gene expression. the information encoded in a gene is converted into a protein the genetic...

19
Gene expression

Upload: amberlynn-walker

Post on 22-Dec-2015

227 views

Category:

Documents


7 download

TRANSCRIPT

Page 1: Gene expression. The information encoded in a gene is converted into a protein  The genetic information is made available to the cell Phases of gene

Gene expression

Page 2: Gene expression. The information encoded in a gene is converted into a protein  The genetic information is made available to the cell Phases of gene

Gene expression

• The information encoded in a gene is converted into a protein

The genetic information is made available to the cell

• Phases of gene expression

1. Transcription

2. Translation

3. Protein folding

Functional protein

Page 3: Gene expression. The information encoded in a gene is converted into a protein  The genetic information is made available to the cell Phases of gene

1. DNA’s information is copied into messanger RNA (mRNA) molecule in transcription

Page 4: Gene expression. The information encoded in a gene is converted into a protein  The genetic information is made available to the cell Phases of gene

2. mRNA directs synthesis of a protein with amino acid sequence determined by the base sequence of the codons in mRNA

Translation

Page 5: Gene expression. The information encoded in a gene is converted into a protein  The genetic information is made available to the cell Phases of gene

Unfolded

Folded

3. Correct folding of a protein is needed to achieve functional activity

Page 6: Gene expression. The information encoded in a gene is converted into a protein  The genetic information is made available to the cell Phases of gene

Transcription:• a mRNA copy of a DNA sequence is produced

• RNA polymerases make RNAs

• Other strand is used as a template

• mRNA copy has one strand

• Beside the coding area also other information is added to mRNA molecule

• Sequence is complementary for DNA • Ts are replaced with uracils, U

Page 7: Gene expression. The information encoded in a gene is converted into a protein  The genetic information is made available to the cell Phases of gene

•mRNA is produced and processed in the nucleus:

1.Introns are cutted off2.Methyl cap is added to 5’ end3.Poly A tail is added to 3’ end

•The ready mRNA molecule is transported to the cytoplasm

Nucleus Cytoplasm

Page 8: Gene expression. The information encoded in a gene is converted into a protein  The genetic information is made available to the cell Phases of gene

From a mRNA to a protein…

• Decoding mRNAs codon sequence to protein is dependent on transfer RNAs (tRNA)

• All tRNAs have similar structure•amino acid part•anticodon part

• Anticodon part base pairs with it’s anticodon structure in mRNA

• Amino acid part carries correct amino acid to the place of protein synthesis

tRNAs are needed for recognition and transport

Amino acid

mRNA

Page 9: Gene expression. The information encoded in a gene is converted into a protein  The genetic information is made available to the cell Phases of gene

Protein synthesis

• Protein synthesis takes place in the ribosomes

• Ribosomes are located to the cytoplasm

• Ribomes recognize the initiation codon from mRNA

• Elongation of a protein chain includes three steps main steps

Page 10: Gene expression. The information encoded in a gene is converted into a protein  The genetic information is made available to the cell Phases of gene

Step 0.mRNA arrives to the ribosome and the ribosome starts to ”read” mRNAs code

Step 1.tRNA forms a pair with the corresponding codon in mRNA

Step 2. A bond is formed by ribosome between the adjacent amino acids

Step 3. The ribosome translocates to the next mRNA codon and the ”used” tRNA is discharged from the ribosome

Page 11: Gene expression. The information encoded in a gene is converted into a protein  The genetic information is made available to the cell Phases of gene

• Previous steps are repeated until the ribosome arrives to the stop codon

Step 4.Termination is carried out with the help

of termination factors

• After termination the nascent protein is released from the ribosome, the ribosome dissociates and the mRNA is released

Step 5. Following the translation proteins are folded and sometimes also chemically modificated

Page 12: Gene expression. The information encoded in a gene is converted into a protein  The genetic information is made available to the cell Phases of gene
Page 13: Gene expression. The information encoded in a gene is converted into a protein  The genetic information is made available to the cell Phases of gene

• Protein´s folding is dictated by it’s amino acid sequence

• Correct folding is needed for the protein to achieve proper functional properties

•Proteins assisting in the folding process are known

•3D structure can be predicted from the aa-sequence

•The function of a protein can be predicted from it’s structure

Protein folding

Page 14: Gene expression. The information encoded in a gene is converted into a protein  The genetic information is made available to the cell Phases of gene

Protein folding…

Page 15: Gene expression. The information encoded in a gene is converted into a protein  The genetic information is made available to the cell Phases of gene

Expression control

• The action of a cell is dependent on it’s proteins

• Amount of the proteins are determined by:

1. Concentration of the RNA 2. Frequency at which the RNA in translated to

the protein3. Stability of the protein

• Only a small portion of the genes in a cell are expressed

Depends on the cell type, developmental stage, environmental factors…

Page 16: Gene expression. The information encoded in a gene is converted into a protein  The genetic information is made available to the cell Phases of gene

• Regulation can happen at any stage of gene expression

• Control of the transcription initiation is the most important

• Different kind of control elements are found

• In eukaryotes, the control elements of transcription can be found from the inside and outside the gene area

• Most important control element is the promoter Initiation place Directs binding of the enzymes needed to produce RNA

Page 17: Gene expression. The information encoded in a gene is converted into a protein  The genetic information is made available to the cell Phases of gene

Control of the initiation of transcription

• 5’ regulatory sequences control the site of transcription initiation The promoter

• RNA polymerase can`t recognise transcription start sites

• Start sites are positioned 25 bp to 3’ direction from a nucleotide sequence motif called the TATA BOX

• General transcription factors guide RNA polymerase to the start site

TFIID-protein binds to TATA BOX Directs the binding of the RNA

polymerase

Page 18: Gene expression. The information encoded in a gene is converted into a protein  The genetic information is made available to the cell Phases of gene

• Other transcription factors are also needed TFIIA, TFIIB, TFIIE and TFIIH bind close to the start site

• Some transcription factors bind to the RNA polymerase • Critical properties are brought by transcription factor

needed for example to unwind the DNA

• Also enhancer are needed for activation of transcription Are found from the genome

Binding sites for activators

Page 19: Gene expression. The information encoded in a gene is converted into a protein  The genetic information is made available to the cell Phases of gene

Thank you all for your attention!