galprop code for crcode for cr propagation and diffuse...

36
GALPROP code for CR GALPROP code for CR GALPROP code for CR propagation and diffuse emissions GALPROP code for CR propagation and diffuse emissions emissions emissions Igor V. Moskalenko Igor V. Moskalenko Stanford & KIPAC Stanford & KIPAC SciNeGHE 2010, Trieste – September 6, 2010 :: IVM/Stanford-KIPAC 1

Upload: others

Post on 28-Jan-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • GALPROP code for CRGALPROP code for CRGALPROP code for CR propagation and diffuse

    emissions

    GALPROP code for CR propagation and diffuse

    emissionsemissionsemissions

    Igor V. MoskalenkoIgor V. MoskalenkoStanford & KIPACStanford & KIPAC

    SciNeGHE 2010, Trieste – September 6, 2010 :: IVM/Stanford-KIPAC 1

  • ContentsContents

    Introduction to propagation of CRsIntroduction to propagation of CRs

    Building a model of the diffuse emission

    Effect of anisotropic inverse Compton scattering

    Building a model of the diffuse emission

    Effect of anisotropic inverse Compton scattering

    A view from far far away: multi-wavelength luminosity of the Milky WayA view from far far away: multi-wavelength luminosity of the Milky Wayy y

    Bayesian analysis of propagation parameters

    y y

    Bayesian analysis of propagation parameters

    GALPROP WebRunGALPROP WebRun

    SciNeGHE 2010, Trieste – September 6, 2010 :: IVM/Stanford-KIPAC 2

  • CR Propagation: Milky Way GalaxyCR Propagation: Milky Way Galaxy1 kpc ~ 3×1021 cm1 kpc ~ 3×1021 cm1 kpc 3 10 cm1 kpc 3 10 cm

    Optical image: Cheng et al. 1992, Brinkman et al. 1993Radio contours: Condon et al. 1998 AJ 115, 1693

    Optical image: Cheng et al. 1992, Brinkman et al. 1993Radio contours: Condon et al. 1998 AJ 115, 1693

    Halo0.1-0.01/ccm

    NGC891

    SunSun

    Intergalactic spaceR Band image of NGC891R Band image of NGC891

    SciNeGHE 2010, Trieste – September 6, 2010 :: IVM/Stanford-KIPAC 3

    R Band image of NGC891R Band image of NGC8911.4 GHz continuum (NVSS), 1,2,…64 1.4 GHz continuum (NVSS), 1,2,…64 mJymJy/ beam/ beam “Flat halo” model (Ginzburg & Ptuskin 1976)“Flat halo” model (Ginzburg & Ptuskin 1976)

  • CRs in the Interstellar MediumCRs in the Interstellar Medium

    ISMISMSNR RX J1713SNR RX J1713--39463946SNR RX J1713SNR RX J1713--39463946SNR RX J1713SNR RX J1713--39463946

    ee±±e±

    X,γX,γISMISM

    42 sigma (2003+2004 data)SNR RX J1713SNR RX J1713--39463946

    42 sigma (2003+2004 data)42 sigma (2003+2004 data)SNR RX J1713SNR RX J1713--39463946SNR RX J1713SNR RX J1713--39463946

    ChandraChandraChandra

    eee

    PPHeHePP

    HeHeISRFISRF•diffusion•diffusion

    •energy losses •energy losses •diffusive reacceleration•diffusive reacceleration

    •diffusion•diffusion•energy losses •energy losses

    •diffusive reacceleration•diffusive reacceleration

    ICICHESSPSF

    HESSHESSPSFPSF

    BBBHESSHESSHESS

    CNOCNOCNOCNO gasgasgasee++--e +-

    ππ++--π+-

    •diffusive reacceleration•diffusive reacceleration•convection•convection

    •production of •production of secondariessecondaries

    •diffusive reacceleration•diffusive reacceleration•convection•convection

    •production of •production of secondariessecondaries

    ππ 00π 0 FermiFermiFermiWIMPWIMPaannihilnnihil..WIMPWIMPaannihilnnihil..

    PP__PP__

    P,P,P,P, X,γX,γ

    ee±±e± gasgasgas

    PP__PP__

    LiBeBLiBeBLiBeBLiBeBpppp

    HeHeCNOCNOHeHe

    CNOCNO

    Flux

    Fluxππ

    ++--π+-

    ee±±e±

    eee solar modulation

    ACEACE

    CNOCNOCNOCNO

    20 GeV/n20 GeV/n

    CR species:O l 1 l ti

    CR species:O l 1 l ti

    BESSBESS

    eee

    SciNeGHE 2010, Trieste – September 6, 2010 :: IVM/Stanford-KIPAC 4

    ACEACEhelio-modulationhelio-modulation

    Only 1 locationmodulationOnly 1 locationmodulationPAMELAPAMELA

  • Components of realistic CR propagation modelComponents of realistic CR propagation model

    Detailed gas distribution (energy losses, π0, bremsstrahlung)

    I t t ll di ti fi ld (IC ± l )

    Detailed gas distribution (energy losses, π0, bremsstrahlung)

    I t t ll di ti fi ld (IC ± l )Interstellar radiation field (IC, e± energy losses)

    Nuclear & particle production cross sections & the reaction

    Interstellar radiation field (IC, e± energy losses)

    Nuclear & particle production cross sections & the reaction

    network

    G d i b hl C 0

    network

    G d i b hl C 0Gamma-ray production: bremsstrahlung, IC, π0

    Energy losses: ionization, Coulomb, brems, IC, synchrotron

    Gamma-ray production: bremsstrahlung, IC, π0

    Energy losses: ionization, Coulomb, brems, IC, synchrotrongy , , , , y

    Solve transport equations for all CR species

    gy , , , , y

    Solve transport equations for all CR species

    SciNeGHE 2010, Trieste – September 6, 2010 :: IVM/Stanford-KIPAC 5

    Derive the propagation parametersDerive the propagation parameters

  • Transport Equations ~90 (no. of CR species)Transport Equations ~90 (no. of CR species)

    t∂ r )(

    VD

    prqttprψ

    ∇∇

    =∂

    rrr

    r

    ][

    ),(),,( sources (SNR, nuclear reactions…)sources (SNR, nuclear reactions…)sources (SNR, nuclear reactions…)sources (SNR, nuclear reactions…)

    diff idiff idiff idiff i VxxD

    ψ

    ψψ

    ⎤⎡ ∂∂

    −∇⋅∇+

    2

    ][

    convectionconvectionconvectionconvection

    diffusiondiffusiondiffusiondiffusion

    ppppDp

    ⎥⎥⎦

    ⎢⎢⎣

    ∂∂

    ∂∂

    + 22 convection convection

    (Galactic wind)convection convection

    (Galactic wind)diffusive reaccelerationdiffusive reacceleration(diffusion in the momentum space)

    diffusive reaccelerationdiffusive reacceleration(diffusion in the momentum space)

    Vpdtdp

    pψψ ⎥⎦⎤

    ⎢⎣⎡ ⋅∇−

    ∂∂

    −rr

    31EE--losslossEE--lossloss

    ψψ((rr p tp t)) –– densityψψ((rr p tp t)) –– densitydf τψ

    τψ

    −−fragmentationfragmentationfragmentationfragmentation radioactive decayradioactive decayradioactive decayradioactive decay

    SciNeGHE 2010, Trieste – September 6, 2010 :: IVM/Stanford-KIPAC 6

    ψψ((rr,p,t,p,t) ) density per total momentumψψ((rr,p,t,p,t) ) density per total momentum+ boundary conditions+ boundary conditions+ boundary conditions+ boundary conditions

  • Secondary/primary nuclei ratio & CR propagationSecondary/primary nuclei ratio & CR propagationTypical parameters (model-dependent):

    D 1028 ( /1 GV)α 2/Typical parameters (model-dependent):

    D 1028 ( /1 GV)α 2/D ~ 1028 (ρ/1 GV)α cm2/sα ≈ 0.3-0.6Zh ~ 4-6 kpc; VA ~ 30 km/s

    D ~ 1028 (ρ/1 GV)α cm2/sα ≈ 0.3-0.6Zh ~ 4-6 kpc; VA ~ 30 km/s

    Be10/Be9Be10/Be9

    Zh increaseZh increase

    Using secondary/primary nuclei ratio (B/C) & radioactive isotopes (e.g. Be10):Diffusion coefficient and its indexGalactic halo size ZhPropagation mode and its parameters (e g reacceleration V convection V )

    Using secondary/primary nuclei ratio (B/C) & radioactive isotopes (e.g. Be10):Diffusion coefficient and its indexGalactic halo size ZhPropagation mode and its parameters (e g reacceleration V convection V )

    SciNeGHE 2010, Trieste – September 6, 2010 :: IVM/Stanford-KIPAC 7

    Propagation mode and its parameters (e.g., reacceleration VA, convection Vz)Propagation parameters are model-dependentPropagation mode and its parameters (e.g., reacceleration VA, convection Vz)Propagation parameters are model-dependent

  • Relevant CR and gamma-ray (also CR!) instrumentsRelevant CR and gamma-ray (also CR!) instruments

    PAMELApbar

    đ,α

    pbar

    đ,αBESS-Polar

    i-mat

    ter

    i-mat

    ter

    e+

    e-

    e+

    e- Fermi/LATHESSMagic

    Integral

    AM

    S-I HEATWMAP

    CAPRICE

    anti

    anti

    p

    He

    p

    He

    BESS-PolarAMS-I

    gMilagroVeritasCOMPTEL

    EGRET ATICC At

    erter

    Z≤8

    8

  • Fermi-LAT 1-year Gamma-Ray SkymapFermi-LAT 1-year Gamma-Ray Skymap

    Galactic plane

    Buiding a modelBuiding a model

    of the diffuse emissionof the diffuse emission

    Sources

    Dominating source of gamma rays on the sky. Produced by CR interactions with interstellar Dominating source of gamma rays on the sky. Produced by CR interactions with interstellar

    SciNeGHE 2010, Trieste – September 6, 2010 :: IVM/Stanford-KIPAC 9

    gas and radiation field – the so-called diffuse emission. The diffuse Galactic gamma rays are the tracers of CR proton and electron spectra throughout the Galaxy.gas and radiation field – the so-called diffuse emission. The diffuse Galactic gamma rays are the tracers of CR proton and electron spectra throughout the Galaxy.

  • Diffuse Galactic GammaDiffuse Galactic Gamma--ray ray EmissionEmissionDiffuse Galactic GammaDiffuse Galactic Gamma--ray ray EmissionEmission

    Origin and propagation of cosmic rays– Nature and distribution of CR

    sources

    Origin and propagation of cosmic rays– Nature and distribution of CR

    sources

    Foreground against which sources are detected− Point sources: limitation on

    Foreground against which sources are detected− Point sources: limitation on

    – Abundances of primary species– Production of secondary species– The propagation mode and its

    – Abundances of primary species– Production of secondary species– The propagation mode and its

    sensitivity− Extended sources: disentanglement

    Indirect dark matter detection

    sensitivity− Extended sources: disentanglement

    Indirect dark matter detectionp p grelationship to magnetic turbulence in the ISM

    Interstellar Medium

    p p grelationship to magnetic turbulence in the ISM

    Interstellar Medium

    − Predicted γ-ray/CR signals− relies on accurate treatment of

    standard astrophysical sources

    − Predicted γ-ray/CR signals− relies on accurate treatment of

    standard astrophysical sources– Distribution of HI, H2, HII gas– Nature of XCO relation in Galaxy– Distribution and intensity of

    i ll di i fi ld d

    – Distribution of HI, H2, HII gas– Nature of XCO relation in Galaxy– Distribution and intensity of

    i ll di i fi ld d

    Foreground for isotropic diffuse background− Whatever its nature

    Foreground for isotropic diffuse background− Whatever its nature

    interstellar radiation field and formation of H2interstellar radiation field and formation of H2

    SciNeGHE 2010, Trieste – September 6, 2010 :: IVM/Stanford-KIPAC 10

  • Fermi-LAT: diffuse gammasFermi-LAT: diffuse gammasC ti l GALPROP d l i i t ith thC ti l GALPROP d l i i t ith thConventional GALPROP model is in agreement with the Fermi-LAT data at mid-latitudes (mostly local emission)The EGRET “GeV excess” is not confirmedThis means that we understand the basics of cosmic ray

    Conventional GALPROP model is in agreement with the Fermi-LAT data at mid-latitudes (mostly local emission)The EGRET “GeV excess” is not confirmedThis means that we understand the basics of cosmic rayThis means that we understand the basics of cosmic ray propagation and calculate correctly interstellar gas and radiation field, at least, locally

    This means that we understand the basics of cosmic ray propagation and calculate correctly interstellar gas and radiation field, at least, locally

    model

    SciNeGHE 2010, Trieste – September 6, 2010 :: IVM/Stanford-KIPAC 11

    Abdo+’09

  • Diffuse emission at low to high Galactic latitudes

    Diffuse emission at low to high Galactic latitudes

    Pion-decay and inverse Compton emission are two dominant components – allow us to probe the average CR proton and electron spectra

    Pion-decay and inverse Compton emission are two dominant components – allow us to probe the average CR proton and electron spectra

    High latitudesThe GALPROP predictions agree wellThe GALPROP predictions agree well

    along the line of sightalong the line of sight

    Low latitudes

    predictions agree well with the LAT datapredictions agree well with the LAT data

    Abdo+’10

    Mid-latitudes

    SciNeGHE 2010, Trieste – September 6, 2010 :: IVM/Stanford-KIPAC 12

  • Spectrum of isotropic diffuse γ-ray emissionSpectrum of isotropic diffuse γ-ray emission

    index=2.41±0.05

    2010

    SciNeGHE 2010, Trieste – September 6, 2010 :: IVM/Stanford-KIPAC 13

    Accessed every 6 years (1998, 2004, 2010, 2016,…)Time-dependent: increasingly steepens with time…Accessed every 6 years (1998, 2004, 2010, 2016,…)Time-dependent: increasingly steepens with time…

  • Diffuse Gammas – Local SpectrumDiffuse Gammas – Local Spectrum

    Mid-latitudes: Mid-latitudes: (200°

  • Example: latitude profile of the inner Galaxy Example: latitude profile of the inner Galaxy

    SciNeGHE 2010, Trieste – September 6, 2010 :: IVM/Stanford-KIPAC 15

  • Fractional count residuals: (theory-data)/dataFractional count residuals: (theory-data)/data

    Agreement for models is overall goodAgreement for models is overall good

    srs=SNR, Zh=4kpc, Rmax=20kpc, TS=150K, mag=5srs=SNR, Zh=4kpc, Rmax=20kpc, TS=150K, mag=5

    Agreement for models is overall good but features in residuals are at ~ % levelDifference between illustrative models due to variations of model parameters

    Agreement for models is overall good but features in residuals are at ~ % levelDifference between illustrative models due to variations of model parametersA)A) pp

    difference between residualsdifference between residualsA)A)

    A-B=A-B=srs=Lorimer,

    Zh=6kpc, Rmax=20kpc,

    mag=5,

    srs=Lorimer, Zh=6kpc,

    Rmax=20kpc, mag=5, g

    optically thin HIg

    optically thin HIB)B)

    A-C=A-C=srs=OB,

    Zh=8kpc, Rmax=30kpc,

    2

    srs=OB, Zh=8kpc,

    Rmax=30kpc, 2

    SciNeGHE 2010, Trieste – September 6, 2010 :: IVM/Stanford-KIPAC 16

    mag=2, optically thin HI

    mag=2, optically thin HIC)C)

  • Anisotropic IC scattering in the GalaxyAnisotropic IC scattering in the Galaxy

    The formalism and effect of anisotropic IC The formalism and effect of anisotropic IC p Cscattering in the Galaxy: IM & Strong’00Varies over the sky

    p Cscattering in the Galaxy: IM & Strong’00Varies over the skyyGives ×(0.7-2) more gammas vs isotropic approximation

    yGives ×(0.7-2) more gammas vs isotropic approximationppHas to be taken into account when modeling the diffuse emission

    ppHas to be taken into account when modeling the diffuse emission

    SciNeGHE 2010, Trieste – September 6, 2010 :: IVM/Stanford-KIPAC 17

    IM & Strong’00

  • Standard ISRF (10 kpc halo)Standard ISRF (10 kpc halo)

    i t i /i t i i ii t i /i t i i ianisotropic/isotropic aniso sum iso sum anisotropic/isotropic aniso sum iso sum

    50 MeV

    35 GeV

    SciNeGHE 2010, Trieste – September 6, 2010 :: IVM/Stanford-KIPAC 18Porter+, in preparation

  • Bulge×10 model (10 kpc halo)Bulge×10 model (10 kpc halo)i t i /i t i i ii t i /i t i i ianisotropic/isotropic aniso sum iso sum anisotropic/isotropic aniso sum iso sum

    50 MeV

    35 GeV

    SciNeGHE 2010, Trieste – September 6, 2010 :: IVM/Stanford-KIPAC 19

  • Ratio Bulge×10/Standard (10 kpc halo)Ratio Bulge×10/Standard (10 kpc halo)i t i k i ii t i k i ianisotropic skymap aniso sum iso sum anisotropic skymap aniso sum iso sum

    50 MeV

    35 GeV

    SciNeGHE 2010, Trieste – September 6, 2010 :: IVM/Stanford-KIPAC 20

  • Milky Way from far far away…Milky Way from far far away…Milky Way from far far away…Milky Way from far far away…

    SciNeGHE 2010, Trieste – September 6, 2010 :: IVM/Stanford-KIPAC 21

  • Multi-wavelength luminosity of the Milky WayMulti-wavelength luminosity of the Milky Way

    “Proximity” of the MW plus direct

    t ll

    “Proximity” of the MW plus direct

    t ll

    opticalopticalpp

    measurements allow us to construct its detailed “microscopic” model (GALPROP)

    measurements allow us to construct its detailed “microscopic” model (GALPROP)

    IRIR

    HeHe( )

    Integral properties of the MW – a useful template

    ( )

    Integral properties of the MW – a useful template e−e−for studies of the normal galaxies

    S l 2010 A JL

    for studies of the normal galaxies

    S l 2010 A JL

    synchsynchπ0π0

    ICICγ totalγ total

    ee

    Strong et al. 2010, ApJLin press Strong et al. 2010, ApJLin press

    bremssbremss

    SciNeGHE 2010, Trieste – September 6, 2010 :: IVM/Stanford-KIPAC 22

  • Milky Way as electron calorimeterMilky Way as electron calorimeterCalculations for Zhalo= 4 kpcCalculations for Zhalo= 4 kpchalo pLeptons lose ~60% of their energyγ-rays: 50-50 by nucleons and by leptons

    halo pLeptons lose ~60% of their energyγ-rays: 50-50 by nucleons and by leptons

    Cosmic rays7.90×1040 erg/sCosmic rays7.90×1040 erg/s

    SynchrotronSynchrotron

    Primary nucleons98.6%

    Primary nucleons98.6%

    Synchrotron0.35%

    Synchrotron0.35%

    BremsstrahlungBremsstrahlung PrimaryPrimarydd Bremsstrahlung0.15%Bremsstrahlung

    0.15%

    Inverse ComptonInverse Compton

    yelectrons

    1.41%

    yelectrons

    1.41%

    Secondaryleptons

    e+: 0.33%e−: 0.10%

    Secondaryleptons

    e+: 0.33%e−: 0.10%

    Total gamma raysTotal gamma raysNeutral pionsNeutral pions

    p0.58%

    p0.58%

    SciNeGHE 2010, Trieste – September 6, 2010 :: IVM/Stanford-KIPAC 23

    g y1.6%g y1.6%

    p0.85%

    p0.85%

    * The percentages in brackets show the values relative to the luminosity of their respective lepton populations

    * The percentages in brackets show the values relative to the luminosity of their respective lepton populations

  • Constrains on CR propagation d l f l b l

    Constrains on CR propagation d l f l b lmodels from global scansmodels from global scans

    SciNeGHE 2010, Trieste – September 6, 2010 :: IVM/Stanford-KIPAC 24

  • Bayesian approach (Θ vector of parameters D available observations):Bayesian approach (Θ vector of parameters D available observations):

    MethodologyMethodologyBayesian approach (Θ – vector of parameters, D – available observations):Bayesian approach (Θ – vector of parameters, D – available observations):

    P(Θ | D) =P(D |Θ)P(Θ)

    P(D)P(Θ|D) – posterior distribution of parameters P(D|Θ) – likelihood function (for fixed D)P(Θ|D) – posterior distribution of parameters P(D|Θ) – likelihood function (for fixed D)

    P(D)

    ( | ) ( )P(Θ) – prior distributionP(D) – Bayesian evidenceBayesian approach allows for a more sophisticated treatment of systematics

    ( | ) ( )P(Θ) – prior distributionP(D) – Bayesian evidenceBayesian approach allows for a more sophisticated treatment of systematicsBayesian approach allows for a more sophisticated treatment of systematicsNested sampling algorithm by John Skilling’04,06 and MultiNest by Feroz&Hobson’08 (SuperBayeS code by Ruiz de Austri+’06, Trotta+’08)T t l 1 4×105 l 13 CPU

    Bayesian approach allows for a more sophisticated treatment of systematicsNested sampling algorithm by John Skilling’04,06 and MultiNest by Feroz&Hobson’08 (SuperBayeS code by Ruiz de Austri+’06, Trotta+’08)T t l 1 4×105 l 13 CPUTotal 1.4×105 samples, ~13 CPU yearsThe posterior distribution is in excellent agreement with one from MCMC Representative data from ACE, ISOMAX, HEAO-3, ATIC-2, CREAM

    Total 1.4×105 samples, ~13 CPU yearsThe posterior distribution is in excellent agreement with one from MCMC Representative data from ACE, ISOMAX, HEAO-3, ATIC-2, CREAM

    SciNeGHE 2010, Trieste – September 6, 2010 :: IVM/Stanford-KIPAC 25

    Fit a total of 17 parameters, best fit chi-squared/dof ~ 1 More details in the paper (to be submitted in a few days)Fit a total of 17 parameters, best fit chi-squared/dof ~ 1 More details in the paper (to be submitted in a few days)

  • Posterior probability distributionsPosterior probability distributionsNormalization of the diffusion coeff. and its index

    - the best fit

    ti l li t i

    - the best fit

    ti l li t ivertical line – posterior mean

    vertical line – posterior mean

    Alfven speed Halo sizecolor bar – 68%, 95% error

    rangescolor bar – 68%, 95% error

    ranges

    Reacceleration modelReacceleration modelInjection index below/above the break @ 1 GV

    Parameters are very close to those derived by the eye-fitting

    Parameters are very close to those derived by the eye-fitting

    SciNeGHE 2010, Trieste – September 6, 2010 :: IVM/Stanford-KIPAC 26

    y y gmethod

    y y gmethod

  • 2D posterior probability distributions2D posterior probability distributions

    Contours enclose 68% and Contours enclose 68% and 95% probability regions

    - best fit

    95% probability regions

    - best fit

    ● posterior mean● posterior mean● - posterior mean● - posterior mean

    SciNeGHE 2010, Trieste – September 6, 2010 :: IVM/Stanford-KIPAC 27

  • Examples of the fits: B/C and Be ratiosExamples of the fits: B/C and Be ratios

    B/C ratio

    Be10/Be9 ratioBe /Be ratio

    SciNeGHE 2010, Trieste – September 6, 2010 :: IVM/Stanford-KIPAC 28

  • Examples: Carbon and pbarsExamples: Carbon and pbars

    Carbon

    pbars

    (not fitted!)

    SciNeGHE 2010, Trieste – September 6, 2010 :: IVM/Stanford-KIPAC 29

    (not fitted!)

  • GALPROP WebRunGALPROP WebRunGALPROP WebRun

    galprop.stanford.edu

    GALPROP WebRun

    galprop.stanford.edugalprop.stanford.edugalprop.stanford.edu

    SciNeGHE 2010, Trieste – September 6, 2010 :: IVM/Stanford-KIPAC 30

    Igor Moskalenko

    for the GALPROP development team

    Igor Moskalenko

    for the GALPROP development team

  • GALPROP WebRunGALPROP WebRun

    GALPROP WebRun is a service that allows to run GALPROP via the WWWGALPROP WebRun is a service that allows to run GALPROP via the WWW

    No local installation of the code or related libraries is necessary, only a web browser is requiredNo local installation of the code or related libraries is necessary, only a web browser is required

    Available at http://galprop.stanford.edu/webrun

    Calculations can be performed on a new cluster at Stanford University, using

    Available at http://galprop.stanford.edu/webrun

    Calculations can be performed on a new cluster at Stanford University, using the most recent GALPROP v54, older versions are also available

    The service is free and open to the community. Registration is required

    the most recent GALPROP v54, older versions are also available

    The service is free and open to the community. Registration is required

    Acknowledge by citing the web-page and the introduction paper http://arxiv.org/abs/1008.3642 (submitted to Computer Physics Acknowledge by citing the web-page and the introduction paper http://arxiv.org/abs/1008.3642 (submitted to Computer Physics

    SciNeGHE 2010, Trieste – September 6, 2010 :: IVM/Stanford-KIPAC 31

    Communications)Communications)

  • Configuring GALPROP via WebRunConfiguring GALPROP via WebRun

    SciNeGHE 2010, Trieste – September 6, 2010 :: IVM/Stanford-KIPAC 32

    Interactive interface for parameter entryParameters are validated to avoid misconfgured runsInteractive interface for parameter entryParameters are validated to avoid misconfgured runs

  • Running calculationsRunning calculations

    SciNeGHE 2010, Trieste – September 6, 2010 :: IVM/Stanford-KIPAC 33

    Multiple simultaneous runs are allowedSharing resources fairly between usersMultiple simultaneous runs are allowedSharing resources fairly between users

  • Evaluating and obtaining resultsEvaluating and obtaining results

    Archive with FITS files (output) available to the ownerArchive with FITS files (output) available to the owner

    SciNeGHE 2010, Trieste – September 6, 2010 :: IVM/Stanford-KIPAC 34

    Archive with FITS files (output) available to the ownerURL to the archive may be shared with anyoneQuick peek possible with built-in plot templates

    Archive with FITS files (output) available to the ownerURL to the archive may be shared with anyoneQuick peek possible with built-in plot templates

  • Computing cluster (galprop.stanford.edu)Computing cluster (galprop.stanford.edu)

    SciNeGHE 2010, Trieste – September 6, 2010 :: IVM/Stanford-KIPAC 35

  • Thank you !y

    You are hereYou are here

    SciNeGHE 2010, Trieste – September 6, 2010 :: IVM/Stanford-KIPAC 36