fuel cell reformer control

39
Fuel Cell Reformer Control Karel Schnebele May 5, 2006

Upload: others

Post on 24-Apr-2022

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Fuel Cell Reformer Control

Fuel Cell Reformer Control

Karel SchnebeleMay 5, 2006

Page 2: Fuel Cell Reformer Control

Presentation Outline

IntroductionDevelopment of the state space modelModeling the systemSISO controlMultivariable controlRGA analysis and pairingDisturbance rejectionDirectional sensitivity

Page 3: Fuel Cell Reformer Control

Introduction

Purpose: create final projectModel

Steam reformer for residential fuel cell plantFrom Jahn and Schroer, 2005

Page 4: Fuel Cell Reformer Control

Development of State Space Model:Model Component Relationships

Single lines depict heat transfer (solid is conduction, dashed is radiation), double lines depict the burner gas flow, and triple lines depict the reformategas flow.

Page 5: Fuel Cell Reformer Control

Development of State Space Model:Dynamic Equations

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )ERCHCHpEROHOHp

RFGFFpERRERBBRR

R

AEACHECHCHp

OHEOHOHpiOHERFFpERREE

E

GBBGRBBRWBBBpBFFBB

B

GFFFpFGWGGWGBBGG

G

AWBBpAWWAWGGWW

W

TTncTTncnhnh

TTncTTkTTkdt

dTC

TTkTTnc

TTncnrTTncTTkdt

dTC

TTkTTkTTncTTkdt

dTC

TTnckTTkTTkdt

dTC

TTncTTkTTkdt

dTC

−⋅−−⋅−Δ⋅Δ−Δ⋅Δ−

−⋅+−−−=

−−−⋅−

−⋅−⋅−−⋅+−=

−−−−−⋅−−=

−⋅⋅+−−−=

−⋅−−−−=

⋅⋅⋅⋅

⋅⋅⋅

4422

444

2222

,,1100

,44

E,

,,,

44,

,

,

Page 6: Fuel Cell Reformer Control

Development of State Space Model:Changing nCH4i

0 100 200 300 400 500 600 700 800 900400

500

600

700

800

900

1000

1100

1200

1300

time (sec)

Tem

pera

ture

(K

)

Tw =151.937Tg =368.1042Tb =487.445Te =993.785Tr =754.7771

Tw

Tg

TbTe

Tr

0 100 200 300 400 500 600 700 800 900400

600

800

1000

1200

1400

1600

time (sec)

Tem

pera

ture

(K

)

Tw =172.8318Tg =428.0062Tb =577.0143Te =1208.8189Tr =898.7824

Tw

Tg

TbTe

Tr

initial methane flow rate=10 SLPMsteam to carbon ratio=3.5excess air ratio=5

initial methane flow=15 SLPMsteam to carbon ratio=3.5excess air ratio=5

Page 7: Fuel Cell Reformer Control

Development of State Space Model:Changing Steam to Carbon Ratio

0 100 200 300 400 500 600 700 800 900400

500

600

700

800

900

1000

1100

1200

1300

time (sec)

Tem

pera

ture

(K

)

Tw =146.5796Tg =352.8994Tb =464.8156Te =916.397Tr =709.2319

Tw

Tg

TbTe

Tr

0 100 200 300 400 500 600 700 800 900400

500

600

700

800

900

1000

1100

1200

1300

1400

time (sec)

Tem

pera

ture

(K

)

Tw =158.9264Tg =388.0229Tb =517.3146Te =1069.7957Tr =807.7388

Tw

Tg

TbTe

Tr

initial methane flow rate=10 SLPMsteam to carbon ratio=3excess air ratio=5

initial methane flow rate=10 SLPMsteam to carbon ratio=4excess air ratio=5

Page 8: Fuel Cell Reformer Control

Development of State Space Model:Changing Excess Air Ratio

0 100 200 300 400 500 600 700 800 900400

500

600

700

800

900

1000

1100

1200

1300

1400

time (sec)

Tem

pera

ture

(K

)

Tw =213.1884Tg =487.5032Tb =666.8927Te =1124.999Tr =907.7055

Tw

Tg

TbTe

Tr

0 100 200 300 400 500 600 700 800 900400

500

600

700

800

900

1000

1100

1200

1300

time (sec)

Tem

pera

ture

(K

)

Tw =151.937Tg =368.1042Tb =487.445Te =993.785Tr =754.7771

Tw

Tg

TbTe

Tr

initial methane flow rate=10 SLPMsteam to carbon ratio=3.5excess air ratio=4

initial methane flow rate=10 SLPMsteam to carbon ratio=3.5excess air ratio=5

Page 9: Fuel Cell Reformer Control

Development of State Space Model:Specified values

Reformer temp = 700 deg CSteam to carbon ~ 3.5Methane flow rate ~ 10 SLPM

Page 10: Fuel Cell Reformer Control

Development of State Space Model:Output Temperatures

0 100 200 300 400 500 600 700 800400

500

600

700

800

900

1000

1100

1200

time (sec)

Tem

pera

ture

(K

)

Tw =145.5671Tg =350.0323Tb =460.524Te =897.0203Tr =700.003

Tw

Tg

TbTe

Tr

Methane flow rate = 9.5 SLPMSteam to carbon=3.0076Excess air ratio=5

Page 11: Fuel Cell Reformer Control

Development of State Space Model:States, Inputs, and Outputs

States =

⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢

−−−−−

=

⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢

RsR

EsE

BsB

GsG

WsW

TTTTTTTTTT

xxxxx

5

4

3

2

1

Inputs = ⎥⎦

⎤⎢⎣

⎡=⎥

⎤⎢⎣

⎡nv

ratioairexcessuu )(

2

1 λOutputs = ⎥

⎤⎢⎣

⎡=⎥

⎤⎢⎣

⎡=⎥

⎤⎢⎣

R

B

TT

yy

gg

2

1

2

1

Page 12: Fuel Cell Reformer Control

Development of State Space Model:Matrices

''''''

DuCxyBuAxx

+=+=&

j

iij x

fA∂∂

=j

iij u

fB∂∂

=

j

iij x

gC∂∂

=j

iij u

gD∂∂

=

Page 13: Fuel Cell Reformer Control

Development of State Space Model:Matrices

⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢

−×−

−−−

×−

=

007322.0004675.0104285.100004436.000472.0000008232.00058625.0020455.0034462.0

000018443.0004911.0002115.000010098.7001593.0

4

4

A

⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢

−−−−−−

−−

=

0119.80075294.06894.5705429.0

8766.20320898.20762.15614687.0888.2502424.0

B ⎥⎦

⎤⎢⎣

⎡=

1000000100

C ⎥⎦

⎤⎢⎣

⎡=

0000

D

Page 14: Fuel Cell Reformer Control

Development of State Space Model:Final Subsystem

2

Tr

1

Tb

Uniform RandomNumber3

Uniform RandomNumber2

x' = Ax+Bu y = Cx+Du

State-Space1

Product

-C-

Constant4

-C-

Constant3

-C-

Constant2

5

Constant1

-C-

Constant

2

nv

1

lambda

Page 15: Fuel Cell Reformer Control

Development of State Space Model:Subsystem in Large System

Tr

reformer tempmethane flow rate

excess air ratio

Tb

burner templambda

nv

Tb

Tr

Subsystem3

Page 16: Fuel Cell Reformer Control

Model Development

0 1000 2000 3000 4000 5000440

445

450

455

460

465

Time (sec)

Tb

(deg

C)

0 1000 2000 3000 4000 5000675

680

685

690

695

700

705

Time (sec)

Tr

(deg

C)

0 1000 2000 3000 4000 5000

4.8

5

5.2

5.4

5.6

Time (sec)

Exc

ess

Air

Rat

io

0 1000 2000 3000 4000 50005.5

6

6.5

7

7.5

8

Time (sec)

Met

hane

Flo

w R

ate

to B

urne

r (S

LPM

)

Temperature responses to excess air ratio change of 0.5

Lead-lag First order

Page 17: Fuel Cell Reformer Control

0 1000 2000 3000 4000 5000440

445

450

455

460

465

Time (sec)

Tb

(deg

C)

0 1000 2000 3000 4000 5000675

680

685

690

695

700

705

Time (sec)

Tr

(deg

C)

0 1000 2000 3000 4000 50004

4.5

5

5.5

6

Time (sec)

Exc

ess

Air

Rat

io

0 1000 2000 3000 4000 50006.5

6.6

6.7

6.8

6.9

7

7.1

7.2

7.3

Time (sec)

Met

hane

Flo

w R

ate

to B

urne

r (S

LPM

)

Temperature responses to a methane flow rate change of 0.5658 SLPM

Lead-lag First order

Page 18: Fuel Cell Reformer Control

Model Parameters

1+=

skpg

pp τ ⎟

⎟⎠

⎞⎜⎜⎝

++

=11

sskpg

p

np τ

τ

uykp

ΔΔ

=

First order equation: Lead-lag equation:

uykp

ΔΔ

=

occurs change of 63.2% when time=pτ pn ττ , find toiterate

( )( )

( )( )

( ) ( )⎥⎦

⎤⎢⎣

⎡=⎥

⎤⎢⎣

⎥⎥⎥⎥

⎢⎢⎢⎢

+°−

+°−

++

°−+

°−

21

21

1sec71069.35

1sec730506.45

1sec4001sec52039.19

sec4001sec500548.28

yy

uu

sC

sC

ssC

ssC

Process Transfer Functions

Page 19: Fuel Cell Reformer Control

Process vs Model

0 1000 2000 3000 4000440

445

450

455

460

465

Time (sec)

Tb

(deg

C)

0 1000 2000 3000 4000675

680

685

690

695

700

705

Time (sec)

Tr

(deg

C)

0 1000 2000 3000 40004.5

5

5.5

6

Time (sec)

Exc

ess

Air

Rat

io

0 1000 2000 3000 40005.5

6

6.5

7

7.5

8

Time (sec)

Met

hane

Flo

w R

ate

to B

urne

r (S

LPM

)

Model and process responses to setpoint change in excess air ratio

Page 20: Fuel Cell Reformer Control

Process vs Model

0 1000 2000 3000 4000440

445

450

455

460

465

Time (sec)

Tb

(deg

C)

0 1000 2000 3000 4000675

680

685

690

695

700

705

Time (sec)

Tr (d

eg C

)

0 1000 2000 3000 40004

4.5

5

5.5

6

Time (sec)

Exc

ess

Air

Rat

io

0 1000 2000 3000 40006.5

6.6

6.7

6.8

6.9

7

7.1

7.2

7.3

Time (sec)

Met

hane

Flo

w R

ate

to B

urne

r (S

LPM

)

Model and process responses to setpoint change in methane flow rate

Page 21: Fuel Cell Reformer Control

SISO Controller Development:IMC-based PID control strategy

⎟⎟⎠

⎞⎜⎜⎝

⎛+=

skcg

Ic τ

11

PI controller w/ disturbance rejection for first order transfer functions

PI controller w/ filter term for lead-lag transfer functions

λλτ

kpkc p −=

2

p

pI τ

λλττ

22 −=

⎟⎟⎠

⎞⎜⎜⎝

⎛+⎟⎟

⎞⎜⎜⎝

⎛+=

1111ss

kcgFI

c ττ

λτkp

kc p=

pI ττ = nF ττ =

Page 22: Fuel Cell Reformer Control

Simulink Diagram: SISO control

step reformer temp

step burner temp

r

setpoint

nv

methane flow rate

1

500s+1

filter

lambda

excess air ratio

lambda

nv

Tb

Tr

Subsystem1

Tr

Reformer Temperature

PID

5

Tb

Burner Temperatue

Burner temperature controlled by the excess air ratio

Page 23: Fuel Cell Reformer Control

Burner Temperature Control

0 10 20 30 40460

470

480

490

500

510

Time (min)

Tb

(deg

C)

0 10 20 30 40 50 60690

700

710

720

730

740

750

760

770

Time (min)

Tr (d

eg C

)

0 10 20 30 403.6

3.8

4

4.2

4.4

4.6

4.8

5

5.2

Time (min)

Exc

ess

Air

Rat

io

0 10 20 30 405.5

6

6.5

7

7.5

8

Time (min)

Met

hane

Flo

w R

ate

to B

urne

r (S

LPM

)

lambda = 25

lambda = 75

lambda = 100lambda = 150

setpoint

0 10 20 30 40460

470

480

490

500

510

Time (min)Tb

(deg

C)

0 20 40 60 80680

700

720

740

760

780

Time (min)

Tr (d

eg C

)

0 20 40 60 80 1004

4.5

5

5.5

6

Time (min)

Exc

ess

Air

Rat

io

0 20 40 60 80 1004.5

5

5.5

6

6.5

7

Time (min)

Met

hane

Flo

w R

ate

to B

urne

r (S

LPM

)

lambda = 25

lambda =75

lambda =100lambda = 150

setpoint

Control by excess air ratio

Control by methane flow rate

Page 24: Fuel Cell Reformer Control

Reformer Temperature Control

0 10 20 30 40 50450

500

550

600

Time (min)

Tb

(deg

C)

0 10 20 30 40 50680

700

720

740

760

780

Time (min)

Tr (d

eg C

)

0 10 20 30 40 500

1

2

3

4

5

6

Time (min)

Exc

ess

Air

Rat

io

0 10 20 30 40 505.5

6

6.5

7

7.5

8

Time (min)

Met

hane

Flo

w R

ate

to B

urne

r (S

LPM

)

lambda = 400

lambda = 500

lambda = 600lambda = 700

setpoint

0 10 20 30 40 50440

460

480

500

520

540

560

580

Time (min)Tb

(deg

C)

0 10 20 30 40 50680

700

720

740

760

780

Time (min)

Tr (d

eg C

)

0 10 20 30 40 504

4.5

5

5.5

6

Time (min)

Exc

ess

Air

Rat

io

0 10 20 30 40 501

2

3

4

5

6

7

Time (min)

Met

hane

Flo

w R

ate

to B

urne

r (S

LPM

)

lambda = 400

lambda = 500

lambda = 600lambda = 700

setpoint

Control by excess air ratio

Control by methane flow rate

Page 25: Fuel Cell Reformer Control

SISO Controllersy1-u1 y1-u2

y2-u1 y2-u2

⎟⎠⎞

⎜⎝⎛

+⎟⎠⎞

⎜⎝⎛ +−=

15001

400111401.011 ss

gc ⎟⎠⎞

⎜⎝⎛

+⎟⎠⎞

⎜⎝⎛ +−=

15201

400112063.012 ss

gc

⎟⎠⎞

⎜⎝⎛ +−=

sgc 85.706

110315.021 ⎟⎠⎞

⎜⎝⎛ +−=

sgc 96.692

110383.022

Page 26: Fuel Cell Reformer Control

Multivariable Control: RGA Analysis

⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢

−−−

−−

−=Λ

21122211

2211

21122211

1221

21122211

2112

21122211

2211

kkkkkk

kkkkkk

kkkkkk

kkkkkk

⎥⎦

⎤⎢⎣

⎡−−−−

=69.35506.4539.19548.28

K ⎥⎦

⎤⎢⎣

⎡−

−=Λ

463.7463.6463.6463.7

Process Gain Matrix Relative Gain Array

Do not pair on negative relative gain y1-u1 and y2-u2 pairings

Page 27: Fuel Cell Reformer Control

Simulink Diagram: y1-u1, y2-u2 pairing

Tr

reformer temperature

Trset

reformer setpoint

nv

methane flow rate

1

500s+1

filter

lambda

excess air ratioTb

burner temperature

Tbset

burner setpoint

lambda

nv

Tb

Tr

Subsystem6Step6

Step13

PID

PID

6.5856

5

Page 28: Fuel Cell Reformer Control

Multivariable Control:Setpoint changes in both temperatures

0 50 100 150 200 250 300440

460

480

500

520

540

Time (min)

Tb

(deg

C)

0 50 100 150 200 250 300680

700

720

740

760

780

Time (min)

Tr

(deg

C)

0 50 100 150 200 250 3004.6

4.8

5

5.2

5.4

5.6

Time (min)

Exc

ess

Air

Rat

io

0 50 100 150 200 250 3003

4

5

6

7

Time (min)

Met

hane

Flo

w R

ate

to B

urne

r (S

LPM

)

Page 29: Fuel Cell Reformer Control

Multivariable Control:Setpoint changes in only one temperature

0 50 100 150 200 250 300 350455

460

465

470

475

480

485

Time (min)

Tb

(deg

C)

0 100 200 300 400695

700

705

710

715

720

Time (min)

Tr

(deg

C)

0 100 200 300 4000

1

2

3

4

5

6

Time (min)

Exc

ess

Air

Rat

io

0 100 200 300 4006

7

8

9

10

11

12

13

Time (min)

Met

hane

Flo

w R

ate

to B

urne

r (S

LPM

)

0 50 100 150 200 250 300455

460

465

470

475

480

485

Time (min)T

b (d

eg C

)0 100 200 300 400

690

700

710

720

730

740

Time (min)

Tr

(deg

C)

0 100 200 300 4004

5

6

7

8

9

10

Time (min)

Exc

ess

Air

Rat

io

0 100 200 300 4000

1

2

3

4

5

6

7

Time (min)

Met

hane

Flo

w R

ate

to B

urne

r (S

LPM

)

Setpoint change in burner temperature

Setpoint change in reformer temperature

Page 30: Fuel Cell Reformer Control

Disturbance Rejection:First-order controller differences

⎟⎠⎞

⎜⎝⎛ +−=

sgc 710

110332.0

⎟⎟⎠

⎞⎜⎜⎝

⎛+=

skcg

Ic τ

11

PI controller w/ disturbance rejection for first order transfer functions

λλτ

kpkc p −=

2

p

pI τ

λλττ

22 −=

⎟⎟⎠

⎞⎜⎜⎝

⎛+=

skcg

Ic τ

11

PI controller w/o disturbance rejection for first order transfer functions

λτkp

kc p=

pI ττ =

⎟⎠⎞

⎜⎝⎛ +−=

sgc 96.692

110383.0

Page 31: Fuel Cell Reformer Control

Simulink Diagram:System with catalyst sintering disturbance

Tr

reformer temp

Trset

reformer setpoint

nv

methane flow rate

lambda

excess air ratio

Tb

burner temp

Tbset

burner setpoint

1

500s+1

Transfer Fcn7

lambda

nv

Sintering (%)

Tb

Tr

Subsystem9

Step16

Step15

Step14

PID

PID

6.5856

5

Page 32: Fuel Cell Reformer Control

Disturbance Rejection:100% Sintering

0 50 100 150 200440

460

480

500

520

540

Time (min)

Tb

(deg

C)

0 100 200 300 400680

700

720

740

760

780

800

Time (min)

Tr

(deg

C)

0 100 200 300 4001

2

3

4

5

6

Time (min)

Exc

ess

Air

Rat

io

0 100 200 300 4003

4

5

6

7

8

9

10

Time (min)

Met

hane

Flo

w R

ate

to B

urne

r (S

LPM

)

w/ dist rejection

w/o dist rejection

Page 33: Fuel Cell Reformer Control

Directional Sensitivity:Scaling the ranges

6.584613.17126.58460u 2 (methane)

51050u 1 (excess air)

249.997950700.003450.006y 2 (reformer)

200660.524460.524260.524y 1 (burner)

½ RangeMax ValueNominal ValueMin Value

⎥⎥⎥

⎢⎢⎢

=

⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢

=

997.24910

02001

)2(1

0

0)1(

1

21

21

yrange

yrangeSo

⎥⎥⎥

⎢⎢⎢

=

⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢

=

5846.610

051

)2(1

0

0)1(

1

21

21

urange

urangeSI

Scaled Output Matrix Scaled Input Matrix

Page 34: Fuel Cell Reformer Control

Directional Sensitivity:Scaled gain matrix

1−∗ ××= IO SGSG

⎥⎦

⎤⎢⎣

⎡−−−−

=9402.09101.06385.07137.0

*G

Page 35: Fuel Cell Reformer Control

Directional Sensitivity:SVD analysis

TVUG Σ=∗

T

⎥⎦

⎤⎢⎣

⎡−⎥

⎤⎢⎣

⎡⎥⎦

⎤⎢⎣

⎡−

−−=⎥

⎤⎢⎣

⎡−−−−

7133.07009.07009.07133.0

0555.0006206.1

5903.08072.08072.05903.0

9402.09101.06385.07137.0

strongest output direction

weakest output direction

strongest input direction

weakest input direction

Page 36: Fuel Cell Reformer Control

Directional Sensitivity:Scaling back to the process

∗− ×= ySy O1

⎥⎦

⎤⎢⎣

⎡−−

=⎥⎦

⎤⎢⎣

⎡7976.20106.118

2

1

yy

Strong Direction

⎥⎦

⎤⎢⎣

⎡−=⎥

⎤⎢⎣

⎡5732.147

44.161

2

1

yy

Weak Direction

-1 -0.5 0 0.5 1-1

-0.5

0

0.5

1

u1

u2

-1 0 1

-1.5

-1

-0.5

0

0.5

1

1.5

y1

y2

Input to Output Mapping

Page 37: Fuel Cell Reformer Control

Directional Sensitivity:Changes in the strong direction

0 50 100 150 200 250 300440

445

450

455

460

465

Time (min)

Tb

(deg

C)

0 50 100 150 200 250 300675

680

685

690

695

700

705

Time (min)

Tr

(deg

C)

0 50 100 150 200 250 300

4.9

5

5.1

5.2

5.3

Time (min)

Exc

ess

Air

Rat

io

0 50 100 150 200 250 3006.4

6.6

6.8

7

7.2

7.4

Time (min)

Met

hane

Flo

w R

ate

to B

urne

r (S

LPM

)

Setpoint changes were only 10% of the total

Page 38: Fuel Cell Reformer Control

Directional Sensitivity:Changes in the weak direction

0 50 100 150 200 250 300440

445

450

455

460

465

470

Time (min)

Tb

(deg

C)

0 100 200 300 400680

690

700

710

720

Time (min)

Tr

(deg

C)

0 100 200 300 4004

6

8

10

12

Time (min)

Exc

ess

Air

Rat

io

0 100 200 300 400-2

0

2

4

6

8

Time (min)

Met

hane

Flo

w R

ate

to B

urne

r (S

LPM

)

Setpoint changes were only 10% of total

Negative flow rate

Page 39: Fuel Cell Reformer Control

Conclusion

2

Tr

1

Tb

Uniform RandomNumber3

Uniform RandomNumber2

x' = Ax+Bu y = Cx+Du

State-Space1

Product

-C-

Constant4

-C-

Constant3

-C-

Constant2

5

Constant1

-C-

Constant

2

nv

1

lambda