gamma rays from molecular clouds (part 2)cappa/work_shop/gabici2.pdf · gamma rays from the milky...

91
Gamma rays from molecular clouds (part 2) Stefano Gabici APC, Paris

Upload: others

Post on 18-Jun-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Gamma rays from molecular clouds (part 2)cappa/work_shop/gabici2.pdf · Gamma rays from the Milky Way NANTEN: CO (J=1-0) -> tracer of H2 LAB HI Survey (Karberla et al 05) ASSUMPTION:

Gamma rays from molecular clouds(part 2)

Stefano GabiciAPC, Paris

Page 2: Gamma rays from molecular clouds (part 2)cappa/work_shop/gabici2.pdf · Gamma rays from the Milky Way NANTEN: CO (J=1-0) -> tracer of H2 LAB HI Survey (Karberla et al 05) ASSUMPTION:

Overview

Brief introduction on cosmic rays

The supernova remnant hypothesis for the origin of cosmic rays

Why gamma ray astronomy?

Why molecular clouds?

Part 1: Passive Molecular Clouds -> how to use MCs as cosmic ray

barometers

Part 2: Illuminated Molecular Clouds -> how to use MCs to locate CR

sources and constrain CR propagation

|----- Class #2 -----|

Page 3: Gamma rays from molecular clouds (part 2)cappa/work_shop/gabici2.pdf · Gamma rays from the Milky Way NANTEN: CO (J=1-0) -> tracer of H2 LAB HI Survey (Karberla et al 05) ASSUMPTION:

(1) Molecular clouds as cosmic ray barometers

Page 4: Gamma rays from molecular clouds (part 2)cappa/work_shop/gabici2.pdf · Gamma rays from the Milky Way NANTEN: CO (J=1-0) -> tracer of H2 LAB HI Survey (Karberla et al 05) ASSUMPTION:

Gamma rays from the Milky Way

dnγ(Eγ) =qγ(Eγ ,r )

4πr2d3r =

qγ4π

dr dΩ

The gamma ray emission from the Milky Way is mainly due to p-p interactions

photon flux at Earth

gamma ray emissivity

Page 5: Gamma rays from molecular clouds (part 2)cappa/work_shop/gabici2.pdf · Gamma rays from the Milky Way NANTEN: CO (J=1-0) -> tracer of H2 LAB HI Survey (Karberla et al 05) ASSUMPTION:

Gamma rays from the Milky Way

dnγ(Eγ) =qγ(Eγ ,r )

4πr2d3r =

qγ4π

dr dΩ

The gamma ray emission from the Milky Way is mainly due to p-p interactions

photon flux at Earth

gamma ray emissivity

dnγ

dΩ=

rmax

0dr

qγ4π

∝ rmax

0dr NCR(ECR, r) ngas(r)

Page 6: Gamma rays from molecular clouds (part 2)cappa/work_shop/gabici2.pdf · Gamma rays from the Milky Way NANTEN: CO (J=1-0) -> tracer of H2 LAB HI Survey (Karberla et al 05) ASSUMPTION:

Gamma rays from the Milky Way

dnγ(Eγ) =qγ(Eγ ,r )

4πr2d3r =

qγ4π

dr dΩ

The gamma ray emission from the Milky Way is mainly due to p-p interactions

photon flux at Earth

gamma ray emissivity

dnγ

dΩ=

rmax

0dr

qγ4π

∝ rmax

0dr NCR(ECR, r) ngas(r)

measured by EGRET, FERMI...

If we know (we do) the gas distribution in the Milky Way we can use gamma ray observations to constrain spatial variations of the CR intensity

Page 7: Gamma rays from molecular clouds (part 2)cappa/work_shop/gabici2.pdf · Gamma rays from the Milky Way NANTEN: CO (J=1-0) -> tracer of H2 LAB HI Survey (Karberla et al 05) ASSUMPTION:

Molecular Clouds as CR barometers: GeVs

<- FERMI sky = CR+gas

Page 8: Gamma rays from molecular clouds (part 2)cappa/work_shop/gabici2.pdf · Gamma rays from the Milky Way NANTEN: CO (J=1-0) -> tracer of H2 LAB HI Survey (Karberla et al 05) ASSUMPTION:

Molecular Clouds as CR barometers: GeVs

<- FERMI sky = CR+gas

Casa

nova

...SG

... e

t al

, 201

0

gas column density ->

CO data from NANTEN telescope

Page 9: Gamma rays from molecular clouds (part 2)cappa/work_shop/gabici2.pdf · Gamma rays from the Milky Way NANTEN: CO (J=1-0) -> tracer of H2 LAB HI Survey (Karberla et al 05) ASSUMPTION:

Gamma rays from the Milky WayNANTEN: CO (J=1-0)

-> tracer of H2

LAB HI Survey (Karberla et al 05)

ASSUMPTION: spatial homogeneity of CRs

Page 10: Gamma rays from molecular clouds (part 2)cappa/work_shop/gabici2.pdf · Gamma rays from the Milky Way NANTEN: CO (J=1-0) -> tracer of H2 LAB HI Survey (Karberla et al 05) ASSUMPTION:

Distance (kpc)110 1 10

)1 k

pc1

s2(p

hoto

ns c

m

1010

910

810 sum

HIH2

Casa

nova

et

al, 2

010

@1 GeV<--

Gamma rays from the Milky WayNANTEN: CO (J=1-0)

-> tracer of H2

LAB HI Survey (Karberla et al 05)

ASSUMPTION: spatial homogeneity of CRs

Page 11: Gamma rays from molecular clouds (part 2)cappa/work_shop/gabici2.pdf · Gamma rays from the Milky Way NANTEN: CO (J=1-0) -> tracer of H2 LAB HI Survey (Karberla et al 05) ASSUMPTION:

Distance (kpc)110 1 10

)1 k

pc1

s2(p

hoto

ns c

m

1010

910

810 sum

HIH2

Casa

nova

et

al, 2

010

@1 GeV<--

Gamma rays from the Milky WayNANTEN: CO (J=1-0)

-> tracer of H2

LAB HI Survey (Karberla et al 05)

ASSUMPTION: spatial homogeneity of CRs

2% 84% 14%

Page 12: Gamma rays from molecular clouds (part 2)cappa/work_shop/gabici2.pdf · Gamma rays from the Milky Way NANTEN: CO (J=1-0) -> tracer of H2 LAB HI Survey (Karberla et al 05) ASSUMPTION:

Distance (kpc)110 1 10

)1 k

pc1

s2(p

hoto

ns c

m

1010

910

810 sum

HIH2

Casa

nova

et

al, 2

010

@1 GeV<--

Gamma rays from the Milky WayNANTEN: CO (J=1-0)

-> tracer of H2

LAB HI Survey (Karberla et al 05)

ASSUMPTION: spatial homogeneity of CRs

2% 84% 14%

the main contribution to the gamma ray emission comes

from ~ 1 kpc. If the CR intensity is different there, we expect a different flux.

-> “Tomography” with gamma rays!

CR are, on large scales, homogeneously distributed in

the MW (EGRET)

Page 13: Gamma rays from molecular clouds (part 2)cappa/work_shop/gabici2.pdf · Gamma rays from the Milky Way NANTEN: CO (J=1-0) -> tracer of H2 LAB HI Survey (Karberla et al 05) ASSUMPTION:

Molecular Clouds as CR barometers: GeVs

LSR velocity (m/s)160 140 120 100 80 60 40 20 0 20

310×

(K)

BT

0

20

40

60

80

100

H I (b)

Abd

o et

al,

2009

Goul

d Be

lt

loca

l arm

Pers

eus

oute

r ar

m

100o < l < 145o -15o < b < 30o

Recent results from the FERMI collaboration

<- density along line of sight

Page 14: Gamma rays from molecular clouds (part 2)cappa/work_shop/gabici2.pdf · Gamma rays from the Milky Way NANTEN: CO (J=1-0) -> tracer of H2 LAB HI Survey (Karberla et al 05) ASSUMPTION:

Molecular Clouds as CR barometers: GeVs

LSR velocity (m/s)160 140 120 100 80 60 40 20 0 20

310×

(K)

BT

0

20

40

60

80

100

H I (b)

Abd

o et

al,

2009

Goul

d Be

lt

loca

l arm

Pers

eus

oute

r ar

m

100o < l < 145o -15o < b < 30o

Recent results from the FERMI collaboration

<- density along line of sight

R (kpc)0 2 4 6 8 10 12 14 16 18 20

)1 sr1

(sH

Iq

0

5

10

15

20

252710×

radial profile ofgamma ray emissivity

->

Page 15: Gamma rays from molecular clouds (part 2)cappa/work_shop/gabici2.pdf · Gamma rays from the Milky Way NANTEN: CO (J=1-0) -> tracer of H2 LAB HI Survey (Karberla et al 05) ASSUMPTION:

Molecular clouds at GeV energies: FERMI

coun

ts/pi

xel

0

5

10

15

20

25

30

35

40

45

50

coun

ts/pi

xel

0

5

10

15

20

25

30

35

40

45

50

° = -30b

° = -20b

° = -10b

° = 0b

° =

190

l

° =

200

l

° =

210

l

° =

220

l

° =

230

l

Mono. R2

Orion A

Orion B

Orion molecular clouds

Oku

mur

a et

al,

2009

Page 16: Gamma rays from molecular clouds (part 2)cappa/work_shop/gabici2.pdf · Gamma rays from the Milky Way NANTEN: CO (J=1-0) -> tracer of H2 LAB HI Survey (Karberla et al 05) ASSUMPTION:

Molecular clouds at GeV energies: FERMI

coun

ts/pi

xel

0

5

10

15

20

25

30

35

40

45

50

coun

ts/pi

xel

0

5

10

15

20

25

30

35

40

45

50

° = -30b

° = -20b

° = -10b

° = 0b

° =

190

l

° =

200

l

° =

210

l

° =

220

l

° =

230

l

Mono. R2

Orion A

Orion B

Orion molecular clouds

Oku

mur

a et

al,

2009

d ~ 400 pc+

CR spectrum from GALPROP(8% less than local CRs)

Page 17: Gamma rays from molecular clouds (part 2)cappa/work_shop/gabici2.pdf · Gamma rays from the Milky Way NANTEN: CO (J=1-0) -> tracer of H2 LAB HI Survey (Karberla et al 05) ASSUMPTION:

Molecular clouds at GeV energies: FERMI

coun

ts/pi

xel

0

5

10

15

20

25

30

35

40

45

50

coun

ts/pi

xel

0

5

10

15

20

25

30

35

40

45

50

° = -30b

° = -20b

° = -10b

° = 0b

° =

190

l

° =

200

l

° =

210

l

° =

220

l

° =

230

l

Mono. R2

Orion A

Orion B

Orion molecular clouds

Oku

mur

a et

al,

2009

Energy (MeV)210 310 410

)-1

MeV

-1 s-2

cm2 (M

eVE

/dNd2

E

-610

-510

-410

Orion A Total

400M 3 10× 4.8) ± 7.5 ±(80.6 /ndf = 16.7/102

Orion A Total

400M 3 10× 2.6) ± 5.2 ±(39.5 /ndf = 9.3/102

Pionic

Electron Bremsstrahlung

d ~ 400 pc+

CR spectrum from GALPROP(8% less than local CRs)

Page 18: Gamma rays from molecular clouds (part 2)cappa/work_shop/gabici2.pdf · Gamma rays from the Milky Way NANTEN: CO (J=1-0) -> tracer of H2 LAB HI Survey (Karberla et al 05) ASSUMPTION:

Molecular clouds at GeV energies: FERMI

coun

ts/pi

xel

0

5

10

15

20

25

30

35

40

45

50

coun

ts/pi

xel

0

5

10

15

20

25

30

35

40

45

50

° = -30b

° = -20b

° = -10b

° = 0b

° =

190

l

° =

200

l

° =

210

l

° =

220

l

° =

230

l

Mono. R2

Orion A

Orion B

Orion molecular clouds

Oku

mur

a et

al,

2009

Energy (MeV)210 310 410

)-1

MeV

-1 s-2

cm2 (M

eVE

/dNd2

E

-610

-510

-410

Orion A Total

400M 3 10× 4.8) ± 7.5 ±(80.6 /ndf = 16.7/102

Orion A Total

400M 3 10× 2.6) ± 5.2 ±(39.5 /ndf = 9.3/102

Pionic

Electron Bremsstrahlung

d ~ 400 pc+

CR spectrum from GALPROP(8% less than local CRs)

MA ∼ 8.1× 104M⊙

MB ∼ 4.0× 104M⊙

Page 19: Gamma rays from molecular clouds (part 2)cappa/work_shop/gabici2.pdf · Gamma rays from the Milky Way NANTEN: CO (J=1-0) -> tracer of H2 LAB HI Survey (Karberla et al 05) ASSUMPTION:

(2) Illuminated molecular clouds (MC/SNR associations)

Page 20: Gamma rays from molecular clouds (part 2)cappa/work_shop/gabici2.pdf · Gamma rays from the Milky Way NANTEN: CO (J=1-0) -> tracer of H2 LAB HI Survey (Karberla et al 05) ASSUMPTION:

Evolution of SuperNova RemnantsSN -> Explosion in a cold, uniform medium

ESN = 1051 E51 ergExplosion energy:

Mass of ejecta: Mej ≈ 1÷ 10 M⊙

Msw -> mass swept up by the shock

Msw << Mejif free expansion phase

Page 21: Gamma rays from molecular clouds (part 2)cappa/work_shop/gabici2.pdf · Gamma rays from the Milky Way NANTEN: CO (J=1-0) -> tracer of H2 LAB HI Survey (Karberla et al 05) ASSUMPTION:

Evolution of SuperNova RemnantsSN -> Explosion in a cold, uniform medium

ESN = 1051 E51 ergExplosion energy:

Mass of ejecta: Mej ≈ 1÷ 10 M⊙

Msw -> mass swept up by the shock

Msw << Mejif free expansion phase

ESN =1

2Mej v2 v = 109 E1/2

51

Mej

M⊙

1/2

cm/s

constant velocity

Page 22: Gamma rays from molecular clouds (part 2)cappa/work_shop/gabici2.pdf · Gamma rays from the Milky Way NANTEN: CO (J=1-0) -> tracer of H2 LAB HI Survey (Karberla et al 05) ASSUMPTION:

Evolution of SuperNova Remnantsthe free-expansion phase ends when: Mej ≈ Msw

Page 23: Gamma rays from molecular clouds (part 2)cappa/work_shop/gabici2.pdf · Gamma rays from the Milky Way NANTEN: CO (J=1-0) -> tracer of H2 LAB HI Survey (Karberla et al 05) ASSUMPTION:

Evolution of SuperNova Remnantsthe free-expansion phase ends when: Mej ≈ Msw

uniform medium with density: gas ≈ 1.7× 10−24 g

4 π

3R3

s gas = Mej Rs ≈ 2

Mej

M⊙

13

pc

shock radius

Page 24: Gamma rays from molecular clouds (part 2)cappa/work_shop/gabici2.pdf · Gamma rays from the Milky Way NANTEN: CO (J=1-0) -> tracer of H2 LAB HI Survey (Karberla et al 05) ASSUMPTION:

Evolution of SuperNova Remnantsthe free-expansion phase ends when: Mej ≈ Msw

uniform medium with density: gas ≈ 1.7× 10−24 g

4 π

3R3

s gas = Mej Rs ≈ 2

Mej

M⊙

13

pc

shock radius

duration of the free expansion phase: t ≈ Rs

v≈ 200

Mej

M⊙

− 16

yr

Page 25: Gamma rays from molecular clouds (part 2)cappa/work_shop/gabici2.pdf · Gamma rays from the Milky Way NANTEN: CO (J=1-0) -> tracer of H2 LAB HI Survey (Karberla et al 05) ASSUMPTION:

Evolution of SuperNova Remnants

Msw >> Mej -> the shock slows down

we want to find a relation between Rs and t

Page 26: Gamma rays from molecular clouds (part 2)cappa/work_shop/gabici2.pdf · Gamma rays from the Milky Way NANTEN: CO (J=1-0) -> tracer of H2 LAB HI Survey (Karberla et al 05) ASSUMPTION:

Evolution of SuperNova Remnants

Msw >> Mej -> the shock slows down

we want to find a relation between Rs and t

kbT2 =316

mu21 1 keV

let’s start by considering the shock heating of the gas

τc ∝ T12 106 yr

cooling time much longer than the SNR age!

Page 27: Gamma rays from molecular clouds (part 2)cappa/work_shop/gabici2.pdf · Gamma rays from the Milky Way NANTEN: CO (J=1-0) -> tracer of H2 LAB HI Survey (Karberla et al 05) ASSUMPTION:

Evolution of SuperNova Remnants

Msw >> Mej -> the shock slows down

we want to find a relation between Rs and t

SNRs emit X-rays

the SNR in this phase conserves the total energy!

kbT2 =316

mu21 1 keV

let’s start by considering the shock heating of the gas

τc ∝ T12 106 yr

cooling time much longer than the SNR age!

Page 28: Gamma rays from molecular clouds (part 2)cappa/work_shop/gabici2.pdf · Gamma rays from the Milky Way NANTEN: CO (J=1-0) -> tracer of H2 LAB HI Survey (Karberla et al 05) ASSUMPTION:

the only relevant physical quantities are: ESN gasand

Evolution of SuperNova Remnants

Msw >> Mej -> the shock slows down

we want to find a relation between Rs and t

Page 29: Gamma rays from molecular clouds (part 2)cappa/work_shop/gabici2.pdf · Gamma rays from the Milky Way NANTEN: CO (J=1-0) -> tracer of H2 LAB HI Survey (Karberla et al 05) ASSUMPTION:

the only relevant physical quantities are: ESN gasand

Evolution of SuperNova Remnants

Msw >> Mej -> the shock slows down

we want to find a relation between Rs and t

ESN

gas

t2

R5s

we can built a non dimensional quantity ->

Rs ≈ESN

gas

15

t25 Sedov solution

Page 30: Gamma rays from molecular clouds (part 2)cappa/work_shop/gabici2.pdf · Gamma rays from the Milky Way NANTEN: CO (J=1-0) -> tracer of H2 LAB HI Survey (Karberla et al 05) ASSUMPTION:

Evolution of SuperNova Remnantsduration of the Sedov phase

tage

Page 31: Gamma rays from molecular clouds (part 2)cappa/work_shop/gabici2.pdf · Gamma rays from the Milky Way NANTEN: CO (J=1-0) -> tracer of H2 LAB HI Survey (Karberla et al 05) ASSUMPTION:

Evolution of SuperNova Remnantsduration of the Sedov phase

tage vs ∝ t−35

Page 32: Gamma rays from molecular clouds (part 2)cappa/work_shop/gabici2.pdf · Gamma rays from the Milky Way NANTEN: CO (J=1-0) -> tracer of H2 LAB HI Survey (Karberla et al 05) ASSUMPTION:

Evolution of SuperNova Remnantsduration of the Sedov phase

tage vs ∝ t−35 T2 ∝ v2s

Page 33: Gamma rays from molecular clouds (part 2)cappa/work_shop/gabici2.pdf · Gamma rays from the Milky Way NANTEN: CO (J=1-0) -> tracer of H2 LAB HI Survey (Karberla et al 05) ASSUMPTION:

Evolution of SuperNova Remnantsduration of the Sedov phase

tage vs ∝ t−35 T2 ∝ v2s τc ∝ T

122

Page 34: Gamma rays from molecular clouds (part 2)cappa/work_shop/gabici2.pdf · Gamma rays from the Milky Way NANTEN: CO (J=1-0) -> tracer of H2 LAB HI Survey (Karberla et al 05) ASSUMPTION:

Evolution of SuperNova Remnantsduration of the Sedov phase

tage vs ∝ t−35 T2 ∝ v2s τc ∝ T

122

tage ∼ τcwhen -> radiative losses become important

tage ∼ 5× 104 yrthis happens at

Rends ≈ 20 pc

vends ≈ 200 km/s

Page 35: Gamma rays from molecular clouds (part 2)cappa/work_shop/gabici2.pdf · Gamma rays from the Milky Way NANTEN: CO (J=1-0) -> tracer of H2 LAB HI Survey (Karberla et al 05) ASSUMPTION:

Diffusive Shock Acceleration

ShockUp-stream Down-stream

u1u2

-->

B

B

B

B

B

B

Shock rest frame

Krymskii 1977, Axford et al. 1977, Blandford & Ostriker 1978, Bell 1978

See class by T. Bell

Page 36: Gamma rays from molecular clouds (part 2)cappa/work_shop/gabici2.pdf · Gamma rays from the Milky Way NANTEN: CO (J=1-0) -> tracer of H2 LAB HI Survey (Karberla et al 05) ASSUMPTION:

Diffusive Shock Acceleration

ShockUp-stream Down-stream-->

B

B

B

B

B

B

Up-stream rest frame

u1

u1 − u2

a

b

Ea = Eb

Page 37: Gamma rays from molecular clouds (part 2)cappa/work_shop/gabici2.pdf · Gamma rays from the Milky Way NANTEN: CO (J=1-0) -> tracer of H2 LAB HI Survey (Karberla et al 05) ASSUMPTION:

Diffusive Shock Acceleration

ShockUp-stream Down-stream-->

B

B

B

B

B

B

Down-stream rest frame

u1 − u2

a

b

Ea = Eb

u2

Page 38: Gamma rays from molecular clouds (part 2)cappa/work_shop/gabici2.pdf · Gamma rays from the Milky Way NANTEN: CO (J=1-0) -> tracer of H2 LAB HI Survey (Karberla et al 05) ASSUMPTION:

Particle acceleration during the free expansion phase

us

Up-stream

CR

shock

ld = us t

ld =√D t

Page 39: Gamma rays from molecular clouds (part 2)cappa/work_shop/gabici2.pdf · Gamma rays from the Milky Way NANTEN: CO (J=1-0) -> tracer of H2 LAB HI Survey (Karberla et al 05) ASSUMPTION:

Particle acceleration during the free expansion phase

us

Up-stream

CR

shock

ld = us t

ld =√D t

t =D

u2s

∝ Eequating...

Bohm diffusion -> λ = RL

D ≈ λc → D ∝ E

Page 40: Gamma rays from molecular clouds (part 2)cappa/work_shop/gabici2.pdf · Gamma rays from the Milky Way NANTEN: CO (J=1-0) -> tracer of H2 LAB HI Survey (Karberla et al 05) ASSUMPTION:

Particle acceleration during the free expansion phase

us

Up-stream

CR

shock

ld = us t

ld =√D t

t =D

u2s

∝ Eequating...

Bohm diffusion -> λ = RL

D ≈ λc → D ∝ E

max energy increases w. time

age max

Page 41: Gamma rays from molecular clouds (part 2)cappa/work_shop/gabici2.pdf · Gamma rays from the Milky Way NANTEN: CO (J=1-0) -> tracer of H2 LAB HI Survey (Karberla et al 05) ASSUMPTION:

Particles escape from SNRs

ush

Rsh

THIS IS A SNR

We need to know a bit of shock acceleration theory...

Diffusion length: ldiff ∼D(E)ush

∝ E

Bshush

see e.g. Ptuskin & Zirakashvili, 2003

Page 42: Gamma rays from molecular clouds (part 2)cappa/work_shop/gabici2.pdf · Gamma rays from the Milky Way NANTEN: CO (J=1-0) -> tracer of H2 LAB HI Survey (Karberla et al 05) ASSUMPTION:

Particles escape from SNRs

ush

Rsh

THIS IS A SNR

We need to know a bit of shock acceleration theory...

Diffusion length:

Confinement condition:

ldiff ∼D(E)ush

∝ E

Bshush

D(E)ush(t)

< Rsh(t) → Emax ∼ Bsh ush(t) Rsh(t)

see e.g. Ptuskin & Zirakashvili, 2003

Page 43: Gamma rays from molecular clouds (part 2)cappa/work_shop/gabici2.pdf · Gamma rays from the Milky Way NANTEN: CO (J=1-0) -> tracer of H2 LAB HI Survey (Karberla et al 05) ASSUMPTION:

Particles escape from SNRs

ush

Rsh

THIS IS A SNR

We need to know a bit of shock acceleration theory...

Diffusion length:

Confinement condition:

ldiff ∼D(E)ush

∝ E

Bshush

D(E)ush(t)

< Rsh(t) → Emax ∼ Bsh ush(t) Rsh(t)

Sedov phase:

Rsh(t) ∝ t2/5

ush(t) ∝ t−3/5

see e.g. Ptuskin & Zirakashvili, 2003

Page 44: Gamma rays from molecular clouds (part 2)cappa/work_shop/gabici2.pdf · Gamma rays from the Milky Way NANTEN: CO (J=1-0) -> tracer of H2 LAB HI Survey (Karberla et al 05) ASSUMPTION:

Particles escape from SNRs

ush

Rsh

THIS IS A SNR

We need to know a bit of shock acceleration theory...

Diffusion length:

Confinement condition:

ldiff ∼D(E)ush

∝ E

Bshush

D(E)ush(t)

< Rsh(t) → Emax ∼ Bsh ush(t) Rsh(t)

Sedov phase:

Rsh(t) ∝ t2/5

ush(t) ∝ t−3/5

Emax ∝ Bsht−1/5

see e.g. Ptuskin & Zirakashvili, 2003

Page 45: Gamma rays from molecular clouds (part 2)cappa/work_shop/gabici2.pdf · Gamma rays from the Milky Way NANTEN: CO (J=1-0) -> tracer of H2 LAB HI Survey (Karberla et al 05) ASSUMPTION:

Particles escape from SNRs

ush

Rsh

THIS IS A SNR

We need to know a bit of shock acceleration theory...

Diffusion length:

Confinement condition:

ldiff ∼D(E)ush

∝ E

Bshush

D(E)ush(t)

< Rsh(t) → Emax ∼ Bsh ush(t) Rsh(t)

Sedov phase:

Rsh(t) ∝ t2/5

ush(t) ∝ t−3/5

Emax ∝ Bsht−1/5

Emax decreases with timeParticles with E > Emax escape the SNR

Bsh also depends on

time

see e.g. Ptuskin & Zirakashvili, 2003

Page 46: Gamma rays from molecular clouds (part 2)cappa/work_shop/gabici2.pdf · Gamma rays from the Milky Way NANTEN: CO (J=1-0) -> tracer of H2 LAB HI Survey (Karberla et al 05) ASSUMPTION:

Particle escape from SNRsPtuskin & Zirakashvili, 2003

ush [km/s]

t [yr]Emax [GeV]

Page 47: Gamma rays from molecular clouds (part 2)cappa/work_shop/gabici2.pdf · Gamma rays from the Milky Way NANTEN: CO (J=1-0) -> tracer of H2 LAB HI Survey (Karberla et al 05) ASSUMPTION:

Particle escape from SNRsPtuskin & Zirakashvili, 2003

ush [km/s]

t [yr]Emax [GeV]

200 yrs

~ PeV

Page 48: Gamma rays from molecular clouds (part 2)cappa/work_shop/gabici2.pdf · Gamma rays from the Milky Way NANTEN: CO (J=1-0) -> tracer of H2 LAB HI Survey (Karberla et al 05) ASSUMPTION:

Particle escape from SNRsPtuskin & Zirakashvili, 2003

ush [km/s]

t [yr]Emax [GeV]

~10 GeV

~105 yrs

Page 49: Gamma rays from molecular clouds (part 2)cappa/work_shop/gabici2.pdf · Gamma rays from the Milky Way NANTEN: CO (J=1-0) -> tracer of H2 LAB HI Survey (Karberla et al 05) ASSUMPTION:

Particle escape from SNRsPtuskin & Zirakashvili, 2003

ush [km/s]

t [yr]Emax [GeV]

~10 GeV

~105 yrs

particles are released gradually during the Sedov phase: the one with the

highest energy first, and the ones with lower and lower energies at later times

Page 50: Gamma rays from molecular clouds (part 2)cappa/work_shop/gabici2.pdf · Gamma rays from the Milky Way NANTEN: CO (J=1-0) -> tracer of H2 LAB HI Survey (Karberla et al 05) ASSUMPTION:

The W28 region in gammas, CO, & radio

W28

HESS - TeV emission

Page 51: Gamma rays from molecular clouds (part 2)cappa/work_shop/gabici2.pdf · Gamma rays from the Milky Way NANTEN: CO (J=1-0) -> tracer of H2 LAB HI Survey (Karberla et al 05) ASSUMPTION:

The W28 region in gammas, CO, & radio

W28

HESS - TeV emission

Aharonian et al, 2008

Page 52: Gamma rays from molecular clouds (part 2)cappa/work_shop/gabici2.pdf · Gamma rays from the Milky Way NANTEN: CO (J=1-0) -> tracer of H2 LAB HI Survey (Karberla et al 05) ASSUMPTION:

The W28 region in gammas, CO, & radio

W28

18h18h03m

-24o

-23o 30

´-2

3o

0

20

40

60

80

100

NANTEN 12CO(J=1-0) 0-10 km/s

l=+6.0o

l=+7.0o

b=-1.0o

b=0.0o

W 28 (Radio Boundary)

W 28A2

G6.1-0.6

6.225-0.569

GRO J1801-2320

HESS J1801-233

HESS J1800-240A B

C

RA J2000.0 (hrs)

Dec

J20

00.0

(deg

)

18h18h03m

-24o

-23o 30

´-2

3o

0

20

40

60

80

100

NANTEN 12CO(J=1-0) 10-20 km/s

l=+6.0o

l=+7.0o

b=-1.0o

b=0.0o

W 28 (Radio Boundary)

W 28A2

G6.1-0.6

6.225-0.569

GRO J1801-2320

HESS J1801-233

HESS J1800-240A B

C

RA J2000.0 (hrs)

Dec

J20

00.0

(deg

)

NANTEN data - CO line

HESS - TeV emission

Aharonian et al, 2008

Page 53: Gamma rays from molecular clouds (part 2)cappa/work_shop/gabici2.pdf · Gamma rays from the Milky Way NANTEN: CO (J=1-0) -> tracer of H2 LAB HI Survey (Karberla et al 05) ASSUMPTION:

The W28 region in gammas, CO, & radio

W28

18h18h03m

-24o

-23o 30

´-2

3o

0

20

40

60

80

100

NANTEN 12CO(J=1-0) 0-10 km/s

l=+6.0o

l=+7.0o

b=-1.0o

b=0.0o

W 28 (Radio Boundary)

W 28A2

G6.1-0.6

6.225-0.569

GRO J1801-2320

HESS J1801-233

HESS J1800-240A B

C

RA J2000.0 (hrs)

Dec

J20

00.0

(deg

)

18h18h03m

-24o

-23o 30

´-2

3o

0

20

40

60

80

100

NANTEN 12CO(J=1-0) 10-20 km/s

l=+6.0o

l=+7.0o

b=-1.0o

b=0.0o

W 28 (Radio Boundary)

W 28A2

G6.1-0.6

6.225-0.569

GRO J1801-2320

HESS J1801-233

HESS J1800-240A B

C

RA J2000.0 (hrs)

Dec

J20

00.0

(deg

)

NANTEN data - CO line

HESS - TeV emission

Radio (Dubner et al 2000)

Aharonian et al, 2008

Page 54: Gamma rays from molecular clouds (part 2)cappa/work_shop/gabici2.pdf · Gamma rays from the Milky Way NANTEN: CO (J=1-0) -> tracer of H2 LAB HI Survey (Karberla et al 05) ASSUMPTION:

The W28 region in gammas, CO, & radio

W28

18h18h03m

-24o

-23o 30

´-2

3o

0

20

40

60

80

100

NANTEN 12CO(J=1-0) 0-10 km/s

l=+6.0o

l=+7.0o

b=-1.0o

b=0.0o

W 28 (Radio Boundary)

W 28A2

G6.1-0.6

6.225-0.569

GRO J1801-2320

HESS J1801-233

HESS J1800-240A B

C

RA J2000.0 (hrs)

Dec

J20

00.0

(deg

)

18h18h03m

-24o

-23o 30

´-2

3o

0

20

40

60

80

100

NANTEN 12CO(J=1-0) 10-20 km/s

l=+6.0o

l=+7.0o

b=-1.0o

b=0.0o

W 28 (Radio Boundary)

W 28A2

G6.1-0.6

6.225-0.569

GRO J1801-2320

HESS J1801-233

HESS J1800-240A B

C

RA J2000.0 (hrs)

Dec

J20

00.0

(deg

)

NANTEN data - CO line

HESS - TeV emission

Radio (Dubner et al 2000)

Aharonian et al, 2008

FERMI and AGILE - GeV emission

AGILE -> Giuliani et al, 2010

–23:00:00

–24:00:00

18:04:00 18:00:00

Right Ascension (J2000)

Dec

linat

ion

(J20

00)

0.1 0.2 0.3 0.4 0.5 0.6 0.7

HESS J1800-240

Source N

Source S

A B C

(a)

[counts/pixel]FERMI -> Abdo et al, 2010

Page 55: Gamma rays from molecular clouds (part 2)cappa/work_shop/gabici2.pdf · Gamma rays from the Milky Way NANTEN: CO (J=1-0) -> tracer of H2 LAB HI Survey (Karberla et al 05) ASSUMPTION:

W28: a cartoon

SNR shell

radio emission

-> GeV electrons

-> ongoing (re)acceleration?

Page 56: Gamma rays from molecular clouds (part 2)cappa/work_shop/gabici2.pdf · Gamma rays from the Milky Way NANTEN: CO (J=1-0) -> tracer of H2 LAB HI Survey (Karberla et al 05) ASSUMPTION:

W28: a cartoon

SNR shell

radio emission

-> GeV electrons

-> ongoing (re)acceleration?

Molecular clouds

Page 57: Gamma rays from molecular clouds (part 2)cappa/work_shop/gabici2.pdf · Gamma rays from the Milky Way NANTEN: CO (J=1-0) -> tracer of H2 LAB HI Survey (Karberla et al 05) ASSUMPTION:

W28: a cartoon

SNR shell

radio emission

-> GeV electrons

-> ongoing (re)acceleration?

Molecular clouds

gamma rays + gas

-> CR protons?

γ

γ

Page 58: Gamma rays from molecular clouds (part 2)cappa/work_shop/gabici2.pdf · Gamma rays from the Milky Way NANTEN: CO (J=1-0) -> tracer of H2 LAB HI Survey (Karberla et al 05) ASSUMPTION:

W28: a cartoon

SNR shell

radio emission

-> GeV electrons

-> ongoing (re)acceleration?

Molecular clouds

gamma rays + gas

-> CR protons?

-> coming from the SNR?

γ

γ

CR

CR

Page 59: Gamma rays from molecular clouds (part 2)cappa/work_shop/gabici2.pdf · Gamma rays from the Milky Way NANTEN: CO (J=1-0) -> tracer of H2 LAB HI Survey (Karberla et al 05) ASSUMPTION:

W28: a cartoon

SNR shell

radio emission

-> GeV electrons

-> ongoing (re)acceleration?

Molecular clouds

gamma rays + gas

-> CR protons?

-> coming from the SNR?

-> projection effects?

γ

γ

~12 pc

~ 20 pcCR

CR

Page 60: Gamma rays from molecular clouds (part 2)cappa/work_shop/gabici2.pdf · Gamma rays from the Milky Way NANTEN: CO (J=1-0) -> tracer of H2 LAB HI Survey (Karberla et al 05) ASSUMPTION:

?

W28: a cartoon

SNR shell

radio emission

-> GeV electrons

-> ongoing (re)acceleration?

Molecular clouds

gamma rays + gas

-> CR protons?

-> coming from the SNR?

-> projection effects?

+ masers

γ

γ

~12 pc

~ 20 pcCR

CR

Page 61: Gamma rays from molecular clouds (part 2)cappa/work_shop/gabici2.pdf · Gamma rays from the Milky Way NANTEN: CO (J=1-0) -> tracer of H2 LAB HI Survey (Karberla et al 05) ASSUMPTION:

?

W28: a cartoon

SNR shell

radio emission

-> GeV electrons

-> ongoing (re)acceleration?

Molecular clouds

gamma rays + gas

-> CR protons?

-> coming from the SNR?

-> projection effects?

+ masers

-> most of the protons

already escaped (> GeV?)

γ

γ

~12 pc

~ 20 pcCR

CR

Page 62: Gamma rays from molecular clouds (part 2)cappa/work_shop/gabici2.pdf · Gamma rays from the Milky Way NANTEN: CO (J=1-0) -> tracer of H2 LAB HI Survey (Karberla et al 05) ASSUMPTION:

Escaping particles assumptions

-> point like explosion

-> (isotropic) diffusion coefficient independent on position

-> particles with energy E escape after a time: tout ∝ E−δ

Page 63: Gamma rays from molecular clouds (part 2)cappa/work_shop/gabici2.pdf · Gamma rays from the Milky Way NANTEN: CO (J=1-0) -> tracer of H2 LAB HI Survey (Karberla et al 05) ASSUMPTION:

Escaping particles assumptions

-> point like explosion

-> (isotropic) diffusion coefficient independent on position

-> particles with energy E escape after a time: tout ∝ E−δ

this is just a parametrization

Page 64: Gamma rays from molecular clouds (part 2)cappa/work_shop/gabici2.pdf · Gamma rays from the Milky Way NANTEN: CO (J=1-0) -> tracer of H2 LAB HI Survey (Karberla et al 05) ASSUMPTION:

Escaping particles assumptions

-> point like explosion

-> (isotropic) diffusion coefficient independent on position

-> particles with energy E escape after a time: tout ∝ E−δ

higher energy particles are released first

when the SNR is smaller

this is just a parametrization

Page 65: Gamma rays from molecular clouds (part 2)cappa/work_shop/gabici2.pdf · Gamma rays from the Milky Way NANTEN: CO (J=1-0) -> tracer of H2 LAB HI Survey (Karberla et al 05) ASSUMPTION:

Escaping particles assumptions

-> point like explosion

-> (isotropic) diffusion coefficient independent on position

-> particles with energy E escape after a time: tout ∝ E−δ

higher energy particles are released first

when the SNR is smaller

this is just a parametrization

ld ≈ (D t)1/2

t = tage − tout

diffusion length

? model dependent...

Page 66: Gamma rays from molecular clouds (part 2)cappa/work_shop/gabici2.pdf · Gamma rays from the Milky Way NANTEN: CO (J=1-0) -> tracer of H2 LAB HI Survey (Karberla et al 05) ASSUMPTION:

Escaping particles assumptions

-> point like explosion

-> (isotropic) diffusion coefficient independent on position

-> particles with energy E escape after a time: tout ∝ E−δ

higher energy particles are released first

when the SNR is smaller

this is just a parametrization

ld ≈ (D t)1/2

t = tage − tout

diffusion length

? model dependent...

≈ (D tage)1/2

high energy particles

Page 67: Gamma rays from molecular clouds (part 2)cappa/work_shop/gabici2.pdf · Gamma rays from the Milky Way NANTEN: CO (J=1-0) -> tracer of H2 LAB HI Survey (Karberla et al 05) ASSUMPTION:

Escaping particles assumptions

-> point like explosion

-> (isotropic) diffusion coefficient independent on position

-> particles with energy E escape after a time: tout ∝ E−δ

higher energy particles are released first

when the SNR is smaller

this is just a parametrization

ld ≈ (D t)1/2

t = tage − tout

diffusion length

? model dependent...

≈ (D tage)1/2

high energy particles

lower energies -> point-like approx not so good + model dependent (tout ~ tage)

Page 68: Gamma rays from molecular clouds (part 2)cappa/work_shop/gabici2.pdf · Gamma rays from the Milky Way NANTEN: CO (J=1-0) -> tracer of H2 LAB HI Survey (Karberla et al 05) ASSUMPTION:

Escaping particles: CR spectrumtage -> ld = 10, 30, 100 pc

ld ≈ (D tage)1/2

Page 69: Gamma rays from molecular clouds (part 2)cappa/work_shop/gabici2.pdf · Gamma rays from the Milky Way NANTEN: CO (J=1-0) -> tracer of H2 LAB HI Survey (Karberla et al 05) ASSUMPTION:

Escaping particles: CR spectrumtage -> ld = 10, 30, 100 pc

const ∝ ηCR ESN

l3d

ld ≈ (D tage)1/2

Page 70: Gamma rays from molecular clouds (part 2)cappa/work_shop/gabici2.pdf · Gamma rays from the Milky Way NANTEN: CO (J=1-0) -> tracer of H2 LAB HI Survey (Karberla et al 05) ASSUMPTION:

Escaping particles: CR spectrumtage -> ld = 10, 30, 100 pc

const ∝ ηCR ESN

l3d

∝ e−

Rld

2

ld ≈ (D tage)1/2

Page 71: Gamma rays from molecular clouds (part 2)cappa/work_shop/gabici2.pdf · Gamma rays from the Milky Way NANTEN: CO (J=1-0) -> tracer of H2 LAB HI Survey (Karberla et al 05) ASSUMPTION:

Escaping particles: CR spectrumtage -> ld = 10, 30, 100 pc

const ∝ ηCR ESN

l3d

∝ e−

Rld

2

γ

ld ≈ (D tage)1/2

Page 72: Gamma rays from molecular clouds (part 2)cappa/work_shop/gabici2.pdf · Gamma rays from the Milky Way NANTEN: CO (J=1-0) -> tracer of H2 LAB HI Survey (Karberla et al 05) ASSUMPTION:

Escaping particles: CR spectrumtage -> ld = 10, 30, 100 pc

const ∝ ηCR ESN

l3d

∝ e−

Rld

2

γ

ld ≈ (D tage)1/2

0.1 ηCR 1

tage ≈ 3× 104 ÷ 105yr

ESN 2÷ 4× 1050erg

estimate D?

MNcl ≈ 5× 104M⊙

if we want SNRs to be the sources of CRs...

Page 73: Gamma rays from molecular clouds (part 2)cappa/work_shop/gabici2.pdf · Gamma rays from the Milky Way NANTEN: CO (J=1-0) -> tracer of H2 LAB HI Survey (Karberla et al 05) ASSUMPTION:

North

South

Mcl

North

Mcl

South

Escaping particles: W28

Page 74: Gamma rays from molecular clouds (part 2)cappa/work_shop/gabici2.pdf · Gamma rays from the Milky Way NANTEN: CO (J=1-0) -> tracer of H2 LAB HI Survey (Karberla et al 05) ASSUMPTION:

North

South

Mcl

North

Mcl

South

ld both clouds within a distance ld

Escaping particles: W28

Page 75: Gamma rays from molecular clouds (part 2)cappa/work_shop/gabici2.pdf · Gamma rays from the Milky Way NANTEN: CO (J=1-0) -> tracer of H2 LAB HI Survey (Karberla et al 05) ASSUMPTION:

North

South

Mcl

North

Mcl

South

ld both clouds within a distance ld

Fγ ∝ fCR Mcl

d2

Escaping particles: W28

Page 76: Gamma rays from molecular clouds (part 2)cappa/work_shop/gabici2.pdf · Gamma rays from the Milky Way NANTEN: CO (J=1-0) -> tracer of H2 LAB HI Survey (Karberla et al 05) ASSUMPTION:

North

South

Mcl

North

Mcl

South

ld both clouds within a distance ld

Fγ ∝ fCR Mcl

d2∝ ηCR ESN

(D tage)3/2

Mcl

d2

Escaping particles: W28

Page 77: Gamma rays from molecular clouds (part 2)cappa/work_shop/gabici2.pdf · Gamma rays from the Milky Way NANTEN: CO (J=1-0) -> tracer of H2 LAB HI Survey (Karberla et al 05) ASSUMPTION:

North

South

Mcl

North

Mcl

South

ld both clouds within a distance ld

Fγ ∝ fCR Mcl

d2∝ ηCR ESN

(D tage)3/2

Mcl

d2

Escaping particles: W28

D ∝ηCRESN Mcl

Fγd2

2/3

t−1ageand we get... ->

Page 78: Gamma rays from molecular clouds (part 2)cappa/work_shop/gabici2.pdf · Gamma rays from the Milky Way NANTEN: CO (J=1-0) -> tracer of H2 LAB HI Survey (Karberla et al 05) ASSUMPTION:

W28: numbers

Measured quantities:

apparent size: ~ 45’-50’, distance ~ 2 kpc -> Rs ~ 12 pc ratio OIII/Hβ -> vs = 80 km/s

Assumptions:

mass of ejecta -> Mej ~ 1.4 Msun

ambient density -> n ~ 5 cm-3

Derived quantities (Cioffi et al 1989 model):

explosion energy -> ESN ~ 0.4 x 1051 erg initial velocity -> v0 ~ 5500 km/s SNR age -> 4.4 x 104 yr (radiative phase)

Page 79: Gamma rays from molecular clouds (part 2)cappa/work_shop/gabici2.pdf · Gamma rays from the Milky Way NANTEN: CO (J=1-0) -> tracer of H2 LAB HI Survey (Karberla et al 05) ASSUMPTION:

W28: TeV emission

North

South

A B

~ 5 104 Msun

~ 6 104 Msun

~ 4 104 Msun

Gabici et al, 2010

Page 80: Gamma rays from molecular clouds (part 2)cappa/work_shop/gabici2.pdf · Gamma rays from the Milky Way NANTEN: CO (J=1-0) -> tracer of H2 LAB HI Survey (Karberla et al 05) ASSUMPTION:

W28: TeV emission

North

South

A B

~ 5 104 Msun

~ 6 104 Msun

~ 4 104 Msun

North

South A

South B

virtually the same curves for:

(η,χ) = (10%, 0.028); (30%, 0.06); (50%, 0.085)

acceleration efficiency

diffusion coefficient in units of the galactic one

Gabici et al, 2010

Page 81: Gamma rays from molecular clouds (part 2)cappa/work_shop/gabici2.pdf · Gamma rays from the Milky Way NANTEN: CO (J=1-0) -> tracer of H2 LAB HI Survey (Karberla et al 05) ASSUMPTION:

W28: TeV emission

North

South

A B

~ 5 104 Msun

~ 6 104 Msun

~ 4 104 Msun

North

South A

South B

virtually the same curves for:

(η,χ) = (10%, 0.028); (30%, 0.06); (50%, 0.085)

acceleration efficiency

diffusion coefficient in units of the galactic one

diffusion

coe

ffici

ent is

supp

ressed

?

Gabici et al, 2010

Page 82: Gamma rays from molecular clouds (part 2)cappa/work_shop/gabici2.pdf · Gamma rays from the Milky Way NANTEN: CO (J=1-0) -> tracer of H2 LAB HI Survey (Karberla et al 05) ASSUMPTION:

W28: TeV emission

North

South

A B

~ 5 104 Msun

~ 6 104 Msun

~ 4 104 Msun

North

South A

South B

virtually the same curves for:

(η,χ) = (10%, 0.028); (30%, 0.06); (50%, 0.085)

acceleration efficiency

diffusion coefficient in units of the galactic one

size of “CR bubble” @3 TeV

ld ≈ 70 pc → χ = 0.028

≈ 95 pc → χ = 0.06

≈ 115 pc → χ = 0.085diffusion

coe

ffici

ent is

supp

ressed

?

Gabici et al, 2010

Page 83: Gamma rays from molecular clouds (part 2)cappa/work_shop/gabici2.pdf · Gamma rays from the Milky Way NANTEN: CO (J=1-0) -> tracer of H2 LAB HI Survey (Karberla et al 05) ASSUMPTION:

W28: GeV emission

Energy (GeV)110 1 10 210 310

) 1 s2

dF/d

E (e

V cm

2 E

110

1

10

210(b) W28 South (Source S)

Energy (GeV)110 1 10 210 310

) 1 s2

dF/d

E (e

V cm

2 E

110

1

10

(a) HESS J1800 240A

Energy (GeV)110 1 10 210 310

) 1 s2

dF/d

E (e

V cm

2 E110

1

10

210(a) W28 North (Source N)

FERM

I ->

Abd

o et

al,

2010

if the cloud is within the “CR bubble” [d < ld(E)]

if cloud A and B are at the same distance -> same spectrum

AB

cloud A might not be physically associated with the

W28 system

Page 84: Gamma rays from molecular clouds (part 2)cappa/work_shop/gabici2.pdf · Gamma rays from the Milky Way NANTEN: CO (J=1-0) -> tracer of H2 LAB HI Survey (Karberla et al 05) ASSUMPTION:

W28: GeV emission

Page 85: Gamma rays from molecular clouds (part 2)cappa/work_shop/gabici2.pdf · Gamma rays from the Milky Way NANTEN: CO (J=1-0) -> tracer of H2 LAB HI Survey (Karberla et al 05) ASSUMPTION:

W28: GeV emission

~ TeV

Page 86: Gamma rays from molecular clouds (part 2)cappa/work_shop/gabici2.pdf · Gamma rays from the Milky Way NANTEN: CO (J=1-0) -> tracer of H2 LAB HI Survey (Karberla et al 05) ASSUMPTION:

W28: GeV emission

~ TeV

~ GeV

Page 87: Gamma rays from molecular clouds (part 2)cappa/work_shop/gabici2.pdf · Gamma rays from the Milky Way NANTEN: CO (J=1-0) -> tracer of H2 LAB HI Survey (Karberla et al 05) ASSUMPTION:

W28: GeV emission

~ TeV

~ GeV

Page 88: Gamma rays from molecular clouds (part 2)cappa/work_shop/gabici2.pdf · Gamma rays from the Milky Way NANTEN: CO (J=1-0) -> tracer of H2 LAB HI Survey (Karberla et al 05) ASSUMPTION:

W28: GeV emission

d = 12 pc d = 32 pc d = 65 pc

η = 30%

χ = 0.06

North South B South A

Page 89: Gamma rays from molecular clouds (part 2)cappa/work_shop/gabici2.pdf · Gamma rays from the Milky Way NANTEN: CO (J=1-0) -> tracer of H2 LAB HI Survey (Karberla et al 05) ASSUMPTION:

W28: GeV emission

d = 12 pc d = 32 pc d = 65 pc

η = 30%

χ = 0.06this peak is removed as background

North South B South A

Page 90: Gamma rays from molecular clouds (part 2)cappa/work_shop/gabici2.pdf · Gamma rays from the Milky Way NANTEN: CO (J=1-0) -> tracer of H2 LAB HI Survey (Karberla et al 05) ASSUMPTION:

W28: GeV emission

d = 12 pc d = 32 pc d = 65 pc

η = 30%

χ = 0.06this peak is removed as background

some problems here...+ some of the approximations are not very good at low energies

+ subtraction of the background?+ other contributions? (Bremsstrahlung)

North South B South A

Page 91: Gamma rays from molecular clouds (part 2)cappa/work_shop/gabici2.pdf · Gamma rays from the Milky Way NANTEN: CO (J=1-0) -> tracer of H2 LAB HI Survey (Karberla et al 05) ASSUMPTION:

Take-home message

Current observations of MCs in gamma rays can be used to probe the CR

intensity at different locations within the Galaxy (i.e. Gal centre ridge, orion cloud,

W28) -> indirect identification of CR sources

For MC located close to the (supposed) CR accelerator, estimates of the local CR

diffusion coefficient can be made.

Future observations (Fermi, HESS/MAGIC/VERITAS, but most of all CTA) will

increase the number of detected clouds and make the results presented here more

(or less?) solid