol

Ap1 0 to 3–5 cm

,YR 3/2, silty, granular structure, not

effervescent, net transition

Ap2 3–5 to 45–48 cm

, YR3/2, silty, not

effervescent, polyhedral angular

structure, subhorizontal abrupt

transition

Ah 45–48 to 55 cm,

10 YR 2/2, silty, granular structure,

not effervescent, irregular

transition to

A/B 55 to 70 cm,

transition horizon, not

effervescent, gradual transition

Bt 70 to 80 cm,

10 YR 4/6, loamy clay, not

effervescent, slightly marbled,

with rusty spots, mottles of organic

material, net subhorizontal

transition

Ck > 80 cm,

10 YR 5/5; loess, effervescent,

galleries of earthworms to the

bottom of the profile

Ap1 0 to 3–5 cm

,YR 3/2, silty, granular

structure, few roots

Ap2 3–5 to 25 cm,

YR 3/2, silty, angular

polyhedral structure, not

effervescent, few roots,

presence of decomposed

straws almost continuous

between 10 and 23 cm

Ap3 25 to 38–43 cm

,YR 3/2, silty, effervescent

(at first weakly, then more

clearly), few roots, abrupt

transition

Ck > 38–43 to 68 cm,

YR 5/4, loess, silty, many

loess dolls, micro-aggregated

structure, many biogalleries

Ap 0 to 40 cm,

YR 3/2 silty,

granular structure,

not effervescent,

few roots, presence

of decomposed

straws almost,

abrupt transition

Bt 40 to 52 cm,

10 YR 4/5, net

decarbonation limit

around 52 cm,

gradual transition,

subhorizontal

Ck > 52 cm,

10 YR 5/4, loess

with loess dolls

Ap1 0 to 5 cm

,YR 4/3, dry: granular

structure, numerous

anthropogenic

elements (pieces of

bricks, charcoals)

Ap2 5 to 45 cm,

YR 3/2, angular

polyhedral structure,

clear but

interdigitated

transition

Bt 45 to 58–63 cm

,YR 3.5/6, net

decarbonation limit

around 60 cm,

gradual

subhorizontal

transition

Ck > 58–63 cm

,YR 5/4; loess dolls

around 70 cm

Ap 0 to 30 cm,

YR 4/3, dry, silty, granular

structure, numerous

antropogenic elements

(bricks and pieces of limes),

abrupt, subhorizontal

transition

Bt 30 to 70 cm,

YR 4.5/5, decarbonated,

net transition,

subhorizontal, with

Ck > 88 cm,

YR 5/4, silty (carbonate

loess), presence of loess

dolls and crotovinas

Ap 0 to 38–42 cm

,YR 3.5/3, silty, not effervescent,

angular polyhedral structure,

presence of straws and anthropic

elements, relatively compact,

abrupt subhorizontal transition

Bt 38–42 to 68 cm,

10 YR 3/6 at the top, 10 YR 4/6 at

the base, silty clay, weak

effervescence, and the presence of

decarbonated zones, subangular

polyhedral structure, good

interaggregate porosity, numerous

galleries of earthworms, net

subhorizontal transition

Ck > 68 cm,

YR 5/4, silty (carbonate loess),

numerous galleries of earthworms,

presence of loess dolls from 80 cm

Ap 0 to 35–40 cm

,10 YR 3/2, silty, not effervescent,

granular structure at the surface

(0 to 8 cm

), angular polyhedron,

presence of straw and anthropic

elements (brick and lime fragments),

relatively compact, abrupt irregular

transition with:

Bt 35–40 to 60–62 cm

,YR 4/6, silty-clay, weak effervescence,

and the presence of decarbonated zones,

subangular polyhedral structure,

interaggregate porosity, numerous

biogalleries, wavy transition

C > 62 cm

,YR 5/4, silty (carbonate loess), numerous

biogalleries, presence of loess dolls

and crotovinas

Fig. 5 – The characteristics of the studied soils

Page 10: From Chernozem to Luvisol or from Luvisol to Chernozem? A ... · cords or ice core records (e.g. Muhs 2007; Sheldon, Tabor 2009). Paleosols formed at the Earth’s surface were in

482 GEOGRAFIE 125/4 (2020) / B. STROUHALOVÁ, A. GEBHARDT, D. ERTLEN ET AL.

2.4. Soil analyses

Samples,ofapproximately50g,weretakenatevery5 cmindepthfromeachstudiedsoil(exceptfromHRU22).Theyweredriedat40°Candsievedtopassthrougha2mmmesh.Theparticle-sizedistributionwasmeasuredwithalasergranulometer(typeBeckmann-CoulterLS230).Beforethemeasurementoftheparticle-sizedistributionwasmade,thesampleshadbeentreatedbyH2O2todestroytheSOM(soilorganicmatter).ThesampleshadbeenwashedbyKClalso,distilledwaterandsodiumhexametaphosphatetodeflocculatetheaggregateswithoutdestroyingthecarbonates.Thetotalorganiccarbon(TOC)wasestimatedbynear-infraredspectroscopy(Cécillonetal.2009).ThecontentofCaCO3wasquantifiedbymeasuringthevolumeoftheCO2lostinthereactionwiththeHClinaclosedatmosphere.

3. Results

3.1. Analytical properties

Theinterpretationmusttakeintoconsiderationthatsoilsarefarmedintensively.Agriculturaltechniquesincludetheapplicationofcommonagriculturalamend-mentsanddeepploughingdownto45cm.Weobservedthatthepredominantfractioninalltheanalysedsoilswasthesiltfraction(Fig.6).Itgenerallyrepre-sentsbetween63and68%ofthemineralfraction.Theclayfractionrepresentsbetween15and26%ofthemineralfractiondependingonthesoil.Theclaycontentisrelativelyconstant,exceptLuvisolHRU24whereaclaypeakappearsclearlyintheBthorizon.ThistrendismuchlesspronouncedintheLuvisolHRU25andtheHRU26.ThesetwoprofilesareclearlyLuvisolsaccordingtothemorphologyinthefield.Itmustbepointedoutthattheclaycontentintheloessparentmaterialisimportant(from20to23%).Theparticlesizemeasurementswereperformedwithoutdecarbonation,whichmayhavecausedtheaggregationoftheclays.Thefinesandcontentisabout10to14%,thecoarsesandiszerooralmostzero.Somecoarsesandsareelementsofanthropogenicwaste(bricksorlimepieces).

ThepHvaluesreachbetween6.7and8.4.ThedifferencesbetweentheLuvisolsandtheChernozemsarenotsignificantlymarkedduetotheagriculturalcalcimag-nesicamendments(weobservedlimefragmentsduringthefieldobservationsandinthethinsectionsaswell)appliedtothesoils.

AllthestudiedsoilprofilescontainCaCO3.Inthesurfacehorizons,theCaCO3contentvariesbetween0and3%.ItsmaximumisreachedintheCkhorizon.

Thetotalorganiccontent(TOC)ofthestudiedsoils,assessedbetween0and2%isrelativelystableintheploughinghorizons.TheBtintheLuvicChernozem

Page 11: From Chernozem to Luvisol or from Luvisol to Chernozem? A ... · cords or ice core records (e.g. Muhs 2007; Sheldon, Tabor 2009). Paleosols formed at the Earth’s surface were in

FROM CHERNOZEM TO LUVISOL OR FROM LUVISOL TO CHERNOZEM? … 483

0

10

20

30

40

50

60

70

80

90

100

0,0 1,0 2,0 3,0

TOC (%)

HRU20HRU21HRU23HRU24HRU25HRU26

0

10

20

30

40

50

60

70

80

90

100

6,0 7,0 8,0 9,0

pH

HRU20HRU21HRU23HRU24HRU25HRU26

0

10

20

30

40

50

60

70

80

90

100

0,0 5,0 10,0 15,0 20,0

CaCO₃ (%)

HRU20HRU21HRU23HRU24HRU25HRU26

0

10

20

30

40

50

60

70

80

90

100

12,0 17,0 22,0 27,0 32,0

Clay (%)

HRU20HRU21HRU23HRU24HRU25HRU26

Fig. 6 – The TOC, CaCO3, clay contents and pH of the studied soils in the Hrušov catena

Page 12: From Chernozem to Luvisol or from Luvisol to Chernozem? A ... · cords or ice core records (e.g. Muhs 2007; Sheldon, Tabor 2009). Paleosols formed at the Earth’s surface were in

484 GEOGRAFIE 125/4 (2020) / B. STROUHALOVÁ, A. GEBHARDT, D. ERTLEN ET AL.

Tab. 3 – The micromorphological features of the soil of the catena of Hrušov

Profile

Horizon

Depth

Microstructure

Porosity

Illuvial clay

coatings –

limpid/dusty

Fe, Mn

nodules

Secondary

carbonates

Bioturbation

Phytoliths

Charcoals

HRU20

limit Ap/Ah

41–50 cm

SCh, F

L, D

——

Xx

X

HRU20

limit Ah/Bt

47–56 cm

HfF Ch

L, D

X—

Xx

HRU20

Bt 53–62 cm

SF, Ch

L, D

X—

X—

HRU20

limit Bt/C

65–74 cm

SCh

L, D

XX

X—

HRU20

top of the C

77–86 cm

SCh

—X

X—

——

HRU21

Ap 30–39 cm

SCh, F

L, D

—X

XX

XHRU21

Ap/Ck 36–45

SCh

LX

XX

X—

HRU21

Ck 42–51 cm

S

Ch—

—X

——

—HRU22

Bt 41–51 cm

S

Ch, V

L, D

X—

X—

—HRU23

Bt 43–52 cm

S

ChL, D

X—

X—

—HRU23

Bt 49–58 cm

S

Ch, V

L, D

XX

X—

XHRU23

limit Bt/Ck

55–64 cm

HCh

L, D

XX

X—

HRU24

Limit Ap/Bt

36–45 cm

SCh, V

L, D

XX

XX

HRU24

Bt 48–57 cm

SCh, V

L,D

XX

X—

*HRU24

Limit Bt/C

60–69 cm

HCh, V

L,D

XX

X—

S – subangular blocks, with a porphyric distribution, H – heterogeneous, x – presence, – – absence, Ch – channel, F – fissure, V – void, L – limpid coatings, D – dusty coatings,

I – infillings, E – excrement

Page 13: From Chernozem to Luvisol or from Luvisol to Chernozem? A ... · cords or ice core records (e.g. Muhs 2007; Sheldon, Tabor 2009). Paleosols formed at the Earth’s surface were in

FROM CHERNOZEM TO LUVISOL OR FROM LUVISOL TO CHERNOZEM? … 485

showsatrendofslowadecreaseintheTOCwiththedepth.ThecontentsoftheTOCinLuvisolsfallsharplyundertheAphorizon.

3.2. Micromorphological observations

ThemicromorphologicalobservationshavebeenpreferentiallyundertakeninthehorizonsbeneaththeAp(Table3).

3.3. Micromorphological evidence of the pedogenic processes

3.3.1. Luvisol HRU24

AttheAp/Btlimit,wecanobservetracesofbioturbationandmanybio-galleriesfilledwithsilt.Dustysilty-claycoatingsareclearlyvisible.Theycorrespondtothesplasheffectofrainonnakedsoilsurfacesandarecommonintheactualorinanancientarableland(Jongerius1970;Macphail,Courty,Gebhardt1990;Deáketal.2017).InthelowerpartoftheBthorizon,therearealsoyellow-orangeandlimpidclaycoatings,whichareconsideredtobetypicalfortheleachingenvironmentalconditions(Macphail,Courty,Gebhardt1990,Gebhardt1993).

Thewell-developedluvicBthorizon,whichappearsjustundertheAphorizon,suggeststhatdeepploughinghomogenisedtheupperAandEhorizons.

IntheBthorizon,therearespariticcarbonatecoatingsonclayilluviations(Fig.7).Thecarbonatehypo-coatingsareformedinsidethelargerporesbywaterevaporationorbyasuddendecreaseintheCO2inthesoil(Zamanian,Pustovoytov,Kuzyakov2016).Thisfactindicatesthatthephasesofcarbonatationsucceededthephasesofleachingasaconsequenceofashiftintheenvironmentalconditions.ThisobservationiscoherentwiththeanalyticaldatathatindicatethepresenceofsmallamountsofcarbonatesintheBthorizon.

3.3.2. Haplic Chernozem HRU21

IntheAphorizon,thesilts(loess)arewellsortedandhomogeneousandformaporphyricgroundmass.Thefinematrixisveryorganicandbioturbated.Therearefragmentsofmolluscshells,phytoliths,charcoals,ferruginousconcretionsandlimefertilisergrainfragments.Theobservationoftheresiduesofnon-decomposedorganicmattercorrespondstotheobservationsmadeinthefield.

IntheAphorizonandatthelimitoftheApandCkhorizons,thereareclearclaycoatingsofalimpidyellowororangecolourthatarecompletelyreworkedbyploughing(notin situ).ThesecoatingsarerelicsofaformerexistenceofaluvicBt

Page 14: From Chernozem to Luvisol or from Luvisol to Chernozem? A ... · cords or ice core records (e.g. Muhs 2007; Sheldon, Tabor 2009). Paleosols formed at the Earth’s surface were in

486 GEOGRAFIE 125/4 (2020) / B. STROUHALOVÁ, A. GEBHARDT, D. ERTLEN ET AL.

Fig. 7 – Soil HRU24 – Left: the Bt horizon of the relict Luvisol. The calcareous coatings (Ca) over the clay coatings (Cl) are evidence of post-luvic re-carbonation. Right: The micritised mass of the Bt horizon.

Fig. 8 – Soil HRU21 – Limpid, dislocated yellow-orange clay coatings, which attests to the existence of a reworked ancient Bt horizon (RBt) in the Ap horizon (on the left) and in the Ap horizon at the limit between the ploughing and the C horizons (on the right).

Page 15: From Chernozem to Luvisol or from Luvisol to Chernozem? A ... · cords or ice core records (e.g. Muhs 2007; Sheldon, Tabor 2009). Paleosols formed at the Earth’s surface were in

FROM CHERNOZEM TO LUVISOL OR FROM LUVISOL TO CHERNOZEM? … 487

horizonwhichdisappeared(Fig.8).IntheCkhorizon,themicromassismicriticwithasecondarycalcareousprecipitationinanacicularform.Theymaybecausedbytheclimaticconditionbetweenthelasttillageandthesampling.Secondarycarbonatesarealsopresentintheformofsmallnodules.

3.3.3. Luvic Chernozem HRU20

WefocusedontheexaminationofthethickestprofileHRU20thatcontains–undertheploughinghorizon–residuesoftheAhhorizonwhichareundisturbedbytillage.ThemicromassofApandAhishumic,duetothestrongbioturbation,itisheterogenous,withfissuredporosity.Themainobservedfeatureisthesimultane-ouspresenceofthedustycoatingandlimpidyellowcoatinghorizons(Fig.9).

Themainobservedpedofeaturesare:dustyclay/siltcoatings(limitAp/Ah),phytoliths(limitAp/AhandlimitAh/Bt)andastrongbioturbation(Ap,AhandBt).Themostimportantobservationsarethesimultaneouspresenceofthelimpidyellow-orangeclaycoatingsin situ–sometimesreworkedbybioturbation–andthedustyclay/siltycoatingscomingfromthebareploughedsurface.

Fig. 9 – The soil HRU20, the Bt horizon of the Luvic Chernozem. The yellow-orange limpid clay coat-ings (LCl), partly dislocated and thin brown dusty silty coatings (DS) in the Bt horizon.

Page 16: From Chernozem to Luvisol or from Luvisol to Chernozem? A ... · cords or ice core records (e.g. Muhs 2007; Sheldon, Tabor 2009). Paleosols formed at the Earth’s surface were in

488 GEOGRAFIE 125/4 (2020) / B. STROUHALOVÁ, A. GEBHARDT, D. ERTLEN ET AL.

3.3.4. Luvic Chernozems HRU22 and HRU23

ThetwosoilprofilesoftheLuvicChernozems,HRU22andHRU23,areverysimilar.Hereagain,themostimportantobservation,intheBthorizons,isthesimultaneouspresenceofthelimpidyellow-orangeclaycoatingsin situ–sometimesreworkedbybioturbation–andthedustysiltycoatingscomingfromthebareploughedsurface.

Inbothsoils,thereareferruginousconcretions,whichprovethehumidityofthesite.IntheCkhorizonofHRU23,therearegreymicritichypo-coatings(Fig.10).

3.4. Interpretation of the soil evolution

Thesimultaneouspresenceoftheyellow-orangelimpidclaycoatings,thebrowndustysiltcoatingsandthesignsofre-carbonationclearlyindicatethattheob-servedcatenaisofapolygenicorigin.Accordingtoourobservation,wehypoth-esisethatthesoilsatthesiteofHrušovpassedathree-stageevolution.

Fig. 10 – Soil HRU23: Yellow-orange limpid clay coatings (LCl), and thin brown dusty silty coatings (DS) in the Bt horizon of the Luvic Chernozem (on the left). Grey micritic stains of root origin and impregnations of Fe (Fe) on the calcareous concretions in the Ck horizon (on the right).

Page 17: From Chernozem to Luvisol or from Luvisol to Chernozem? A ... · cords or ice core records (e.g. Muhs 2007; Sheldon, Tabor 2009). Paleosols formed at the Earth’s surface were in

FROM CHERNOZEM TO LUVISOL OR FROM LUVISOL TO CHERNOZEM? … 489

3.4.1. First phase

Wesupposethatbeforethearrivalofthefirstfarmers,theformationofthesoilhappenedinanaturalway.Thenaturallateglacialsurface,bareloess,usedtobenotsoflatastoday(Pavlů,Zápotocká2007).ThefirststageofpedogenesisintheHoloceneischaracterisedbytheformationofahumichorizonontheloesssediment.

Then,weobserveaphaseofforestationwhichisperceptibleduetothelimpidyellow-orangeclaycoatings.Itcorrespondstotheclayleachingofthedecarbon-atedupperhorizonsundertheforestvegetationbeforetheagriculturalpracticesweresetup.WesupposeLuvisolusedtobepresentatthesiteatthattime.

3.4.2. Second phase

Thesecondphaseislinkedtothebeginningsoftheagriculture.Theagriculturewassetupbythedeforestationandthereintroductionofsteppeconditions.ThecultureofcerealssimulatesthesteppevegetationofPoaceaebyhighinputsofsoilorganicmatterbytherootsystem.Thesetupoftheagricultureleadstoerosionprocessesandthelevellingofthesurface.Partoftheobservedfeaturesisduetothecolluviation.TheChernozematthetopofthecatenamaybeconsideredasaproductofthepolygenicevolution,erosionandre-carbonationbybioturbation(Fig.11).

Fig. 11 – The retrograde evolution of the Chernozem at the site of Hrušov

Page 18: From Chernozem to Luvisol or from Luvisol to Chernozem? A ... · cords or ice core records (e.g. Muhs 2007; Sheldon, Tabor 2009). Paleosols formed at the Earth’s surface were in

490 GEOGRAFIE 125/4 (2020) / B. STROUHALOVÁ, A. GEBHARDT, D. ERTLEN ET AL.

ThesecondphaseobservedintheBthorizonismarkedbydusty,brownsiltycoatings.Thissecondstagecouldhavestartedasearlyasthebeginningofthesoilcultivation.TheLuvisolatthelowerpartofthecatenabecamethicker,thecultiva-tionandorganicamendmentsleadtothedestructionoftheApandEhorizons.Accordingtoacquireddata,wecannotstateifthezonewasdeforestedatthesametimeorinmultiplephases.

3.4.3. Third phase

Lateron,weidentifiedthethirdstageofthesoilformation.ItischaracterisedbythecarbonateprecipitationontheclaycoatingsintheBthorizon.Thisstageofcarbonatationhastobelinkedtothenewinputofcarbonates.Thisinputcanbecausedbynaturalandhumanfactors,itisconfirmedbytheunusualhighpHofallthestudiedsoils.

Ourobservationsmayleadtotheconclusionthatthedifferentiationofthesoiltypes,whichmustbeaconsequenceofanenvironmentalchangethatoriginatedinalong-termshiftinthevegetation.Thefactorofthevegetationchange,whichwasinducedbyhumanactivitiesinthearea,dominatesthepedogenesisofthesesoils.Thedeforestationledtothechangeintheleachingparametersofthesoilsandthechangeintheacidificationprocesses.Aninorganicamendmentandanorganicwaste,dungfromhouseholdshavebeenappliedbecausethelandhasbeenusedasanarablefield.Thisissupportedbyfindingsofsherdsandpiecesofbricksfoundinthefieldsaroundthevillage.Thethirdphaseendswiththemodernagricultureperiod,whichcompletedthere-carbonationofthesoilbydeepploughingandinorganicinputsandterrainlevelling.

4. Discussion

Theobservationsdonotofferuniqueandclearinterpretations.Inaddition,wemustremindonethattheknowledgeofthepastsoilcoverisveryfragmentary.Ifsoilshavedevelopedsincetheendofthelasticeage(Duchaufour1998),theywere,atthetimeofthearrivalofthefirstfarmers,aboutathalf-timeoftheircurrentdevelopment.Theirphysico-chemicalcharacteristicswereundoubtedlydifferentfromthoseknowntoday.However,thereasoningheldontheevolutionaryseriesareallmadeonthebasisoftheobservationofthepresentsoils.

Page 19: From Chernozem to Luvisol or from Luvisol to Chernozem? A ... · cords or ice core records (e.g. Muhs 2007; Sheldon, Tabor 2009). Paleosols formed at the Earth’s surface were in

FROM CHERNOZEM TO LUVISOL OR FROM LUVISOL TO CHERNOZEM? … 491

4.1. Transformation of the soils

ThesoiltransformationfromChernozemtoLuvisolrequiresthedecarbonationoftheChernozemasaconsequenceofanincreaseintheprecipitation,intensifyingachangeintheleachingconditionsandoftheinducedshiftinthevegetation.ThenthetransformationfromLuvisoltoChernozemwouldneedthere-carbonationanddeclineoftheBthorizon.

Nowadays,thepHofthestudiedsoilsistoohightobeconvenientforclayillu-viation(Quénardetal.2011).Calciumformsbetweentheclayandthesoilorganicmatter,averystrongcomplexwhichdoesnotenablethedispersionofclaysandtheirmigration(Masonetal.2016).

Ourobservationsofthesoilsintheexaminedcatenashowedthattherearerelictsoftheyellow-orangelimpidclaycoatingsinalmosteveryexaminedsoilprofile.WemayconcludethatthosefeaturesarerelictsfromtheperiodwhenthepHusedtobelower(beforere-carbonation).Theyellow-orangeclaycoat-ingsarenottypicalmicromorphologicalfeaturesintheChernozem(FAO2015),becauseclayilluviationfollowstheprofiledecarbonation(Duchaufour1998,VanVliet-Lanoë1992).Forexample,Smolíková(1972)demonstratesatypicalspongystructureofChernozemsontheAhorizonfromafossilPleistocenesoil.

ThemicromorphologicalobservationinHrušovrevealsthattheyellow-orangelimpid clay coatings are trapped under the secondary carbonates.This factdemonstratesthattheprocessofthetranslocationofclayisolderthanthere-carbonation.Theprocessofthetranslocationoftheclayisalsonotactiveanymore.Theyellow-orangelimpidclaycoatingsarenotin situ–theyweredislocatedbythebioturbationthatfollowedthestageofilluviation.

Atthesametime,thebioturbationisanaturalwayofthere-carbonationanddestructionofBthorizon.Thepresenceoffaunaisprovedbytheobservationofkrotovinasandofnumerous lombricgalleries in thestudiedsoils.There-carbonatationisaresultoftheliming.

Last,butnotleast,itmustbementionedthattheseprocessescanoccurunderclimatesconvenientfortheexistenceofChernozems(Němečeketal.2011,Table1),intheso-calledancientforest-steppezone(Ložek,Smolíková1978).

4.2. Role of erosion

Wehavetoconsiderthattheprocessofre-carbonationmaypartlybearesultoferosion.Evenifthesurfaceisquitelevellednow,theinclinationscouldhavebeensteeperinthebeginningoftheagriculturalera(Pavlů,Zápotocká2007).Thistheoryissupportedbythedifferentdepthsofthesoilprofiles.TheChernozemssituatedintheupperpartofthecatenaareasdeepastheLuvisolsdowntheslope.

Page 20: From Chernozem to Luvisol or from Luvisol to Chernozem? A ... · cords or ice core records (e.g. Muhs 2007; Sheldon, Tabor 2009). Paleosols formed at the Earth’s surface were in

492 GEOGRAFIE 125/4 (2020) / B. STROUHALOVÁ, A. GEBHARDT, D. ERTLEN ET AL.

Soilerosionisaninevitableconsequenceofdeforestationandsoilplough-ingsincethebeginningsofagriculture(Dreslerováetal.2019).Accordingtothemapofthelong-termlossbyerosioninthestudiedarea,itreachesbetween1and4t.ha⁻1.year⁻1(https://mapy.vumop.cz/;15.4.2019).Studiesconcerningtheerosioninprehistoricandhistorictimesestimatethatthesoillossbyerosiononloesscanreachanaveragerateofseveralt.ha⁻1.yr⁻1(Froehlicheretal.2016,Kołodyńska-Gawrysiak,Poesen,Gawrysiak2018).

Whenweconsidertheerosionratesonacentennialormillennialscale,thesoillossmayhavereachedmoredecimetres.Intheupperpartofthecatena,theresiduesofthesurfacehorizonsarehomogenisedbymodernmechanisation.Therefore,theBthorizoncannotbeobservedanymore.Thetillage,theupliftofthecarbonatesandthecolluviationcouldhavecausedthere-carbonationdowntheslope.

Atthesametimethepartialdecreaseofthesoillevelintheupperpartsofthecatenacausesthatthecarbonates(loess)canbefoundatashallowerdepth,whichfacilitatestheupwellingbybioturbation.InatypicalLuvisolonloess,thecarbonatesappearatdepthsof100–110cm,whichlimitsthebioturbationtoreturnthecarbonatesintothesoilprofile.

Thementionedprocessesledtothetransformationofthenaturalpropertiesofthesoil,especiallythepHvaluesandgrain-sizedistributions.Thesoilshavebecomemoreunifiedespeciallyinthetextureandorganiccontents.

4.3. Role of vegetation

Accordingtothemicromorphologicalfindings,weassumethereusedtobeaforestatthesiteofHrušovinthepast.Theconclusionissupportedbytheclimatemodel(Bryson,McEnaneyDeWall,2007)whichshowsconditionsforthedevelopmentofaforest.Asdescribedabove,theChernozemsdegradetoLuvisolsunderstableforestconditionsNěmeček,Smolíková,Kutílek(1990).

Theroleofthevegetation,especiallyinthe“Chernozemquestion”hasbeenlargelydiscussed.AccordingtoLožek(1973),theChernozemsunderasteppewereconserved(notdegradedtoaLuvisol)untilthebeginningsoftheagricultureinsmallpatches(Fig.12)andtheLuvisolsformedintheareasthatwerenottrans-formedtotheagriculturalland.OthersclaimthatthefirstfarmerswereabletofindChernozemsunderthewoodlandoratleastundertheforest-steppevegetation(Vysloužilováetal.2014,Beneš,2004,Dreslerová2012,Strouhalováetal.2019).

Onthecontrary,theappearanceofclimaxforestsisnot,accordingtoFischer-Zujkov, Schmidt, Brande (1999), afactor likely to cause the degradation ofChernozems.Indeed,intheCentralEuropeanChernozemextentsarea,thenaturalforestmustlooklikeanoakgroveoranoakgrovewithanalwaysverydense

Page 21: From Chernozem to Luvisol or from Luvisol to Chernozem? A ... · cords or ice core records (e.g. Muhs 2007; Sheldon, Tabor 2009). Paleosols formed at the Earth’s surface were in

FROM CHERNOZEM TO LUVISOL OR FROM LUVISOL TO CHERNOZEM? … 493

Fig. 12 – The formation of the Chernozems in Central Europe according to Ložek (1973)

Fig. 13 – A Chernozem under woody vegetation in the Bulhary forest (Czechia). The game preserve has existed at the site since the 13th century.

Page 22: From Chernozem to Luvisol or from Luvisol to Chernozem? A ... · cords or ice core records (e.g. Muhs 2007; Sheldon, Tabor 2009). Paleosols formed at the Earth’s surface were in

494 GEOGRAFIE 125/4 (2020) / B. STROUHALOVÁ, A. GEBHARDT, D. ERTLEN ET AL.

herbaceouslayer(Fig.13,Kreuz2007,Scheffer,Meyer1963).Underthesecondi-tions,theinputsoftheorganicmattertothesoilarenotverydifferentbetweenrelativelyclearforestsandsteppes,whichexplains,accordingtoFischer-Zujkov,Schmidt,Brande(1999),thataChernozemshowsacertainstabilityundertheforestvegetation.

Nonetheless,inthecaseofourstudy,itisveryhardtoimagineadistinctpatchofsteppenaturallyhavingadifferentevolutionduringthethousandsofyearswhichwouldresultinthesmall-scalesoilcoverdifferentiation.

4.4. Retrograde evolution of the soil

ThecatenaofHrušovanditscharacteristicsconfirmthatthesiteislocatedinatransitionzone.Itcorrespondstoachronosequencewhereonetypeofsoilisslowlytransformingintotheother,andweareabletosaythataLuvisolistrans-formedintoaChernozem.

Thisconclusioniscontradictorytothetraditionalviewofsoilformation(e.g.,Alexandrovskiy2000,Lorz,Saile2011).OurresultsgobeyondthehypothesisthatagriculturalmanagementpreventsthetransformationofaChernozemtoaLuvisol(e.g.Duchaufour1998,Pokornýetal.2015).ItislikelythatasetofhumaninfluenceandagriculturalpracticesinducetheformingoftheChernozem.Beneš(2004)proposestheideathattoday’spresenceofChernozemsintheLinearPotteryculturesettlementsisnotacause,butaconsequenceoftheancientagriculturalexploitation.HeclaimsthatasecondarygrasslandmayboostthedevelopmentoftheChernozem.Ourresultsconfirmthatthesoilevolutioninthestudiedcatenaoccurredinthisway.

Evenifitisnotwellknown,thesuggestedaffirmationofthissoilevolutionschemeisnotnew.Themicromorphologicalanalysescarriedoutinthe1970sbySmolíkovápresentedanidenticalconclusion(Smolíková1962,1969,1971,1972;Ložek,Smolíková1973;Němeček,Smolíková,Kutílek1990).Theseauthorscalledthesesoilspseudochernozemsandtheprocessesleadingtotheirformationretro-gressive soil evolution.Thefollowingagriculturalprocessesareinvolvedinthesoiltransformation:calcareous-magnesiumamendmentsblocktheleaching;cerealrootssimulatethesteppeconditions;thedeepploughinghomogenisesthesoilandthedistributionoftheorganicmaterialintoalargethickness.

The soil development recorded aprincipal turning point in placeswherewoodlandalternatedwiththesteppe.ThepolygenicChernozem(orpseudocher-nozem)startedtoexistwhenthevegetationontheLuvisolstransformedintoculturalsteppes(Smolíková1969).Bythemethodofsoilmicromorphology,wearenotabletobringanyexactconclusionconcerningthetimeofthevegetationchange.Weknowthatagriculturehasbeenpresentatthesiteforaverylong

Page 23: From Chernozem to Luvisol or from Luvisol to Chernozem? A ... · cords or ice core records (e.g. Muhs 2007; Sheldon, Tabor 2009). Paleosols formed at the Earth’s surface were in

FROM CHERNOZEM TO LUVISOL OR FROM LUVISOL TO CHERNOZEM? … 495

time–forthousandsofyears.AccordingtoAlexandrovskyi(2007),theformationofChernozemscanbeachievedwithin3000years.Thestudiedareamayhavebeenclearedatdifferentmomentsoftimeinhistory.

IntheEuropeanloessbelt,similarstudiesconcerningthepotentialofhu-manstoinfluencethesoilpropertiesinanimportantwayhavebeenobserved.Asabrightexampleoftheretrogradesoilevolution,wementiontheLuvisolsinBelgiumwheretheyareconsideredasman-madeAnthrosols(Langohr2001).Intheoceanicconditions,theclimaxvegetationontheloesssoilisadenseforest.InanundisturbedsiteoftheForêtdeSoignesforest,thesoilcanbecharacterisedasaRetisol(verydegradedloesssoils),whereastheagriculturallandintheregioncanbecharacterisedasaLuvisol,whichmeanstheprecursorofaRetisolinthesoilevolutionseries(Langohr2001).800kilometrestotheWestfromthesiteofHrušov,wefindthesamephaseshiftintheloesssoilevolutionseriesasinHrušovcausedbyhumanactivity.ThegenesisoftheLuvisolsisinfluencedbytheorganicandinorganicamendments,pastureintheforest,tillage,erosionandbioturbation(Langohr2001).

ThePhaeozemsinLowerRhinebasinandHallwegloessbeltareanotherexam-pleofhumaninducedchanges(Gerlachetal.2006;Kasielke,Poch,Wiedner2019).InbothcasesthedarksoilswereinitiallydescribedasdegradedChernozems.AfterdeeperanalysistheywerelabelledasLuvicPhaeozemsenrichedbyhighamountofblackcarboncomingfromtheslashandburntechniques.Here,aswellasinthepreviouscases,themaninfluencedthepedogenenisbysettingupofagriculturalpractices.InCzechia,therehasbeensofaronlyonestudyfocusedontheblackcarboncontentinChernozems(Danková,2012),whichdidnotconfirmthefirehistoryofChernozems.IntheHrušovcatena,werecordedpresenceofsomecharcoals,buttheanalysisofblackcarboncontentwasnotperformed.

5. Conclusion

ThedetailedstudyoftheHrušovcatenashowsthatthegivenenvironmentallocalconditionsofthepedogenesisareidentical.Wecanexcludethattheroleofclimate,exposition,reliefandparentmaterialplayasignificantroleinthedifferentiationofthesoilcover.

Maninfluencesthenaturalsoilsbythatmeasuresothatitishardlyabletodis-tinguishbetweenthenaturalandtheanthropogenicsoils.Theanalysedcatenais,therefore,anexampleofatransformingsoilsystem,inwhichtheinitialLuvisolsaretransformedintoChernozemsatthetoppartofthecatena.Ontheotherhand,atthelowerpartofthecatena,weobservetheconservationofaLuvisol,howeverconsiderablyreworkedbyman.Asaresultofcomplexprocesses,weobserveadif-ferentiationinthesoilcoveronasmallscale.

Page 24: From Chernozem to Luvisol or from Luvisol to Chernozem? A ... · cords or ice core records (e.g. Muhs 2007; Sheldon, Tabor 2009). Paleosols formed at the Earth’s surface were in

496 GEOGRAFIE 125/4 (2020) / B. STROUHALOVÁ, A. GEBHARDT, D. ERTLEN ET AL.

Asconsequence,Chernozemscannotnecessarilybeconsideredasanindicatorforthepaleoenvironmentofanaturalsteppe.SomeChernozemsmayhavebeenformednaturallyunderconditionsofadrycontinentalclimate,buttherearesomeChernozemswhichareaconsequenceofthepastandpresentagriculturalpractices.ALuvicChernozemisnotanobligatoryproductofthedegradationofaChernozemunderhumidconditions.Apparently,itcanbeaproductofhumaninfluenceonthesoilformingprocesses.

OurresultsareimpossibletoextrapolatetothewholeChernozemregion.ItishighlypossiblethatthescenariosofsoilformationmaybevariouswithinlargeChernozemregionsinCentralEurope.

References

ALEXANDROVSKIY,A.L.(2000):Holocenedevelopmentofsoilsinresponsetoenvironmentalchanges:theNovosvobodnayaarchaeologicalsite,NorthCaucasus.CATENA,41,1–3,237–248.

ALEXANDROVSKIY,A.L.(2007):Ratesofsoil-formingprocessesinthreemainmodelsofpedogenesis.RevistaMexicanadeCienciasGeológicas,24,2,283–292.

ALTERMANN,M.,RINKLEBE,J.,MERBACH,I.,KÖRSCHENS,M.,LANGER,U.,HOFMANN,B.(2005):Chernozem-SoiloftheYear2005.J.PlantNutr.Sci.2005,168,725–740.

ANTOINE,P.,ROUSSEAU,D.-D.,DEGEAI,J.-P.,MOINE,O.,LAGROIX,F.,KREUTZER,S.,FUCHS,M.,HATTÉ,C.,GAUTHIER,C.,SVOBODA,J.,LISÁ,L.(2013):High-resolutionre-cordoftheenvironmentalresponsetoclimaticvariationsduringtheLastInterglacial–GlacialcycleinCentralEurope:theloess-palaeosolsequenceofDolníVěstonice(CzechRepublic).QuaternaryScienceReviews,67,17–38.

BAILLY,F.(1972):ZurProblemderSchwartzerde-BildunginNorddeutschland.MitteilungenderdeutschenbodenkundlichenGesellschaft,15,3–10.

BAIZE,D.,GIRARD,M.-C.(2008):Référentielpédologique.AFES,Vesrailles.BENEŠ,J.(2004):PalaeoecologyoftheLBK:earliestagriculturalistandlandscapeofBohemia,

CzechRepublic.In:LBKDialogues.StudiesintheformationoftheLinearPotteryCulture.BARInternationalSeries,Oxford,143–150.

BRYSON,R.A.,MCENANEYDEWALL,K.(2007):Apaleoclimatologyworkbook:highresolu-tion,site-specific,macrophysicalclimatemodeling.TheMammothSiteofHotSprings,HotSprings.

BULLOCK,P.,FEDOROFF,N.,STOOPS,G.,TURSINA,T.,BABEL,U.(1985):Handbookforsoilthinsectiondescription.WaineResearchPublications,Wolverhampton.

CÉCILLON,L.,BARTHÈS,B.G.,GOMEZ,C.,ERTLEN,D.,GENOT,V.,HEDDE,M.,STEVENS,A.,BRUN,J.J.(2009):Assessmentandmonitoringofsoilqualityusingnear-infraredreflec-tancespectroscopy(NIRS).EuropeanJournalofSoilScience,60,5,770–784.

Českágeologickáslužba(2013):Geologickámapa.Českágeologickáslužba,Praha.ČÚZK(2019):GeoportálČÚZK,https://geoportal.cuzk.cz/(01.01.2019).CHYTRÝ,M.,KUČERA,T.,KOČÍ,M.(2001):KatalogbiotopůČeskérepubliky.AOPKČR,Praha.DANKOVÁ,L.(2012):AntrakologieaNMRspektroskopievpaleoekologickémvýzkumučerno-

zemí.PřírodovědeckáfakultaUK,Praha.

Page 25: From Chernozem to Luvisol or from Luvisol to Chernozem? A ... · cords or ice core records (e.g. Muhs 2007; Sheldon, Tabor 2009). Paleosols formed at the Earth’s surface were in

FROM CHERNOZEM TO LUVISOL OR FROM LUVISOL TO CHERNOZEM? … 497

DEÁK,J.,GEBHARDT,A.,LEWIS,H.,USAI,M.R.,LEE,H.(2017):SoilsDisturbedbyVegetationClearanceandTillage.In:Nicosia,C.,Stoops,G.(eds.):ArchaeologicalSoilandSedimentMicromorphology.JohnWiley&Sons,Ltd,Chichester,UK,231–264.

DOKUCHAEV,V.V.(1883):RusskijCernozem.Dissertation.SanktPetersburg.DRESLEROVÁ,D.(2012):HumanResponsetoPotentialRobustClimateChangearound5500

calBPintheTerritoryofBohemia(theCzechRepublic).InterdisciplinariaArchaeologicaNaturalSciencesinArchaeology,III,1,43–55.

DRESLEROVÁ,D.,KOZÁKOVÁ,R., CHUMAN,T., STROUHALOVÁ,B.,ABRAHAM,V.,PONIŠTIAK,Š.,ŠEFRNA,L.(2019):Settlementactivityinlaterprehistory:invisibleinthearchaeologicalrecordbutdocumentedbypollenandsedimentaryevidence.ArchaeologicalandAnthropologicalSciences,11,5,1683–1700.

DUCHAUFOUR,P.(1998):HandbookofPedology.A.A.Balkema,Rotterdam,Brookfield.ECKMEIER,E.,GERLACH,R.,GEHRT,E.,SCHMIDT,M.W.I.(2007):PedogenesisofCherno-

zemsinCentralEurope–Areview.Geoderma,139,3–4,288–299.ESDC(2013):EuropeanSoilDataCentre,http://eusoils.jrc.ec.europa.eu/data.html(25.04.2013).FAO,ISRIC,ISSS(2006):Worldreferencebaseforsoilresources2006.Aframeworkforinter-

nationalclassification,correlationandcommunication.FoodandagricultureorganizationoftheUnitednations,Rome.

FEDOROFF,N.,BRESSON,L.M.,COURTY,M.A.(1987):MicromorphologiedesSols–SoilMicromorphology.Associationfrançaisepourl’étudedusol,Paris.

FISCHER-ZUJKOV,U.,SCHMIDT,R.,BRANDE,A.(1999):DieSchwarzerdenNordostdeutsch-landundihreStellunginderholozänenLandschaftsentwicklung.J.PlantNutr.SoilSci,162,1999,443–449.

FLAŠAROVÁ,K.,STROUHALOVÁ,B.,ŠEFRNA,L.,VERRECCHIA,E.,LAUER,T.,JUŘIČKOVÁ,L.,KOLAŘÍK,P.,LOŽEK,V.(2020):MultiproxyevidenceofmiddleandLatePleistoceneen-vironmentalchangesintheloess-paleosolsequenceofBůhzdař(CzechRepublic).QuaternaryInternationalInternational,552,4–14,https://doi.org/10.1016/j.quaint.2019.10.004.

FAO(2015):Worldreferencebaseforsoilresources2014,update2015internationalsoilclas-sificationsystemfornamingsoilsandcreatinglegendsforsoilmaps.FAO,Rome.

FROEHLICHER,L.,SCHWARTZ,D.,ERTLEN,D.,TRAUTMANN,M.(2016):Hedges,col-luviumandlynchetsalongareferencetoposequence(Habsheim,Alsace,France):historyoferosioninaloessarea.Quaternaire,27,2,173–185.

GEBHARDT,A.(1993):Evolutiondupaléopaysageagricoledanslenord-ouestdelaFrance.Apportdelamicromorphologie.TheHolocene,3,3,333–341.

GEBHARDT,A.(1995):Soilmicromorphologicaldatafromexperimentalandtraditionalag-riculture.Archaeologicalsedimentsandsoils:analysis,interpretationandmanagement,Archetypepress,London,https://hal.archives-ouvertes.fr/hal-02275501/document,5–40.

GEBHARDT, A., FECHNER, K., OCCHIETTI, S. (2014): Grandes phases de pédogenèse,d’érosionetd’anthropisationdessolsaucoursdelasecondemoitiédel’HolocèneenLorraine(France).ArcheoSciences,1,38,7–29.

GERLACH,R.,BAUMEWERD-SCHMIDT,H.,VANDENBORG,K.,ECKMEIER,E.,SCHMIDT,M.W.I.(2006):PrehistoricalterationofsoilintheLowerRhineBasin,NorthwestGermany–archaeological,14Candgeochemicalevidence.Geoderma,136,1–2,38–50.

HAASE,D.,FINK,J.,HAASE,G.,RUSKE,R.,PÉCSI,M.,RICHTER,H.,ALTERMANN,M.,JÄGER,K.-D.(2007):LoessinEurope–itsspatialdistributionbasedonaEuropeanLoessMap,scale1:2,500,000.QuaternaryScienceReviews,16,9–10,1301–1312.

Page 26: From Chernozem to Luvisol or from Luvisol to Chernozem? A ... · cords or ice core records (e.g. Muhs 2007; Sheldon, Tabor 2009). Paleosols formed at the Earth’s surface were in

498 GEOGRAFIE 125/4 (2020) / B. STROUHALOVÁ, A. GEBHARDT, D. ERTLEN ET AL.

HAUPTMAN,I.,KUKAL,Z.,POŠMOURNÝ,K.,NĚMEC,J.(2009):PůdavČeskérepublice.MinisterstvoživotníhoprostředíaMinisterstvozemědělství,Praha.

HEJCMAN,M.,HEJCMANOVÁ,P.,PAVLŮ,V.,BENEŠ,J.(2013):Originandhistoryofgrass-landsinCentralEurope–areview.GrassandForageScience,68,3,345–363.

HOŠEK,J.,HAMBACH,U.,LISÁ,L.,GRYGAR,T.M.,HORÁČEK,I.,MESZNER,S.,KNÉSL,I.(2015):Anintegratedrock-magneticandgeochemicalapproachtoloess/paleosolsequencesfromBohemiaandMoravia(CzechRepublic):ImplicationsfortheUpperPleistocenepaleoen-vironmentincentralEurope.Palaeogeography,Palaeoclimatology,Palaeoecology,418,344–358.

JONGERIUS,A.(1970):SomemorphologicalaspectsofregroupingphenomenainDutchsoils.Geoderma,4,3,311–331.

KABAŁA,C.,PRZYBYŁ,A.,KRUPSKI,M.,ŁABAZ,B.,WAROSZEWSKI,J.(2019):Origin,ageandtransformationofChernozemsinnorthernCentralEurope–NewdatafromNeolithicearthenbarrowsinSWPoland.CATENA,180,83–102.

KASIELKE,T.,POCH,R.M.,WIEDNER,K.(2019):ChernozemrelicsintheHellwegLoessBelt(Westphalia,NWGermany)–Naturalorman-made?QuaternaryInternational,502,296–308.

KOŁODYŃSKA-GAWRYSIAK,R.,POESEN,J.,GAWRYSIAK,L.(2018):Assessmentoflong-termHolocenesoilerosionrates inPolish loessareasusingsedimentaryarchivesfromcloseddepressions:AssessmentofsoilerosionratesinloessareasusingCDs.EarthSurfaceProcessesandLandforms,43,5,978–1000.

KREUZ,A.(2007):ClosedforestoropenwoodlandasnaturalvegetationinthesurroundingsofLinearbandkeramiksettlements?VegetationHistoryandArchaeobotany,17,1,51–64.

LANGOHR,R.(2001):L’anthopisationdupaysagepédologiqueagricoledelaBelgiquedepuisleNéolithiqueancien–Apportdel’archéopédologie.ÉtudeetGestiondesSols,8,2,103–118.

LESER, H.,MAQSUD, N. (1975): Spätglaziale bis frühhlozäne SteppenbodenbildungundKlimaentwicklungimsüdlichenRheinhessischenTafel-undHügelland.EiszeitalterundGegenwart,26,118–130.

LORZ,C.,SAILE,T.(2011):AnthropogenicpedogenesisofChernozemsinGermany?–Acriticalreview.BlackSoilsandBlackSediments–ArchivesofLandscapeEvolution,243,2,273–279.

LOŽEK,V.(1973):Přírodavečtvrtohorách.Academia,Praha.LOŽEK,V.,SMOLÍKOVÁ,L.(1973):DerBodenkomplexvonVelkýHubenovalsBeispieleiner

retrogradenBodenentwicklungimLaufederNacheiszeit.Časopispromineralogiiageologii,18,4,365–383.

LOŽEK,V.,SMOLÍKOVÁ,L.(1978):DienacheiszeitlichenBodenabfolgenvonPoplzeundŠtětíalsBelegderBoden-undLandschaftentwicklungimBöhmischenTschernosemgebiet.In:BeiträgezurQuatär-undLandscahftsforschungFestschriftzum60.GeburtstagvonJuliusFink.VerlagF.Hirt,Wien,531–549.

MACPHAIL,R.I.,COURTY,M.A.,GEBHARDT,A.(1990):SoilmicromorphologicalevidenceofearlyagricultureinNorthWestEurope.WorldArchaeology,22,1,53–69.

MACPHAIL,R.I.,GOLDBERG,P.(2017):AppliedSoilsandMicromorphologyinArchaeology.CambridgeUniversityPress.

MASON, J.A., JACOBS,P.M.,GRULEY,K.E.,REYERSON,P.,HANSON,P.R.(2016):Parentmaterialinfluenceonsoilresponsetovegetationchange,SoutheasternMinnesota,U.S.A.Geoderma,275,1–17.

MUHS,D.(2007):Loessdeposits,originsandproperties.Elsevier,1405–1418.

Page 27: From Chernozem to Luvisol or from Luvisol to Chernozem? A ... · cords or ice core records (e.g. Muhs 2007; Sheldon, Tabor 2009). Paleosols formed at the Earth’s surface were in

FROM CHERNOZEM TO LUVISOL OR FROM LUVISOL TO CHERNOZEM? … 499

NĚMEČEK, J.,MACKŮ, J.,VOKOUN, J.,VAVŘÍČEK,D.,NOVÁK,P.(2001):TaxonomickýklasifikačnísystémpůdČR.ČZUPrahaaVÚMOPPraha,Praha.

NĚMĚČEK,J.,MÜHLHANSELOVÁ,M.,MACKŮ,J.,VOKOUN,J.,VAVŘÍČEK,D.,NOVÁK,P.(2011):Taxonomickýklasifikačnísystémpůd.2.upravenévydání.Praha.

NĚMEČEK,J.,SMOLÍKOVÁ,L.,KUTÍLEK,M.(1990):Pedologieapaleopedologie.Academia,Praha.

NEUHÄUSELOVÁ,Z.(1998):MapapotencionálnípřirozenévegetaceČeskérepubliky.Aca-demia,Praha.

PAVLŮ,I.,ZÁPOTOCKÁ,M.(2007):ArcheologiepravěkýchČech.Sv.3Neolit.ArcheologickýústavAVČR,Praha.

POKORNÝ,P.,CHYTRÝ,M.,JUŘIČKOVÁ,L.,SÁDLO,J.,NOVÁK,J.,LOŽEK,V.(2015):Mid-HolocenebottleneckforcentralEuropeandrygrasslands:DidsteppesurvivetheforestoptimuminnorthernBohemia,CzechRepublic?TheHolocene,25,4,716–726.

VÚMOP(2019):Půdavmapách,https://mapy.vumop.cz/(15.4.2019).QUÉNARD,L.,SAMOUËLIAN,A.,LAROCHE,B.,CORNU,S.(2011):Lessivageasamajor

processofsoilformation:Arevisitationofexistingdata.Geoderma,16,135–147.ROHDENBURG,H.,MEYER,B.(1968):ZurDatierungundBodengeschichtemitteleuropäischer

Oberflächenböden(Schwarzerde,Parabraunerde,Kalksteinbraunlehm):SpätglazialoderHolozän?GöttingerBodenkundlicheBerichte,6,127–212.

SCHEFFER,F.,MEYER,B.(1963):Berührungspunktederarchäologischenundbodenkundli-chenForschung.NeueAusgrabungenundForschungeninNiedersachsen,1,1–18.

SHELDON,N.D.,TABOR,N.J.(2009):Quantitativepaleoenvironmentalandpaleoclimaticreconstructionusingpaleosols.Earth-ScienceReviews,95,1–2,1–52.

SMOLÍKOVÁ,L.(1962):Půdytypulessivé(parahnědozemě)vokolíLetovic.Časopispromine-ralogiiageologii,VII,316–321.

SMOLÍKOVÁ, L. (1969): Polygeneticképůdy rázupseudočernozemívBoskovickébrázdě.Časopispromineralogiiageologii,14,2,171–178.

SMOLÍKOVÁ,L.(1971):GesetzmässigkeitenderBodenentwicklungimQuartär.EiszeitalterundGegenwart,22,156–177.

SMOLÍKOVÁ,L.(1972):Thesignificanceofsoilmicromorphologyforthesolutionofsoilevalu-ationinthegeologyoftheQuaternary.Thirdinternationalworking-meetingonsoilmicro-morphologyWroclaw,1969.Zeszytyproblemowepostepownaukrolniczych,123,543–557.

STOOPS,G.(2003):GuidelinesforAnalysisandDescriptionofSoilandRegolithThinsections.SoilScienceSocietyofAmerica.

STOOPS,G.,MARCELINO,V.,MEES,F.(2010):InterpretationofMicromorphologicalFeaturesofSoilsandRegoliths.Elsevier.

STROUHALOVÁ,B.,ERTLEN,D.,ŠEFRNA,L.,NOVÁK,T.J.,VIRÁGH,K.,SCHWARTZ,D.(2019):Assessingthevegetationhistoryofeuropeanchernozemsthroughqualitativenearinfraredspectroscopy.Quaternaire,30,3,227–241.

TOLASZ,R.etal.(2007):AtlaspodnebíČeska.CzechHydrometeorologicalInstitute,PalackýUniversity,Praha,Olomouc.

VANVLIET-LANOE,B.,FAGNART, J.P.,LANGOR,R.,MUNAUT,A.(1992):Importancedelasuccessiondesphasesécologiquesanciennesetactuellesdansladifférenciationdessolslessivésdelacouvertureloessiqued’Europeoccidentale:argumentationstratigraphiqueetarchéologique,Sciencedusol,30,2,75–93.

Page 28: From Chernozem to Luvisol or from Luvisol to Chernozem? A ... · cords or ice core records (e.g. Muhs 2007; Sheldon, Tabor 2009). Paleosols formed at the Earth’s surface were in

500 GEOGRAFIE 125/4 (2020) / B. STROUHALOVÁ, A. GEBHARDT, D. ERTLEN ET AL.

VONSUCHODOLETZ,H.,TINAPP,C.,LAUER,T.,GLASER,B.,STÄUBLE,H.,KÜHN,P.,ZIELHOFER,C.(2019):DistributionofChernozemsandPhaeozemsinCentralGermanyduringtheNeolithicperiod.QuaternaryInternational,511,166–184.

VYSLOUŽILOVÁ,B.,DANKOVÁ,L.,ERTLEN,D.,NOVÁK,J.,SCHWARTZ,D.,ŠEFRNA,L.,DELHON,C.,BERGER,J.-F.(2014):VegetationhistoryofchernozemsintheCzechRepublic.VegetationHistoryandArchaeobotany,23,97–108.

ZAMANIAN,K.,PUSTOVOYTOV,K.,KUZYAKOV,Y.(2016):Pedogeniccarbonates:Formsandformationprocesses.Earth-ScienceReviews,157,1–17.

ORCID

BARBORASTROUHALOVÁhttps://orcid.org/0000-0002-1430-4967

DAMIENERTLENhttps://orcid.org/0000-0002-0324-2342

LUDĚKŠEFRNAhttps://orcid.org/0000-0003-1032-9953

KRISTÝNAFLAŠAROVÁhttps://orcid.org/0000-0002-9176-8829

PETRKOLAŘÍKhttps://orcid.org/0000-0003-4440-902X