future tools - edp group...rogowski coil neutralpoint optical receiver bushing/sensor battery power...

59

Upload: others

Post on 14-Feb-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • © S

    ch

    erin

    g-I

    nstitu

    t

    Future tools

    for assessment of transformers

    Ernst Gockenbach

    Gottfried Wilhelm Leibniz Universität Hannover

    page 2/58

  • © S

    ch

    erin

    g-I

    nstitu

    t

    ➢ Introduction➢ why assessment for power transformers

    ➢ actual situation

    ➢ ageing parameters

    ➢ Basis/Goal of assessment

    ➢Actual tools➢examples

    ➢Future tools➢examples

    ➢Health Index➢principle

    ➢examples

    ➢Conclusions

    page 3/58

  • © S

    ch

    erin

    g-I

    nstitu

    t

    ➢ Introduction➢ why assessment for power transformers

    ➢ actual situation

    ➢ ageing parameters

    ➢ Basis/Goal of assessment

    ➢Actual tools➢examples

    ➢Future tools➢examples

    ➢Health Index➢principle

    ➢examples

    ➢Conclusions

    page 4/58

  • © S

    ch

    erin

    g-I

    nstitu

    t

    Introduction

    page 5/58

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    1-5 6-10 11-15 16-20 21-25 26-30 31-35 36-40 41-45 46-50 51-55

    Service years of power transformers (basis 2002)

    Nu

    mb

    er

    of

    un

    its

    Source: M. Stach: „Betriebswirtschaftliche Gesichtspunkte im Asset-

    Management im Zeitalter der Fusion“, Micafil Symposium 2002, Stuttgart

  • © S

    ch

    erin

    g-I

    nstitu

    t

    Cumulative distribution of service years

    page 6/58

    Source: S. Tenbohlen, F. Vahidi: „Zuverlässigkeitsbewertung von

    Leistungstransformatoren“, HS- Symposium 2012, Stuttgart

    220 kV and 380 kV

  • © S

    ch

    erin

    g-I

    nstitu

    t

    Failure hazard rate

    page 7/58

    Source: S. Tenbohlen, F. Vahidi: „Zuverlässigkeitsbewertung von

    Leistungstransformatoren“, HS- Symposium 2012, Stuttgart

    220 kV and 380 kV

    --- failure hazard rate

    moving average

  • © S

    ch

    erin

    g-I

    nstitu

    t

    Ageing parameters

    Ageing of transformer insulation isbased on the following parameters

    ➢ thermal stress

    ➢ electrical stress

    ➢ mechanical stress

    ➢ chemical stress

    page 8/58

  • © S

    ch

    erin

    g-I

    nstitu

    t

    ➢ Introduction➢ why assessment for power transformers

    ➢ actual situation

    ➢ ageing parameters

    ➢ Basis/Goal of assessment

    ➢Actual tools➢examples

    ➢Future tools➢examples

    ➢Health Index➢principle

    ➢examples

    ➢Conclusions

    page 9/58

  • © S

    ch

    erin

    g-I

    nstitu

    t

    Basis of assessment

    page 10/58

    ➢ knowledge of apparatus

    ➢ knowledge of electrical insulating material

    ➢ knowledge of measuring and monitoring technique including noise suppression

    ➢ knowledge of reference values

    ➢ knowledge on the influence of the recorded parameter on the electrical insulating material

  • © S

    ch

    erin

    g-I

    nstitu

    t

    Goal of assessment

    ➢ extension of the remaining useful life of the

    transformer

    ➢ improvement of loading possibility of the

    transformer

    ➢ higher availability and service reliability

    ➢ condition-based maintenance and repair

    ➢ prevention of loss and destruction

    page 11/58

  • © S

    ch

    erin

    g-I

    nstitu

    t

    ➢ Introduction➢ why assessment for power transformers

    ➢ actual situation

    ➢ ageing parameters

    ➢ Basis/Goal of assessment

    ➢Actual tools➢examples

    ➢Future tools➢examples

    ➢Health Index➢principle

    ➢examples

    ➢Conclusions

    page 12/58

  • © S

    ch

    erin

    g-I

    nstitu

    t

    Actual tools

    ➢ breakdown voltage measurement of liquid

    part of the insulation system

    ➢measurement of moisture content in the liquid

    part and calculation of moisture content in the

    solid part of the insulation

    ➢ gas-in-oil (DGA) analysis with evaluation of

    the reasons for the different kind of gases

    ➢ surface tension measurement

    ➢ acid content determination

    page 13/58

  • © S

    ch

    erin

    g-I

    nstitu

    t

    Actual tools

    ➢ furan measurement

    ➢methanol measurement

    ➢ if possible evaluation of the degree of

    polymerisation (DP)

    page 14/58

  • © S

    ch

    erin

    g-I

    nstitu

    t

    Overview of monitoring and diagnosis devices

    page 15/58

    PD, FRA, Bushing

    Voltages, Currents

    TemperaturesDissolved Gas in Oil

    Data Acquisition Data Mining

    Clustering

    Discrimination

    InformationFusion

    Diagnosis

    ANN

    Fuzzy

    CBR

    MBR

    Online

    &

    Offline

    Sensors

    Pre-p

    roce

    ssing

    Featu

    re E

    xtra

    ction

  • © S

    ch

    erin

    g-I

    nstitu

    t

    Thermal Aging of Paper

    page 16/58

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    80 90 100 110 120 °C 140

    temperature q

    ag

    ein

    g f

    acto

    rC6

    C98

    1 2V

    C8

    C98

    1 2V

  • © S

    ch

    erin

    g-I

    nstitu

    t

    Furan as function of DP

    page 17/58

    0

    2

    4

    6

    8

    ppm

    12

    20040060080010001200

    degree of polymerisation

    fura

    n c

    on

    ten

    t

  • © S

    ch

    erin

    g-I

    nstitu

    t

    DGA

    page 18/58

    PD

    T1

    T2

    T3D2

    D+T

    20

    20

    40

    4060

    60

    80

    80

    80

    60

    20

    40

    %CH 4

    2 2%C H

    42%C H

    D1

    Source: IEC 60589

  • © S

    ch

    erin

    g-I

    nstitu

    t

    Equilibrium curves

    page 19/58

    Wa

    ter

    Co

    nte

    nt

    in P

    ap

    er

    Water Content in Oil

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    11

    0 10 20 30 40 50 60 70 90

    20 °C 30 °C 40 °C

    50 °C

    60 °C

    80 °C

    100°C

    ppm

    %

    Source: T.V. Oommen, „Moisture Equilibrium Charts for Insulation Drying

    Practice“, IEEE Trans. on Power Apparatus and Systems,

    vol. PAS-103, No.10, pp. 3063-3067,

  • © S

    ch

    erin

    g-I

    nstitu

    t

    Breakdown behaviour of mineral oil

    page 20/58

    wrel (T) = ratio between absolute humidity and solubility

    mineral oil

    Source: M. Beyer, W. Boeck, K. Möller, W. Zaengl

    „Hochspannungstechnik, Springer Verlag

  • © S

    ch

    erin

    g-I

    nstitu

    t

    Breakdown behaviour of liquids

    page 21/58

    0

    10

    20

    40

    50

    60

    70

    80

    0 20 40 60 80 100 120 140 160

    Mineral oilEster liquid

    Limit for unaged liquid

    Limit for aged liquid

    2.5 mm

    Relative water content wrel in %

    Bre

    ak

    do

    wn

    vo

    lta

    ge

    in

    kV

    20

    30

    70

  • © S

    ch

    erin

    g-I

    nstitu

    t

    page 22/58

    Source: Omicron brochure

  • © S

    ch

    erin

    g-I

    nstitu

    t

    Schematic diagram for PD localization

    page 23/58

    windingPD ???

    bushing

    xD (t)

    section PD ???

    PD

  • © S

    ch

    erin

    g-I

    nstitu

    t

    Test arrangement for PD localization

    page 24/58

    Dig iti ze r

    50O

    50O

    1234567

    Low

    pass

    Low

    pass

    100kO

  • © S

    ch

    erin

    g-I

    nstitu

    t

    Results of PD localization

    page 25/58

    0

    -5

    5

    0

    -0.05

    0.05

    at the bushing

    at the neutral

    calculated from bushing

    calculated from neutral

    0

    -5

    5

    Origin 3

    0

    -5

    5

    Origin 5

    0 50

    Measured data Origin 1

    10 20 30 40 0 5010 20 30 40

    Time in s

  • © S

    ch

    erin

    g-I

    nstitu

    t

    Frequency Response Analysis (FRA)

    page 26/58

    Source: University Stuttgart, Institute of Power

    Transmission and High Voltage Technology (IEH)

  • © S

    ch

    erin

    g-I

    nstitu

    t

    DGA with MSS criteria

    page 27/58

    Source: Ivanka Atanasova-Höhlein, Siemens Lecture,

    DGA – Method in the Past and for the Future

    MSS = R. Müller, K. Soldner, H. Schliesing, (1977)

  • © S

    ch

    erin

    g-I

    nstitu

    t

    MSS criteria = Discharge of high energy

    page 28/58

    Source: Ivanka Atanasova-Höhlein,

    Siemens Lecture, DGA – Method in

    the Past and for the Future

  • © S

    ch

    erin

    g-I

    nstitu

    t

    ➢ Introduction➢ why assessment for power transformers

    ➢ actual situation

    ➢ ageing parameters

    ➢ Basis/Goal of assessment

    ➢Actual tools➢examples

    ➢Future tools➢examples

    ➢Health Index➢principle

    ➢examples

    ➢Conclusions

    page 29/58

  • © S

    ch

    erin

    g-I

    nstitu

    t

    Frequency Response Analysis (FRA)

    page 30/58

    AKVOptical

    transmitter

    DSO

    AKVOptical

    transmitterdB

    Capacitive

    sensor

    Optical

    transmitter

    Impulse

    generator

    Rogowski

    coil

    Neutralpoint

    Optical

    receiver

    Bushing/sensor

    Battery power

    Battery power

  • © S

    ch

    erin

    g-I

    nstitu

    t

    DGA with Intelligent Agent-Based System

    page 31/58

    Source: A. Akbari, A. Setayeshmehr, H. Borsi, E. Gockenbach,

    „Intelligent Agent-Based System Using Dissolved Gas Analysis to

    Detect Incipient Faults in Power Transformers” IEEE Electrical

    Insulation Magazine Vol. 26, No. 6, 2010

  • © S

    ch

    erin

    g-I

    nstitu

    t

    DGA with Intelligent Agent-Based System

    page 32/58

    Source: A. Akbari, A. Setayeshmehr, H. Borsi, E. Gockenbach,

    „Intelligent Agent-Based System Using Dissolved Gas Analysis to

    Detect Incipient Faults in Power Transformers” IEEE Electrical

    Insulation Magazine Vol. 26, No. 6, 2010

  • © S

    ch

    erin

    g-I

    nstitu

    t

    DGA with Intelligent Agent-Based System

    page 33/58

    Source: A. Akbari, A. Setayeshmehr, H. Borsi, E. Gockenbach,

    „Intelligent Agent-Based System Using Dissolved Gas Analysis to

    Detect Incipient Faults in Power Transformers” IEEE Electrical

    Insulation Magazine Vol. 26, No. 6, 2010

  • © S

    ch

    erin

    g-I

    nstitu

    t

    Modified Debye model

    page 34/58

    Hari Charan Verma, Arijit Baral, Arpan K. Pradhan, Sivaji Chakravorti, „Condition assessment of

    various regions within non-uniformly aged cellulosic insulation of power transformer using modified

    Debye model” IET Sci. Meas. Technol., 2017, Vol. 11 Iss. 7, pp. 939-947

    Simulation of temperature gradient which creates non-uniform

    ageing of cellulosic insulation in transformers

  • © S

    ch

    erin

    g-I

    nstitu

    t

    PDC measurement

    page 35/58

    Hari Charan Verma, Arijit Baral, Arpan K. Pradhan, Sivaji Chakravorti, „Condition assessment of

    various regions within non-uniformly aged cellulosic insulation of power transformer using modified

    Debye model” IET Sci. Meas. Technol., 2017, Vol. 11 Iss. 7, pp. 939-947

  • © S

    ch

    erin

    g-I

    nstitu

    t

    ➢ Introduction➢ why assessment for power transformers

    ➢ actual situation

    ➢ ageing parameters

    ➢ Basis/Goal of assessment

    ➢Actual tools➢examples

    ➢Future tools➢examples

    ➢Health Index➢principle

    ➢examples

    ➢Conclusions

    page 36/58

  • © S

    ch

    erin

    g-I

    nstitu

    t

    Health Index HI

    ➢ Health Index HI should give an information

    about the actual status of the transformer

    insulation system

    ➢ Health Index depends on different para-

    meters and the figures could be different

    depending on the used parameters

    ➢ Health Index gives a relative information in

    terms of categories like good, moderate, bad

    ➢ Health Index can help asset management

    ➢ Health Index requires confirmation by

    measurement and research

    page 37/58

  • © S

    ch

    erin

    g-I

    nstitu

    t

    Determination of Health Index HI

    page 38/58

    Dun Lin, Yao-Yu Xu, Yu Liang, Yuan Li, Ning Liu, Guan-Jun Zhang, A Risk Assessment Method of

    Transformer Considering the Economy and Reliability of Power Network“, 1st International

    Conference on Electrical Materials and Power Equipment - Xi'an – China, pp. 584 - 587, 2017

  • © S

    ch

    erin

    g-I

    nstitu

    t

    Example of Health Index HI1(1)

    page 39/58

    Félix Ortiz, Inmaculada Fernández, Alfredo Ortiz, Carlos J. Renedo, Fernando Delgado, Cristina Fernández,

    Health Indexes for Power Transformers - A Case Study, IEEE Electrical Insulation Magazine,

    September/October — Vol. 32, No. 5, pp. 7 – 17, 2016

  • © S

    ch

    erin

    g-I

    nstitu

    t

    Parameter of Health Index HI1(1)

    Health Index part (1) is based on the following oil

    parameter

    ➢ dielectric strength

    ➢ dissipation factor

    ➢ acidity

    ➢ moisture

    ➢ color

    ➢ interfacial tension

    page 40/58

    Félix Ortiz, Inmaculada Fernández, Alfredo Ortiz, Carlos J. Renedo, Fernando Delgado, Cristina Fernández,

    Health Indexes for Power Transformers - A Case Study, IEEE Electrical Insulation Magazine,

    September/October — Vol. 32, No. 5, pp. 7 – 17, 2016

  • © S

    ch

    erin

    g-I

    nstitu

    t

    Parameter of Health Index HI1(1)

    page 41/58

  • © S

    ch

    erin

    g-I

    nstitu

    t

    Parameter of Health Index HI1(2)

    page 42/58

    Health Index part (2) is only based on

    dissolved gas content of the oil

    Félix Ortiz, Inmaculada Fernández, Alfredo Ortiz, Carlos J. Renedo, Fernando Delgado, Cristina Fernández,

    Health Indexes for Power Transformers - A Case Study, IEEE Electrical Insulation Magazine,

    September/October — Vol. 32, No. 5, pp. 7 – 17, 2016

  • © S

    ch

    erin

    g-I

    nstitu

    t

    Parameter of Health Index HI1(3)

    The part (3) can take five different values

    corresponding to the furan concentration

    in the oil as shown below

    page 43/58

    Félix Ortiz, Inmaculada Fernández, Alfredo Ortiz, Carlos J. Renedo, Fernando Delgado, Cristina Fernández,

    Health Indexes for Power Transformers - A Case Study, IEEE Electrical Insulation Magazine,

    September/October — Vol. 32, No. 5, pp. 7 – 17, 2016

  • © S

    ch

    erin

    g-I

    nstitu

    t

    Health Index I1

    Calculation of Health Index I1

    ➢ k1 (physical and dielectric properties) = 8

    ➢ k2 (dissolved gases content) = 10

    ➢ k3 (furan content) = 5

    page 44/58

    Félix Ortiz, Inmaculada Fernández, Alfredo Ortiz, Carlos J. Renedo, Fernando Delgado, Cristina Fernández,

    Health Indexes for Power Transformers - A Case Study, IEEE Electrical Insulation Magazine,

    September/October — Vol. 32, No. 5, pp. 7 – 17, 2016

  • © S

    ch

    erin

    g-I

    nstitu

    t

    Interpretation of Health Index I1

    page 45/58

    Félix Ortiz, Inmaculada Fernández, Alfredo Ortiz, Carlos J. Renedo, Fernando Delgado, Cristina Fernández,

    Health Indexes for Power Transformers - A Case Study, IEEE Electrical Insulation Magazine,

    September/October — Vol. 32, No. 5, pp. 7 – 17, 2016

  • © S

    ch

    erin

    g-I

    nstitu

    t

    I1 for 52 transformers 12 kV – 220 kV

    page 46/58

  • © S

    ch

    erin

    g-I

    nstitu

    t

    Example of Health Index I2(1)

    Health Index I2 part (1) is based on the

    following oil parameter

    ➢ state of the insulating paperconcentrations of CO and CO2concentrations of furans

    ➢ concentrations of five gases dissolved

    in the oil, H2, CH4, C2H6, C2H4, C2H2

    page 47/58

    Félix Ortiz, Inmaculada Fernández, Alfredo Ortiz, Carlos J. Renedo, Fernando Delgado, Cristina Fernández,

    Health Indexes for Power Transformers - A Case Study, IEEE Electrical Insulation Magazine,

    September/October — Vol. 32, No. 5, pp. 7 – 17, 2016

  • © S

    ch

    erin

    g-I

    nstitu

    t

    Calculation of Health Index I2(1)

    page 48/58

    HI2(C,O) is one-third of

    the sum F1 + F2 + F3

    Cfur is the furan concentration

    in the oil expressed in ppm

  • © S

    ch

    erin

    g-I

    nstitu

    t

    Calculation of Health Index I2(2)

    page 49/58

    Félix Ortiz, Inmaculada Fernández, Alfredo Ortiz, Carlos J. Renedo, Fernando Delgado, Cristina Fernández,

    Health Indexes for Power Transformers - A Case Study, IEEE Electrical Insulation Magazine,

    September/October — Vol. 32, No. 5, pp. 7 – 17, 2016

  • © S

    ch

    erin

    g-I

    nstitu

    t

    Calculation of Health Index I2(3)

    page 50/58

    Health Index part (3) is based on the

    following oil parameter

    ➢ acid content of the oil (expressed as the

    mass of KOH required to neutralize 1 g of oil)

    ➢ dielectric strength

    ➢ moisture content

    ➢ dielectric losses

    Félix Ortiz, Inmaculada Fernández, Alfredo Ortiz, Carlos J. Renedo, Fernando Delgado, Cristina Fernández,

    Health Indexes for Power Transformers - A Case Study, IEEE Electrical Insulation Magazine,

    September/October — Vol. 32, No. 5, pp. 7 – 17, 2016

  • © S

    ch

    erin

    g-I

    nstitu

    t

    Calculation of Health Index I2(3)

    page 51/58

    Example for dielectric strength of oil

  • © S

    ch

    erin

    g-I

    nstitu

    t

    Calculation of Health Index I2(4)

    This part is given by the age and loading

    of the transformer, and will be calculated

    according

    page 52/58

    where HI2(0) is an initial factor.

    B is an aging coefficient, t1 is the year in which HI2(0) was evaluated, and t2is the year in which the state of the transformer is now being evaluated.

    HI2(0) is related to the condition of the transformer when it entered service,

    and its value is usually 0.5, whereas it is about 6.5 when the

    transformer reaches the end of its service lifetime.

  • © S

    ch

    erin

    g-I

    nstitu

    t

    Calculation of Health Index I2

    page 53/58

    Calculation of Health Index I2

    ➢ k1 (state of the insulating paper) = 0,266

    ➢ k2 (concentrations of five dissolved gases in the oil) = 0,095

    ➢ k3 ((acid content of the oil) = 0,07

    ➢ k4 (age and loading of the transformer) = 0,569

    Félix Ortiz, Inmaculada Fernández, Alfredo Ortiz, Carlos J. Renedo, Fernando Delgado, Cristina Fernández,

    Health Indexes for Power Transformers - A Case Study, IEEE Electrical Insulation Magazine,

    September/October — Vol. 32, No. 5, pp. 7 – 17, 2016

  • © S

    ch

    erin

    g-I

    nstitu

    t

    Interpretation of Health Index I2

    page 54/58

    Félix Ortiz, Inmaculada Fernández, Alfredo Ortiz, Carlos J. Renedo, Fernando Delgado, Cristina Fernández,

    Health Indexes for Power Transformers - A Case Study, IEEE Electrical Insulation Magazine,

    September/October — Vol. 32, No. 5, pp. 7 – 17, 2016

  • © S

    ch

    erin

    g-I

    nstitu

    t

    I2 for 52 transformers 12 kV – 220 kV

    page 55/58

  • © S

    ch

    erin

    g-I

    nstitu

    t

    Result of HI evaluation

    page 56/58

  • © S

    ch

    erin

    g-I

    nstitu

    t

    ➢ Introduction➢ why assessment for power transformers

    ➢ actual situation

    ➢ ageing parameters

    ➢ Basis/Goal of assessment

    ➢Actual tools➢examples

    ➢Future tools➢examples

    ➢Health Index➢principle

    ➢examples

    ➢Conclusions

    page 57/58

  • © S

    ch

    erin

    g-I

    nstitu

    t

    Conclusions

    ➢ Traditional assessment tools are

    useful

    ➢ More data allows a better assessment

    ➢ Data mining will improve the results

    ➢ Neuronal networks combine more parameters

    ➢ Results should be verified by measurements and

    research activities

    ➢ More data does not mean better results

    page 58/58

  • Thank you for your attention