generating sets of polar grassmannians...polar spaces = ( p;l): non-degenerate polar space of nite...

110
Basics on polar grassmannians Generating sets New results Generating Sets of Polar Grassmannians Ilaria Cardinali University of Siena University of Delaware - August 21-24, 2019 Ilaria Cardinali Generating Sets of Polar Grassmannians

Upload: others

Post on 30-Nov-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

Generating Sets of Polar Grassmannians

Ilaria Cardinali

University of Siena

University of Delaware - August 21-24, 2019

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 2: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

Outline

Basics on polar grassmannians

Generating sets and embeddings of polar grassmannians

Open problems

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 3: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

Outline

Basics on polar grassmannians

Generating sets and embeddings of polar grassmannians

Open problems

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 4: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

Outline

Basics on polar grassmannians

Generating sets and embeddings of polar grassmannians

Open problems

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 5: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

Polar spaces

∆ = (P,L): non-degenerate polar space of finite rank n > 2.p ⊥ q if p and q are collinear in ∆.

X⊥ := x ∈ P : x ⊥ y , ∀y ∈ X, X ⊆ P

∗ X ⊆ P is a subspace of ∆ if every line containing at least twopoints of X is entirely contained in X .→ All subspaces of ∆ are (possibly degenerate) polar spaces.

∗ X ⊆ P is a singular subspace of ∆ if X ⊆ X⊥.→ All singular subspaces of ∆ are projective spaces.

X The rank of ∆ (rank (∆)) is the vector dimension of themaximal singular subspaces of ∆.

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 6: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

Polar spaces

∆ = (P,L): non-degenerate polar space of finite rank n > 2.p ⊥ q if p and q are collinear in ∆.

X⊥ := x ∈ P : x ⊥ y , ∀y ∈ X, X ⊆ P

∗ X ⊆ P is a subspace of ∆ if every line containing at least twopoints of X is entirely contained in X .→ All subspaces of ∆ are (possibly degenerate) polar spaces.

∗ X ⊆ P is a singular subspace of ∆ if X ⊆ X⊥.→ All singular subspaces of ∆ are projective spaces.

X The rank of ∆ (rank (∆)) is the vector dimension of themaximal singular subspaces of ∆.

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 7: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

Polar spaces

∆ = (P,L): non-degenerate polar space of finite rank n > 2.p ⊥ q if p and q are collinear in ∆.

X⊥ := x ∈ P : x ⊥ y , ∀y ∈ X, X ⊆ P

∗ X ⊆ P is a subspace of ∆ if every line containing at least twopoints of X is entirely contained in X .→ All subspaces of ∆ are (possibly degenerate) polar spaces.

∗ X ⊆ P is a singular subspace of ∆ if X ⊆ X⊥.→ All singular subspaces of ∆ are projective spaces.

X The rank of ∆ (rank (∆)) is the vector dimension of themaximal singular subspaces of ∆.

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 8: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

Polar spaces

∆ = (P,L): non-degenerate polar space of finite rank n > 2.p ⊥ q if p and q are collinear in ∆.

X⊥ := x ∈ P : x ⊥ y , ∀y ∈ X, X ⊆ P

∗ X ⊆ P is a subspace of ∆ if every line containing at least twopoints of X is entirely contained in X .→ All subspaces of ∆ are (possibly degenerate) polar spaces.

∗ X ⊆ P is a singular subspace of ∆ if X ⊆ X⊥.→ All singular subspaces of ∆ are projective spaces.

X The rank of ∆ (rank (∆)) is the vector dimension of themaximal singular subspaces of ∆.

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 9: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

Polar spaces - intrinsic parameter: the anisotropic defect

X ⊆ P is a nice subspace of ∆ if X is a subspace of ∆ and ∆induces on it a non-degenerate polar space of the same rank.

lX contains two mutually disjoint maximal singular subspaces of ∆.

N(∆) := Xi : Xi nice subspace of ∆.

X0 ⊂ X1 ⊂ · · · ⊂ ∆

Definition

The anisotropic defect of ∆ (def(∆)) is the least upper bound ofthe lengths of the well ordered chains of N(∆) w.r.t. inclusion.

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 10: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

Polar spaces - intrinsic parameter: the anisotropic defect

X ⊆ P is a nice subspace of ∆ if X is a subspace of ∆ and ∆induces on it a non-degenerate polar space of the same rank.

lX contains two mutually disjoint maximal singular subspaces of ∆.

N(∆) := Xi : Xi nice subspace of ∆.

X0 ⊂ X1 ⊂ · · · ⊂ ∆

Definition

The anisotropic defect of ∆ (def(∆)) is the least upper bound ofthe lengths of the well ordered chains of N(∆) w.r.t. inclusion.

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 11: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

Polar spaces - intrinsic parameter: the anisotropic defect

X ⊆ P is a nice subspace of ∆ if X is a subspace of ∆ and ∆induces on it a non-degenerate polar space of the same rank.

lX contains two mutually disjoint maximal singular subspaces of ∆.

N(∆) := Xi : Xi nice subspace of ∆.

X0 ⊂ X1 ⊂ · · · ⊂ ∆

Definition

The anisotropic defect of ∆ (def(∆)) is the least upper bound ofthe lengths of the well ordered chains of N(∆) w.r.t. inclusion.

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 12: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

Polar spaces - intrinsic parameter: the anisotropic defect

X ⊆ P is a nice subspace of ∆ if X is a subspace of ∆ and ∆induces on it a non-degenerate polar space of the same rank.

lX contains two mutually disjoint maximal singular subspaces of ∆.

N(∆) := Xi : Xi nice subspace of ∆.

X0 ⊂ X1 ⊂ · · · ⊂ ∆

Definition

The anisotropic defect of ∆ (def(∆)) is the least upper bound ofthe lengths of the well ordered chains of N(∆) w.r.t. inclusion.

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 13: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

Polar grassmannians

∆: non-degenerate polar space of rank n

• • ..... • ..... • •1 2 ki n − 1 n

1 ≤ k ≤ n

∆k = (Pk ,Lk) : k–polar grassmannian associated to ∆

* Points of ∆k : k–dim. singular subspaces.

* Lines of ∆k :k < n: sets `X ,Y := Z : X < Z < Y , with

dim(X ) = k − 1, dim(Y ) = k +1 and Y singular subspace.

k = n: sets `X := Z : X < Z withdim(X ) = n − 1 and Z singular subspace.

∆1 : polar space; ∆n : dual polar space.

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 14: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

Polar grassmannians

∆: non-degenerate polar space of rank n

• • ..... • ..... • •1 2 ki n − 1 n

1 ≤ k ≤ n

∆k = (Pk ,Lk) : k–polar grassmannian associated to ∆

* Points of ∆k : k–dim. singular subspaces.

* Lines of ∆k :k < n: sets `X ,Y := Z : X < Z < Y , with

dim(X ) = k − 1, dim(Y ) = k +1 and Y singular subspace.

k = n: sets `X := Z : X < Z withdim(X ) = n − 1 and Z singular subspace.

∆1 : polar space; ∆n : dual polar space.

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 15: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

Polar grassmannians

∆: non-degenerate polar space of rank n

• • ..... • ..... • •1 2 ki n − 1 n

1 ≤ k ≤ n

∆k = (Pk ,Lk) : k–polar grassmannian associated to ∆

* Points of ∆k : k–dim. singular subspaces.

* Lines of ∆k :k < n: sets `X ,Y := Z : X < Z < Y , with

dim(X ) = k − 1, dim(Y ) = k +1 and Y singular subspace.

k = n: sets `X := Z : X < Z withdim(X ) = n − 1 and Z singular subspace.

∆1 : polar space; ∆n : dual polar space.

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 16: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

Polar grassmannians

∆: non-degenerate polar space of rank n

• • ..... • ..... • •1 2 ki n − 1 n

1 ≤ k ≤ n

∆k = (Pk ,Lk) : k–polar grassmannian associated to ∆

* Points of ∆k : k–dim. singular subspaces.

* Lines of ∆k :k < n: sets `X ,Y := Z : X < Z < Y , with

dim(X ) = k − 1, dim(Y ) = k +1 and Y singular subspace.

k = n: sets `X := Z : X < Z withdim(X ) = n − 1 and Z singular subspace.

∆1 : polar space; ∆n : dual polar space.

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 17: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

Polar grassmannians

∆: non-degenerate polar space of rank n

• • ..... • ..... • •1 2 ki n − 1 n

1 ≤ k ≤ n

∆k = (Pk ,Lk) : k–polar grassmannian associated to ∆

* Points of ∆k : k–dim. singular subspaces.

* Lines of ∆k :k < n: sets `X ,Y := Z : X < Z < Y , with

dim(X ) = k − 1, dim(Y ) = k +1 and Y singular subspace.

k = n: sets `X := Z : X < Z withdim(X ) = n − 1 and Z singular subspace.

∆1 : polar space; ∆n : dual polar space.

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 18: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

Generation

∆k = (Pk ,Lk) : k–polar grassmannian

S ⊆ PkSpan of S : 〈S〉∆k

:= ∩X : X ⊇ S ,X subspace of ∆k

Definition

1 S ⊆ Pk is a generating set of ∆k if 〈S〉∆k= Pk .

2 The generating rank of ∆k isgr(∆k) := min|S | : S is a generating set of ∆k.

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 19: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

Generation

∆k = (Pk ,Lk) : k–polar grassmannian

S ⊆ PkSpan of S : 〈S〉∆k

:= ∩X : X ⊇ S ,X subspace of ∆k

Definition

1 S ⊆ Pk is a generating set of ∆k if 〈S〉∆k= Pk .

2 The generating rank of ∆k isgr(∆k) := min|S | : S is a generating set of ∆k.

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 20: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

Projective Embeddings

∆k = (Pk ,Lk) polar grassmannian.

ε : Pk → PG(V ): projective embedding of ∆k with dim(ε) := dim(V ) if

(E1) ε is injective; (E2)〈ε(Pk)〉 = PG(V ); (E3) ε(`) is a line ∀` ∈ Lk .

ε1 : ∆k → PG(V1), ε2 : ∆k → PG(V2)

ε1 covers ε2 (ε2 ≤ ε1) if ∃f : V1 → V2 semilinear such that ε2 ' f ε1.

εuniv : universal embedding of ∆k if ε ≤ εuniv , ∀ proj. embed. ε of ∆k .

Theorem [A. Kasikova, E.E. Shult 2001]

Polar grassmannians* admit the universal embedding.

Definition

The embedding rank of ∆k is er(∆k) := dim(εuniv ).

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 21: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

Projective Embeddings

∆k = (Pk ,Lk) polar grassmannian.

ε : Pk → PG(V ): projective embedding of ∆k with dim(ε) := dim(V ) if

(E1) ε is injective; (E2)〈ε(Pk)〉 = PG(V ); (E3) ε(`) is a line ∀` ∈ Lk .

ε1 : ∆k → PG(V1), ε2 : ∆k → PG(V2)

ε1 covers ε2 (ε2 ≤ ε1) if ∃f : V1 → V2 semilinear such that ε2 ' f ε1.

εuniv : universal embedding of ∆k if ε ≤ εuniv , ∀ proj. embed. ε of ∆k .

Theorem [A. Kasikova, E.E. Shult 2001]

Polar grassmannians* admit the universal embedding.

Definition

The embedding rank of ∆k is er(∆k) := dim(εuniv ).

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 22: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

Projective Embeddings

∆k = (Pk ,Lk) polar grassmannian.

ε : Pk → PG(V ): projective embedding of ∆k with dim(ε) := dim(V ) if

(E1) ε is injective; (E2)〈ε(Pk)〉 = PG(V ); (E3) ε(`) is a line ∀` ∈ Lk .

ε1 : ∆k → PG(V1), ε2 : ∆k → PG(V2)

ε1 covers ε2 (ε2 ≤ ε1) if ∃f : V1 → V2 semilinear such that ε2 ' f ε1.

εuniv : universal embedding of ∆k if ε ≤ εuniv , ∀ proj. embed. ε of ∆k .

Theorem [A. Kasikova, E.E. Shult 2001]

Polar grassmannians* admit the universal embedding.

Definition

The embedding rank of ∆k is er(∆k) := dim(εuniv ).

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 23: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

Projective Embeddings

∆k = (Pk ,Lk) polar grassmannian.

ε : Pk → PG(V ): projective embedding of ∆k with dim(ε) := dim(V ) if

(E1) ε is injective; (E2)〈ε(Pk)〉 = PG(V ); (E3) ε(`) is a line ∀` ∈ Lk .

ε1 : ∆k → PG(V1), ε2 : ∆k → PG(V2)

ε1 covers ε2 (ε2 ≤ ε1) if ∃f : V1 → V2 semilinear such that ε2 ' f ε1.

εuniv : universal embedding of ∆k if ε ≤ εuniv , ∀ proj. embed. ε of ∆k .

Theorem [A. Kasikova, E.E. Shult 2001]

Polar grassmannians* admit the universal embedding.

Definition

The embedding rank of ∆k is er(∆k) := dim(εuniv ).

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 24: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

Projective Embeddings

∆k = (Pk ,Lk) polar grassmannian.

ε : Pk → PG(V ): projective embedding of ∆k with dim(ε) := dim(V ) if

(E1) ε is injective; (E2)〈ε(Pk)〉 = PG(V ); (E3) ε(`) is a line ∀` ∈ Lk .

ε1 : ∆k → PG(V1), ε2 : ∆k → PG(V2)

ε1 covers ε2 (ε2 ≤ ε1) if ∃f : V1 → V2 semilinear such that ε2 ' f ε1.

εuniv : universal embedding of ∆k if ε ≤ εuniv , ∀ proj. embed. ε of ∆k .

Theorem [A. Kasikova, E.E. Shult 2001]

Polar grassmannians* admit the universal embedding.

Definition

The embedding rank of ∆k is er(∆k) := dim(εuniv ).

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 25: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

Projective Embeddings

∆k = (Pk ,Lk) polar grassmannian.

ε : Pk → PG(V ): projective embedding of ∆k with dim(ε) := dim(V ) if

(E1) ε is injective; (E2)〈ε(Pk)〉 = PG(V ); (E3) ε(`) is a line ∀` ∈ Lk .

ε1 : ∆k → PG(V1), ε2 : ∆k → PG(V2)

ε1 covers ε2 (ε2 ≤ ε1) if ∃f : V1 → V2 semilinear such that ε2 ' f ε1.

εuniv : universal embedding of ∆k if ε ≤ εuniv , ∀ proj. embed. ε of ∆k .

Theorem [A. Kasikova, E.E. Shult 2001]

Polar grassmannians* admit the universal embedding.

Definition

The embedding rank of ∆k is er(∆k) := dim(εuniv ).

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 26: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

Projective Embeddings

∆k = (Pk ,Lk) polar grassmannian.

ε : Pk → PG(V ): projective embedding of ∆k with dim(ε) := dim(V ) if

(E1) ε is injective; (E2)〈ε(Pk)〉 = PG(V ); (E3) ε(`) is a line ∀` ∈ Lk .

ε1 : ∆k → PG(V1), ε2 : ∆k → PG(V2)

ε1 covers ε2 (ε2 ≤ ε1) if ∃f : V1 → V2 semilinear such that ε2 ' f ε1.

εuniv : universal embedding of ∆k if ε ≤ εuniv , ∀ proj. embed. ε of ∆k .

Theorem [A. Kasikova, E.E. Shult 2001]

Polar grassmannians* admit the universal embedding.

Definition

The embedding rank of ∆k is er(∆k) := dim(εuniv ).

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 27: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

ε : ∆k → PG(V ): projective embedding of ∆k

S : generating set of ∆k

ε(〈S〉∆k) ⊆ 〈ε(S)〉PG(V )

↓dim(ε) ≤ gr(∆k).

↓er(∆k) ≤ gr(∆k)

* If ε is a projective embedding of ∆k with dim(ε) = gr(∆k) thenε is the universal embedding of ∆k .

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 28: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

ε : ∆k → PG(V ): projective embedding of ∆k

S : generating set of ∆k

↓ε(〈S〉∆k

) ⊆ 〈ε(S)〉PG(V )

dim(ε) ≤ gr(∆k).↓

er(∆k) ≤ gr(∆k)

* If ε is a projective embedding of ∆k with dim(ε) = gr(∆k) thenε is the universal embedding of ∆k .

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 29: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

ε : ∆k → PG(V ): projective embedding of ∆k

S : generating set of ∆k

↓ε(〈S〉∆k

) ⊆ 〈ε(S)〉PG(V )

↓dim(ε) ≤ gr(∆k).

er(∆k) ≤ gr(∆k)

* If ε is a projective embedding of ∆k with dim(ε) = gr(∆k) thenε is the universal embedding of ∆k .

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 30: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

ε : ∆k → PG(V ): projective embedding of ∆k

S : generating set of ∆k

↓ε(〈S〉∆k

) ⊆ 〈ε(S)〉PG(V )

↓dim(ε) ≤ gr(∆k).

↓er(∆k) ≤ gr(∆k)

* If ε is a projective embedding of ∆k with dim(ε) = gr(∆k) thenε is the universal embedding of ∆k .

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 31: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

∆k = (Pk ,Lk) polar grassmannian

Generation of ∆k

—————————* generating set ?* generating rank ?

Embeddings of ∆k

—————————* Dimension ?* Universality ?* Transparency ?* Application: codes

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 32: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

Polar spaces embedded

∆: non-degenerate polar space of rank (∆) = n and def(∆) = d .ε : ∆→ PG(V ): universal embedding, V = V (N,F), N = er(∆).

∗ ε(∆) is associated to a non-degeneratealternating, Hermitian or quadratic form f of V

∆ ↔ ∆(f )singular subspaces of ∆ ↔ totally f -singular subspaces of V

rank(∆) = Witt index of f

* If char(F) = 2 then f cannot be alternating.

* If char(F) 6= 2 or f is Hermitian then ε is the unique embedding of ∆.

* If char(F) = 2 and f is quadratic then ε admits several proper quotientsassociated to generalized quadratic forms.

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 33: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

Polar spaces embedded

∆: non-degenerate polar space of rank (∆) = n and def(∆) = d .ε : ∆→ PG(V ): universal embedding, V = V (N,F), N = er(∆).

∗ ε(∆) is associated to a non-degeneratealternating, Hermitian or quadratic form f of V

∆ ↔ ∆(f )singular subspaces of ∆ ↔ totally f -singular subspaces of V

rank(∆) = Witt index of f

* If char(F) = 2 then f cannot be alternating.

* If char(F) 6= 2 or f is Hermitian then ε is the unique embedding of ∆.

* If char(F) = 2 and f is quadratic then ε admits several proper quotientsassociated to generalized quadratic forms.

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 34: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

Polar spaces embedded

∆: non-degenerate polar space of rank (∆) = n and def(∆) = d .ε : ∆→ PG(V ): universal embedding, V = V (N,F), N = er(∆).

∗ ε(∆) is associated to a non-degeneratealternating, Hermitian or quadratic form f of V

∆ ↔ ∆(f )singular subspaces of ∆ ↔ totally f -singular subspaces of V

rank(∆) = Witt index of f

* If char(F) = 2 then f cannot be alternating.

* If char(F) 6= 2 or f is Hermitian then ε is the unique embedding of ∆.

* If char(F) = 2 and f is quadratic then ε admits several proper quotientsassociated to generalized quadratic forms.

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 35: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

∆: non-degenerate polar space of rank (∆) = n and def(∆) = d .ε : ∆→ PG(V ): universal embedding

∆ → ∆(f ), f : non-deg. Hermitian or quadratic form of Vof Witt index n

V = V1 ⊕ V2 ⊕ · · · ⊕ Vn︸ ︷︷ ︸ ⊕ V0

mutually orthogonal anisotropic spacehyperbolic 2-spaces orthogonal to Vi

Definition

The anisotropic defect of f (def(f )) is the dimension of V0.

Theorem [I.C., L. Giuzzi, A. Pasini, 2019]

def(∆) = def(f )(= dim(V )− 2n)

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 36: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

∆: non-degenerate polar space of rank (∆) = n and def(∆) = d .ε : ∆→ PG(V ): universal embedding

∆ → ∆(f ), f : non-deg. Hermitian or quadratic form of Vof Witt index n

V = V1 ⊕ V2 ⊕ · · · ⊕ Vn︸ ︷︷ ︸ ⊕ V0

mutually orthogonal anisotropic spacehyperbolic 2-spaces orthogonal to Vi

Definition

The anisotropic defect of f (def(f )) is the dimension of V0.

Theorem [I.C., L. Giuzzi, A. Pasini, 2019]

def(∆) = def(f )(= dim(V )− 2n)

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 37: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

∆: non-degenerate polar space of rank (∆) = n and def(∆) = d .ε : ∆→ PG(V ): universal embedding

∆ → ∆(f ), f : non-deg. Hermitian or quadratic form of Vof Witt index n

V = V1 ⊕ V2 ⊕ · · · ⊕ Vn︸ ︷︷ ︸ ⊕ V0

mutually orthogonal anisotropic spacehyperbolic 2-spaces orthogonal to Vi

Definition

The anisotropic defect of f (def(f )) is the dimension of V0.

Theorem [I.C., L. Giuzzi, A. Pasini, 2019]

def(∆) = def(f )(= dim(V )− 2n)

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 38: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

∆: non-degenerate polar space of rank (∆) = n and def(∆) = d .ε : ∆→ PG(V ): universal embedding

∆ → ∆(f ), f : non-deg. Hermitian or quadratic form of Vof Witt index n

V = V1 ⊕ V2 ⊕ · · · ⊕ Vn︸ ︷︷ ︸ ⊕ V0

mutually orthogonal anisotropic spacehyperbolic 2-spaces orthogonal to Vi

Definition

The anisotropic defect of f (def(f )) is the dimension of V0.

Theorem [I.C., L. Giuzzi, A. Pasini, 2019]

def(∆) = def(f )(= dim(V )− 2n)

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 39: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

V = V (N,F)f : non-deg. Hermitian or quadratic form of Witt index n > 2.∆(f ): non-degenerate polar space associated to f .

1 ≤ k ≤ n∆k : polar k-Grassmannian associated to f .

f hermitian → Hk : Hermitian k-grassmannianH: Hermitian polar space

f quadratic → Qk : Orthogonal k-grassmannianQ: Orthogonal polar space

∗ The points of ∆k are points of the k-projective Grassmannian Gkof PG(V ) and for k < n also the lines of ∆k are lines of Gk .

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 40: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

Hermitian grassmannians- known results at 2018.

H: non-degenerate Hermitian polar space of rank nHk : Hermitian grassmannian of rank n

def (Hk) k F gr(Hk) er(Hk) References

d = 0, 1 1 any 2n + d 2n + d folklore

0 > 1 6= F4

(2nk

) (2nk

)[1998-2012]

0 n F4 ? (4n + 2)/3 [2002]

1 n Fq ≤ 2n — [2001]

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 41: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

Orthogonal grassmannians- known results at 2018. 1/2

Q: non-degenerate Orthogonal polar space of rank nQk : Orthogonal grassmannian of rank n

def (Qk) k F gr(Qk) er(Qk) References

0 ≤ d ≤ 2 1 any 2n + d 2n + d folklore

0 n any∏n−1

i=0 (|F|i + 1) −−− [1983]

d = 1, 2 n char(F) 6= 2 2n 2n [1998-2011]

2 n char(F) = 2 2n 2n [2001],[2011]

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 42: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

Orthogonal grassmannians- known results at 2018. 2/2

def (Qk) k F gr(Qk) er(Qk) Ref.

1 n 6= F2

(2nn

)−( 2nn−2

) (2nn

)−( 2nn−2

)[2007]

1 n F2 ? (2n+1)(2n−1+1)2 [2001]

d = 0, 1, 2 2 < n Fp

(2n+d2

) (2n+d2

)[1998]

d = 0, 1 2 any ≤(2n+d

2

)+ g ? [2001]

d = 0, 1 2, 3 < nperfect,

char(F) > 0number field

?(2n+d

k

)[2013]

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 43: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

References(1) R.J. Blok and A.E. Brouwer, J. Geom. 62 (1998).(2) R.J. Blok, European J. Combin. 28 (2007).(3) R.J. Blok and B.N. Cooperstein, JCTA, 119 (2012).(4) R.J. Blok and A. Pasini, Kluwer, Dordrecth (2001).(5) I.Cardinali and A.Pasini, J.Alg.Combin. 38 (2013).(6) B.N. Cooperstein, European J. Combin. 18 (1997).(7) B.N. Cooperstein, Bull. Belg. Math. Soc. 5 (1998).(8) B.N. Cooperstein, J. Alg. Combin. 13 (2001).(9) B.N. Cooperstein and E.E.Shult, J. Geom 60 (1997).(10) B.De Bruyn, Linear Multilinear Algebra 58(7) (2010).(11) B.De Bruyn, Ars Combinatoria 99 (2011).(12) B. De Bruyn and A. Pasini. Elect. J. Combin. 14 (2007).(13) P. Li. JCTA,94 (2001).(14) P. Li. JCTA, 98 (2002).(15) A.L. Wells, Quart. J. Math Oxford (2), 34 (1983).

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 44: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

New results - Extremal cases: k = 1 and k = n

∆: non-degenerate polar space of rank (∆) = n and def(∆) = d .H: hyperplane of ∆

(i.e. H is a proper subspace s.t. |H ∩ `| = 1 or ` ⊆ H, ∀` line of ∆)

Theorem [I.C., L. Giuzzi, A. Pasini, 2019]

1 If d > 0 the set Hn of n-singular subspaces contained in H is agenerating set of the dual polar space ∆n.

2 gr(∆n) ≤ gr(Hn).

Theorem [I.C., L. Giuzzi, A. Pasini, 2019]

If there exists at least one maximal well ordered chain of nice subspacesof ∆ and ∆ admits an embedding of dimension 2n + d , thengr(∆) = er(∆) = 2n + d .

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 45: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

New results - Extremal cases: k = 1 and k = n

∆: non-degenerate polar space of rank (∆) = n and def(∆) = d .H: hyperplane of ∆

(i.e. H is a proper subspace s.t. |H ∩ `| = 1 or ` ⊆ H, ∀` line of ∆)

Theorem [I.C., L. Giuzzi, A. Pasini, 2019]

1 If d > 0 the set Hn of n-singular subspaces contained in H is agenerating set of the dual polar space ∆n.

2 gr(∆n) ≤ gr(Hn).

Theorem [I.C., L. Giuzzi, A. Pasini, 2019]

If there exists at least one maximal well ordered chain of nice subspacesof ∆ and ∆ admits an embedding of dimension 2n + d , thengr(∆) = er(∆) = 2n + d .

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 46: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

New results - Extremal cases: k = 1 and k = n

∆: non-degenerate polar space of rank (∆) = n and def(∆) = d .H: hyperplane of ∆

(i.e. H is a proper subspace s.t. |H ∩ `| = 1 or ` ⊆ H, ∀` line of ∆)

Theorem [I.C., L. Giuzzi, A. Pasini, 2019]

1 If d > 0 the set Hn of n-singular subspaces contained in H is agenerating set of the dual polar space ∆n.

2 gr(∆n) ≤ gr(Hn).

Theorem [I.C., L. Giuzzi, A. Pasini, 2019]

If there exists at least one maximal well ordered chain of nice subspacesof ∆ and ∆ admits an embedding of dimension 2n + d , thengr(∆) = er(∆) = 2n + d .

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 47: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

Constructions for 2 ≤ k < n

∆: non-degenerate polar space of rank (∆) = n and def(∆) = d .H: hyperplane of ∆, p0: point of ∆ \ H.

Sk(H) := Xk : Xk ⊆ H, Sk(p0) := Xk : p0 ∈ Xk,GH,p0 := Z k : Zk−2 ∈ GH,p0 where GH,p0 is a generating set of (H ∩ p⊥0 )k−2.

p0

H

Zk-2

Zk

¿

Zk∩H = Z

k∩p

0

Sk(H, p0,GH,p0 ) := Sk(H) ∪ Sk(p0) ∪ GH,p0

Theorem [I.C, L.Giuzzi, A. Pasini, 2019]

The set Sk(H, p0,GH,p0 ) spans ∆k for any k = 2, 3, ..., n − 1.

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 48: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

Constructions for 2 ≤ k < n

∆: non-degenerate polar space of rank (∆) = n and def(∆) = d .H: hyperplane of ∆, p0: point of ∆ \ H.Sk(H) := Xk : Xk ⊆ H, Sk(p0) := Xk : p0 ∈ Xk,

GH,p0 := Z k : Zk−2 ∈ GH,p0 where GH,p0 is a generating set of (H ∩ p⊥0 )k−2.

p0

H

Zk-2

Zk

¿

Zk∩H = Z

k∩p

0

Sk(H, p0,GH,p0 ) := Sk(H) ∪ Sk(p0) ∪ GH,p0

Theorem [I.C, L.Giuzzi, A. Pasini, 2019]

The set Sk(H, p0,GH,p0 ) spans ∆k for any k = 2, 3, ..., n − 1.

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 49: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

Constructions for 2 ≤ k < n

∆: non-degenerate polar space of rank (∆) = n and def(∆) = d .H: hyperplane of ∆, p0: point of ∆ \ H.Sk(H) := Xk : Xk ⊆ H, Sk(p0) := Xk : p0 ∈ Xk,

GH,p0 := Z k : Zk−2 ∈ GH,p0 where GH,p0 is a generating set of (H ∩ p⊥0 )k−2.

p0

H

Zk-2

Zk

¿

Zk∩H = Z

k∩p

0

Sk(H, p0,GH,p0 ) := Sk(H) ∪ Sk(p0) ∪ GH,p0

Theorem [I.C, L.Giuzzi, A. Pasini, 2019]

The set Sk(H, p0,GH,p0 ) spans ∆k for any k = 2, 3, ..., n − 1.

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 50: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

Constructions for 2 ≤ k < n

∆: non-degenerate polar space of rank (∆) = n and def(∆) = d .H: hyperplane of ∆, p0: point of ∆ \ H.Sk(H) := Xk : Xk ⊆ H, Sk(p0) := Xk : p0 ∈ Xk,

GH,p0 := Z k : Zk−2 ∈ GH,p0 where GH,p0 is a generating set of (H ∩ p⊥0 )k−2.

p0

H

Zk-2

Zk

¿

Zk∩H = Z

k∩p

0

Sk(H, p0,GH,p0 ) := Sk(H) ∪ Sk(p0) ∪ GH,p0

Theorem [I.C, L.Giuzzi, A. Pasini, 2019]

The set Sk(H, p0,GH,p0 ) spans ∆k for any k = 2, 3, ..., n − 1.

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 51: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

Constructions for 2 ≤ k < n

∆: non-degenerate polar space of rank (∆) = n and def(∆) = d .H = q⊥: singular hyperplane, p0: point of ∆ \ H s.t. p0 6⊥ q

Sk(q) := Xk : p0 ∈ Xk, Sk(q, p0⊥) := Xk : Xk ⊆ q, p0⊥,G q,p0 := Z k : Zk−2 ∈ Gq,p0 where Gq,p0 is a generating set of (q, p0⊥)k−2.

p0

q

Zk-2 Z

k Zk∩p

0,q = Z

k-2

Sk(q, p0,G q,p0 ) := Sk(q) ∪ Sk(q, p0⊥) ∪ Sk(p0) ∪ G q,p0

Corollary [I.C, L.Giuzzi, A. Pasini, 2019]

The set Sk(q, p0, Gq,p0 ) spans ∆k for any k = 2, 3, ..., n − 1.

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 52: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

Constructions for 2 ≤ k < n

∆: non-degenerate polar space of rank (∆) = n and def(∆) = d .H = q⊥: singular hyperplane, p0: point of ∆ \ H s.t. p0 6⊥ qSk(q) := Xk : p0 ∈ Xk, Sk(q, p0⊥) := Xk : Xk ⊆ q, p0⊥,

G q,p0 := Z k : Zk−2 ∈ Gq,p0 where Gq,p0 is a generating set of (q, p0⊥)k−2.

p0

q

Zk-2 Z

k Zk∩p

0,q = Z

k-2

Sk(q, p0,G q,p0 ) := Sk(q) ∪ Sk(q, p0⊥) ∪ Sk(p0) ∪ G q,p0

Corollary [I.C, L.Giuzzi, A. Pasini, 2019]

The set Sk(q, p0, Gq,p0 ) spans ∆k for any k = 2, 3, ..., n − 1.

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 53: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

Constructions for 2 ≤ k < n

∆: non-degenerate polar space of rank (∆) = n and def(∆) = d .H = q⊥: singular hyperplane, p0: point of ∆ \ H s.t. p0 6⊥ qSk(q) := Xk : p0 ∈ Xk, Sk(q, p0⊥) := Xk : Xk ⊆ q, p0⊥,

G q,p0 := Z k : Zk−2 ∈ Gq,p0 where Gq,p0 is a generating set of (q, p0⊥)k−2.

p0

q

Zk-2 Z

k Zk∩p

0,q = Z

k-2

Sk(q, p0,G q,p0 ) := Sk(q) ∪ Sk(q, p0⊥) ∪ Sk(p0) ∪ G q,p0

Corollary [I.C, L.Giuzzi, A. Pasini, 2019]

The set Sk(q, p0, Gq,p0 ) spans ∆k for any k = 2, 3, ..., n − 1.

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 54: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

Constructions for 2 ≤ k < n

∆: non-degenerate polar space of rank (∆) = n and def(∆) = d .H = q⊥: singular hyperplane, p0: point of ∆ \ H s.t. p0 6⊥ qSk(q) := Xk : p0 ∈ Xk, Sk(q, p0⊥) := Xk : Xk ⊆ q, p0⊥,

G q,p0 := Z k : Zk−2 ∈ Gq,p0 where Gq,p0 is a generating set of (q, p0⊥)k−2.

p0

q

Zk-2 Z

k Zk∩p

0,q = Z

k-2

Sk(q, p0,G q,p0 ) := Sk(q) ∪ Sk(q, p0⊥) ∪ Sk(p0) ∪ G q,p0

Corollary [I.C, L.Giuzzi, A. Pasini, 2019]

The set Sk(q, p0, Gq,p0 ) spans ∆k for any k = 2, 3, ..., n − 1.

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 55: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

Generation of Hermitian Grassmannians

H: non-deg. Hermitian polar space of rank n and def (H) = d .Hk : k-Grassmannian of H, for 1 ≤ k ≤ n.F: underlying field of H.

Theorem [I.C., L.Giuzzi, A. Pasini, 2019]

1 If d <∞, k < n (and F 6= F4 when k > 1) then gr(Hk) =(

2n+dk

).

2 If d > 0 and k = n then gr(Hn) ≤ 2n.

Corollary [I.C., L.Giuzzi, A. Pasini, 2019]

If d <∞, k < n (and F 6= F4 when k > 1) then the Plucker embeddingof Hk is universal.

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 56: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

Generation of Hermitian Grassmannians

H: non-deg. Hermitian polar space of rank n and def (H) = d .Hk : k-Grassmannian of H, for 1 ≤ k ≤ n.F: underlying field of H.

Theorem [I.C., L.Giuzzi, A. Pasini, 2019]

1 If d <∞, k < n (and F 6= F4 when k > 1) then gr(Hk) =(

2n+dk

).

2 If d > 0 and k = n then gr(Hn) ≤ 2n.

Corollary [I.C., L.Giuzzi, A. Pasini, 2019]

If d <∞, k < n (and F 6= F4 when k > 1) then the Plucker embeddingof Hk is universal.

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 57: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

Generation of Hermitian Grassmannians

H: non-deg. Hermitian polar space of rank n and def (H) = d .Hk : k-Grassmannian of H, for 1 ≤ k ≤ n.F: underlying field of H.

Theorem [I.C., L.Giuzzi, A. Pasini, 2019]

1 If d <∞, k < n (and F 6= F4 when k > 1) then gr(Hk) =(

2n+dk

).

2 If d > 0 and k = n then gr(Hn) ≤ 2n.

Corollary [I.C., L.Giuzzi, A. Pasini, 2019]

If d <∞, k < n (and F 6= F4 when k > 1) then the Plucker embeddingof Hk is universal.

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 58: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

Generation of Orthogonal Grassmannians

Q: non-deg. orthogonal polar space of rank n and def (Q) = d .Qn: dual polar space of orthogonal type, F: underlying field of Q.

Theorem [I.C, L.Giuzzi, A. Pasini, 2019]

If d > 0 and char(F) 6= 2 then gr(Qn) ≤ 2n.

When 0 < d ≤ 2 and char(F) 6= 2 the inequality gr(Qn) ≤ 2n is in factan equality. Perhaps the same is true when d > 2 but, since Qn is not(projectively) embeddable when d > 2, there is no easy way to prove it.

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 59: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

Generation over subfields

Q(F): non-degenerate orthogonal polar space in PG(V ), V = V (N,F)F0 : proper subfield of F

Q(F0): non-degenerate orthogonal polar space in PG(V0), V0 = V (N,F0)

PG(V0) subgeometry of PG(V )↓

Q(F0) subgeometry of Q(F)↓

Qk(F0) subgeometry of Qk(F)

Definition

If 〈Qk(F0)〉Qk (F) = Qk(F) then Qk(F) is F0-generated.

Application: if Qk(F) is F0-generated then gr(Qk(F)) ≤ gr(Qk(F0)).

Problem: When is Qk(F) F0-generated?

* If def (Q(Fp)) = 0, 1, 2 then gr(Q2(Fp)) =(

2n+d2

), [Cooperstein, 1998].

* If def(Q(F))= 0, 1 and [F :F0]=g then gr(Q2(F)) ≤(

2n+d2

)+ g , [Blok,Pasini, 2001].

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 60: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

Generation over subfields

Q(F): non-degenerate orthogonal polar space in PG(V ), V = V (N,F)F0 : proper subfield of F

Q(F0): non-degenerate orthogonal polar space in PG(V0), V0 = V (N,F0)

PG(V0) subgeometry of PG(V )↓

Q(F0) subgeometry of Q(F)↓

Qk(F0) subgeometry of Qk(F)

Definition

If 〈Qk(F0)〉Qk (F) = Qk(F) then Qk(F) is F0-generated.

Application: if Qk(F) is F0-generated then gr(Qk(F)) ≤ gr(Qk(F0)).

Problem: When is Qk(F) F0-generated?

* If def (Q(Fp)) = 0, 1, 2 then gr(Q2(Fp)) =(

2n+d2

), [Cooperstein, 1998].

* If def(Q(F))= 0, 1 and [F :F0]=g then gr(Q2(F)) ≤(

2n+d2

)+ g , [Blok,Pasini, 2001].

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 61: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

Generation over subfields

Q(F): non-degenerate orthogonal polar space in PG(V ), V = V (N,F)F0 : proper subfield of F

Q(F0): non-degenerate orthogonal polar space in PG(V0), V0 = V (N,F0)

PG(V0) subgeometry of PG(V )↓

Q(F0) subgeometry of Q(F)↓

Qk(F0) subgeometry of Qk(F)

Definition

If 〈Qk(F0)〉Qk (F) = Qk(F) then Qk(F) is F0-generated.

Application: if Qk(F) is F0-generated then gr(Qk(F)) ≤ gr(Qk(F0)).

Problem: When is Qk(F) F0-generated?

* If def (Q(Fp)) = 0, 1, 2 then gr(Q2(Fp)) =(

2n+d2

), [Cooperstein, 1998].

* If def(Q(F))= 0, 1 and [F :F0]=g then gr(Q2(F)) ≤(

2n+d2

)+ g , [Blok,Pasini, 2001].

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 62: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

Generation over subfields

Q(F): non-degenerate orthogonal polar space in PG(V ), V = V (N,F)F0 : proper subfield of F

Q(F0): non-degenerate orthogonal polar space in PG(V0), V0 = V (N,F0)

PG(V0) subgeometry of PG(V )↓

Q(F0) subgeometry of Q(F)↓

Qk(F0) subgeometry of Qk(F)

Definition

If 〈Qk(F0)〉Qk (F) = Qk(F) then Qk(F) is F0-generated.

Application: if Qk(F) is F0-generated then gr(Qk(F)) ≤ gr(Qk(F0)).

Problem: When is Qk(F) F0-generated?

* If def (Q(Fp)) = 0, 1, 2 then gr(Q2(Fp)) =(

2n+d2

), [Cooperstein, 1998].

* If def(Q(F))= 0, 1 and [F :F0]=g then gr(Q2(F)) ≤(

2n+d2

)+ g , [Blok,Pasini, 2001].

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 63: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

Generation over subfields

Q(F): non-degenerate orthogonal polar space in PG(V ), V = V (N,F)F0 : proper subfield of F

Q(F0): non-degenerate orthogonal polar space in PG(V0), V0 = V (N,F0)

PG(V0) subgeometry of PG(V )↓

Q(F0) subgeometry of Q(F)↓

Qk(F0) subgeometry of Qk(F)

Definition

If 〈Qk(F0)〉Qk (F) = Qk(F) then Qk(F) is F0-generated.

Application: if Qk(F) is F0-generated then gr(Qk(F)) ≤ gr(Qk(F0)).

Problem: When is Qk(F) F0-generated?

* If def (Q(Fp)) = 0, 1, 2 then gr(Q2(Fp)) =(

2n+d2

), [Cooperstein, 1998].

* If def(Q(F))= 0, 1 and [F :F0]=g then gr(Q2(F)) ≤(

2n+d2

)+ g , [Blok,Pasini, 2001].

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 64: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

Generation over subfields

Q(F): non-degenerate orthogonal polar space in PG(V ), V = V (N,F)F0 : proper subfield of F

Q(F0): non-degenerate orthogonal polar space in PG(V0), V0 = V (N,F0)

PG(V0) subgeometry of PG(V )↓

Q(F0) subgeometry of Q(F)↓

Qk(F0) subgeometry of Qk(F)

Definition

If 〈Qk(F0)〉Qk (F) = Qk(F) then Qk(F) is F0-generated.

Application: if Qk(F) is F0-generated then gr(Qk(F)) ≤ gr(Qk(F0)).

Problem: When is Qk(F) F0-generated?

* If def (Q(Fp)) = 0, 1, 2 then gr(Q2(Fp)) =(

2n+d2

), [Cooperstein, 1998].

* If def(Q(F))= 0, 1 and [F :F0]=g then gr(Q2(F)) ≤(

2n+d2

)+ g , [Blok,Pasini, 2001].

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 65: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

Generation over subfields

Q(F): non-degenerate orthogonal polar space in PG(V ), V = V (N,F)F0 : proper subfield of F

Q(F0): non-degenerate orthogonal polar space in PG(V0), V0 = V (N,F0)

PG(V0) subgeometry of PG(V )↓

Q(F0) subgeometry of Q(F)↓

Qk(F0) subgeometry of Qk(F)

Definition

If 〈Qk(F0)〉Qk (F) = Qk(F) then Qk(F) is F0-generated.

Application: if Qk(F) is F0-generated then gr(Qk(F)) ≤ gr(Qk(F0)).

Problem: When is Qk(F) F0-generated?

* If def (Q(Fp)) = 0, 1, 2 then gr(Q2(Fp)) =(

2n+d2

), [Cooperstein, 1998].

* If def(Q(F))= 0, 1 and [F :F0]=g then gr(Q2(F)) ≤(

2n+d2

)+ g , [Blok,Pasini, 2001].

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 66: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

Generation over subfields

Q(F): non-degenerate orthogonal polar space in PG(V ), V = V (N,F)F0 : proper subfield of F

Q(F0): non-degenerate orthogonal polar space in PG(V0), V0 = V (N,F0)

PG(V0) subgeometry of PG(V )↓

Q(F0) subgeometry of Q(F)↓

Qk(F0) subgeometry of Qk(F)

Definition

If 〈Qk(F0)〉Qk (F) = Qk(F) then Qk(F) is F0-generated.

Application: if Qk(F) is F0-generated then gr(Qk(F)) ≤ gr(Qk(F0)).

Problem: When is Qk(F) F0-generated?

* If def (Q(Fp)) = 0, 1, 2 then gr(Q2(Fp)) =(

2n+d2

), [Cooperstein, 1998].

* If def(Q(F))= 0, 1 and [F :F0]=g then gr(Q2(F)) ≤(

2n+d2

)+ g , [Blok,Pasini, 2001].

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 67: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

Generation over subfields

Q(F): non-degenerate orthogonal polar space in PG(V ), V = V (N,F)F0 : proper subfield of F

Q(F0): non-degenerate orthogonal polar space in PG(V0), V0 = V (N,F0)

PG(V0) subgeometry of PG(V )↓

Q(F0) subgeometry of Q(F)↓

Qk(F0) subgeometry of Qk(F)

Definition

If 〈Qk(F0)〉Qk (F) = Qk(F) then Qk(F) is F0-generated.

Application: if Qk(F) is F0-generated then gr(Qk(F)) ≤ gr(Qk(F0)).

Problem: When is Qk(F) F0-generated?

* If def (Q(Fp)) = 0, 1, 2 then gr(Q2(Fp)) =(

2n+d2

), [Cooperstein, 1998].

* If def(Q(F))= 0, 1 and [F :F0]=g then gr(Q2(F)) ≤(

2n+d2

)+ g , [Blok,Pasini, 2001].

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 68: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

Q(F): non-deg. orthogonal polar space of rank n and def (Q(F)) = d .Q2(F): line-Grassmannian of Q(F), F: underlying field.

Theorem [I.C, L.Giuzzi, A. Pasini, 2019]

Let Q(F) be a non-degenerate orthogonal polar space of rank n > 2 inPG(2n + d − 1,F). Put F = Fq with q ∈ 4, 8, 9.

1 If

d = 0 and n > 3or

d = 1, 2 and n ≥ 3

then gr(Q2(F)) = er(Q2(F)) =(

2n+d2

).

2 If moreover d ≤ 1 then Q2(F) is generated over the prime subfieldof F.

Theorem [I.C, L.Giuzzi, A. Pasini, 2019]

If Q(F) is a non-degenerate hyperbolic polar space of rank 3 in PG(5,F)then Q2(F) is never F0-generated, for any proper subfield F0 of F.

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 69: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

Q(F): non-deg. orthogonal polar space of rank n and def (Q(F)) = d .Q2(F): line-Grassmannian of Q(F), F: underlying field.

Theorem [I.C, L.Giuzzi, A. Pasini, 2019]

Let Q(F) be a non-degenerate orthogonal polar space of rank n > 2 inPG(2n + d − 1,F). Put F = Fq with q ∈ 4, 8, 9.

1 If

d = 0 and n > 3or

d = 1, 2 and n ≥ 3

then gr(Q2(F)) = er(Q2(F)) =(

2n+d2

).

2 If moreover d ≤ 1 then Q2(F) is generated over the prime subfieldof F.

Theorem [I.C, L.Giuzzi, A. Pasini, 2019]

If Q(F) is a non-degenerate hyperbolic polar space of rank 3 in PG(5,F)then Q2(F) is never F0-generated, for any proper subfield F0 of F.

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 70: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

Q(F): non-deg. orthogonal polar space of rank n and def (Q(F)) = d .Q2(F): line-Grassmannian of Q(F), F: underlying field.

Theorem [I.C, L.Giuzzi, A. Pasini, 2019]

Let Q(F) be a non-degenerate orthogonal polar space of rank n > 2 inPG(2n + d − 1,F). Put F = Fq with q ∈ 4, 8, 9.

1 If

d = 0 and n > 3or

d = 1, 2 and n ≥ 3

then gr(Q2(F)) = er(Q2(F)) =(

2n+d2

).

2 If moreover d ≤ 1 then Q2(F) is generated over the prime subfieldof F.

Theorem [I.C, L.Giuzzi, A. Pasini, 2019]

If Q(F) is a non-degenerate hyperbolic polar space of rank 3 in PG(5,F)then Q2(F) is never F0-generated, for any proper subfield F0 of F.

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 71: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

Hermitian grassmannians- known results till now.

H: non-degenerate Hermitian polar space of rank nHk : Hermitian grassmannian of rank n

def (Hk) k F gr(Hk) er(Hk) References

0 1 any 2n 2n folklore

0 > 1 6= F4

(2nk

) (2nk

)[1998-2012]

0 n F4 ? (4n + 2)/3 [2002]

1 n Fq ≤ 2n — [2001]

any 6= n 6= F4 if k > 1(2n+d

k

) (2n+dk

)[2019]

d > 0 n 6= F4 if k > 1 ≤ 2n [2019]

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 72: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

Orthogonal grassmannians- known results till now.

def (Qk) k F gr(Qk) er(Qk) Ref.

1 n 6= F2

(2nn

)−(

2nn−2

) (2nn

)−(

2nn−2

)[2007]

1 n F2 ? (2n+1)(2n−1+1)2 [2001]

d = 0, 1, 2 2 < n Fp

(2n+d

2

) (2n+d

2

)[1998]

d = 0, 1 2 any ≤(

2n+d2

)+ g ? [2001]

d = 0, 1 2, 3 < nperfect,

char(F) > 0number field

?(

2n+dk

)[2013]

d = 0 and n > 3d = 1, 2 and n > 2

2 < n F4,F8,F9

(2n+d

2

) (2n+d

2

)[2019]

d > 0 n char(F) 6= 2 ≤ 2n [2019]

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 73: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

Open problems

Generating rank of line orthogonal grassmannians Q2(F) forF 6= Fq, q 6= 4, 8, 9.

Generating rank of k-orthogonal grassmannians for k > 2.

If n > 3, is Q+n−1(2n − 1,F) generated over subfields?

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 74: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

Open problems

Generating rank of line orthogonal grassmannians Q2(F) forF 6= Fq, q 6= 4, 8, 9.

Generating rank of k-orthogonal grassmannians for k > 2.

If n > 3, is Q+n−1(2n − 1,F) generated over subfields?

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 75: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

Open problems

Generating rank of line orthogonal grassmannians Q2(F) forF 6= Fq, q 6= 4, 8, 9.

Generating rank of k-orthogonal grassmannians for k > 2.

If n > 3, is Q+n−1(2n − 1,F) generated over subfields?

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 76: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

Open problems

Generating rank of line orthogonal grassmannians Q2(F) forF 6= Fq, q 6= 4, 8, 9.

Generating rank of k-orthogonal grassmannians for k > 2.

If n > 3, is Q+n−1(2n − 1,F) generated over subfields?

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 77: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

Projective codes

Ω: set of N points of PG(V ), V = V (K ,Fq).

l

C(Ω): projective [N,K , dmin]q-code associated to Ω

* The columns of a generator matrix of C(Ω) are coordinates ofthe points of Ω.

Theorem

Any semilinear collineation of PΓL(K , q) stabilizing Ω inducesautomorphisms of C(Ω).

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 78: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

Projective codes

Ω: set of N points of PG(V ), V = V (K ,Fq).

l

C(Ω): projective [N,K , dmin]q-code associated to Ω

* The columns of a generator matrix of C(Ω) are coordinates ofthe points of Ω.

Theorem

Any semilinear collineation of PΓL(K , q) stabilizing Ω inducesautomorphisms of C(Ω).

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 79: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

Projective codes

Ω: set of N points of PG(V ), V = V (K ,Fq).

l

C(Ω): projective [N,K , dmin]q-code associated to Ω

* The columns of a generator matrix of C(Ω) are coordinates ofthe points of Ω.

Theorem

Any semilinear collineation of PΓL(K , q) stabilizing Ω inducesautomorphisms of C(Ω).

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 80: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

Ω ⊂ PG(K − 1,Fq)C(Ω) : projective [N,K , dmin]q-code associated to Ω

Parameters of C(Ω):

N = |Ω|;K = dim(〈Ω〉);

dmin = N −maxΠ≤PG(K−1,Fq)codimΠ=1

|Π ∩ Ω|.

Ω

Π

The study of the weights of C(Ω) is equivalent to the study of thehyperplane sections of Ω.

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 81: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

Ω ⊂ PG(K − 1,Fq)C(Ω) : projective [N,K , dmin]q-code associated to Ω

Parameters of C(Ω):

N = |Ω|;

K = dim(〈Ω〉);

dmin = N −maxΠ≤PG(K−1,Fq)codimΠ=1

|Π ∩ Ω|.

Ω

Π

The study of the weights of C(Ω) is equivalent to the study of thehyperplane sections of Ω.

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 82: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

Ω ⊂ PG(K − 1,Fq)C(Ω) : projective [N,K , dmin]q-code associated to Ω

Parameters of C(Ω):

N = |Ω|;K = dim(〈Ω〉);

dmin = N −maxΠ≤PG(K−1,Fq)codimΠ=1

|Π ∩ Ω|.

Ω

Π

The study of the weights of C(Ω) is equivalent to the study of thehyperplane sections of Ω.

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 83: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

Ω ⊂ PG(K − 1,Fq)C(Ω) : projective [N,K , dmin]q-code associated to Ω

Parameters of C(Ω):

N = |Ω|;K = dim(〈Ω〉);

dmin = N −maxΠ≤PG(K−1,Fq)codimΠ=1

|Π ∩ Ω|.

Ω

Π

The study of the weights of C(Ω) is equivalent to the study of thehyperplane sections of Ω.

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 84: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

Ω ⊂ PG(K − 1,Fq)C(Ω) : projective [N,K , dmin]q-code associated to Ω

Parameters of C(Ω):

N = |Ω|;K = dim(〈Ω〉);

dmin = N −maxΠ≤PG(K−1,Fq)codimΠ=1

|Π ∩ Ω|.

Ω

Π

The study of the weights of C(Ω) is equivalent to the study of thehyperplane sections of Ω.

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 85: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

Projective codesC(Ω)associated toΩ = ε(Θ).

→ Embeddings of Θ:universal embeddingand its quotient.

→ Generatingset of Θ

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 86: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

Grasmmann embedding of proj. and polar Grassmannians

Gk : k–Grassmannian of PG(V ),V := V (m,Fq), 1 ≤ k < m

Grassmann or Plucker embedding of Gkek : Gk → PG(

∧k V )〈v1, . . . , vk〉 → 〈v1 ∧ v2 ∧ · · · ∧ vk〉

* dim(ek) =(mk

)∆k = (Pk ,Lk): k–polar grassmannian of rank n, 1 ≤ k ≤ n

Grassmann or Plucker embedding of ∆k

εk := ek |Pk: Pk → Σ ≤ PG(

∧k V )

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 87: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

Grasmmann embedding of proj. and polar Grassmannians

Gk : k–Grassmannian of PG(V ),V := V (m,Fq), 1 ≤ k < mGrassmann or Plucker embedding of Gkek : Gk → PG(

∧k V )〈v1, . . . , vk〉 → 〈v1 ∧ v2 ∧ · · · ∧ vk〉

* dim(ek) =(mk

)

∆k = (Pk ,Lk): k–polar grassmannian of rank n, 1 ≤ k ≤ nGrassmann or Plucker embedding of ∆k

εk := ek |Pk: Pk → Σ ≤ PG(

∧k V )

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 88: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

Grasmmann embedding of proj. and polar Grassmannians

Gk : k–Grassmannian of PG(V ),V := V (m,Fq), 1 ≤ k < mGrassmann or Plucker embedding of Gkek : Gk → PG(

∧k V )〈v1, . . . , vk〉 → 〈v1 ∧ v2 ∧ · · · ∧ vk〉

* dim(ek) =(mk

)∆k = (Pk ,Lk): k–polar grassmannian of rank n, 1 ≤ k ≤ n

Grassmann or Plucker embedding of ∆k

εk := ek |Pk: Pk → Σ ≤ PG(

∧k V )

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 89: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

Grasmmann embedding of proj. and polar Grassmannians

Gk : k–Grassmannian of PG(V ),V := V (m,Fq), 1 ≤ k < mGrassmann or Plucker embedding of Gkek : Gk → PG(

∧k V )〈v1, . . . , vk〉 → 〈v1 ∧ v2 ∧ · · · ∧ vk〉

* dim(ek) =(mk

)∆k = (Pk ,Lk): k–polar grassmannian of rank n, 1 ≤ k ≤ n

Grassmann or Plucker embedding of ∆k

εk := ek |Pk: Pk → Σ ≤ PG(

∧k V )

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 90: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

Grassmann Codes

Gk : Grassmannian of the k-subspaces of V (m, q).

C(Gk) := C(ek(Gk)): Grassmann code, determined by ek(Gk) ⊆ PG(∧k V ).

* The parameters of a Grassmann code are known, [Nogin, 1996]:

N = (qm−1)(qm−q)···(qm−qk−1)(qk−1)(qk−q)···(qk−qk−1)

, K =(mk

), dmin = q(m−k)k .

k–multilinearalternating forms on V

↔ Hyperplanes of∧k V

Remark

Minimum weight codewords in a Grassmann code correspondto non-null k–multilinear alternating forms with a maximumnumber of totally isotropic spaces.

When k = 2 these are non–null alternating forms withmaximum radical.

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 91: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

Grassmann Codes

Gk : Grassmannian of the k-subspaces of V (m, q).C(Gk) := C(ek(Gk)): Grassmann code, determined by ek(Gk) ⊆ PG(

∧k V ).

* The parameters of a Grassmann code are known, [Nogin, 1996]:

N = (qm−1)(qm−q)···(qm−qk−1)(qk−1)(qk−q)···(qk−qk−1)

, K =(mk

), dmin = q(m−k)k .

k–multilinearalternating forms on V

↔ Hyperplanes of∧k V

Remark

Minimum weight codewords in a Grassmann code correspondto non-null k–multilinear alternating forms with a maximumnumber of totally isotropic spaces.

When k = 2 these are non–null alternating forms withmaximum radical.

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 92: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

Grassmann Codes

Gk : Grassmannian of the k-subspaces of V (m, q).C(Gk) := C(ek(Gk)): Grassmann code, determined by ek(Gk) ⊆ PG(

∧k V ).

* The parameters of a Grassmann code are known, [Nogin, 1996]:

N = (qm−1)(qm−q)···(qm−qk−1)(qk−1)(qk−q)···(qk−qk−1)

, K =(mk

), dmin = q(m−k)k .

k–multilinearalternating forms on V

↔ Hyperplanes of∧k V

Remark

Minimum weight codewords in a Grassmann code correspondto non-null k–multilinear alternating forms with a maximumnumber of totally isotropic spaces.

When k = 2 these are non–null alternating forms withmaximum radical.

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 93: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

Grassmann Codes

Gk : Grassmannian of the k-subspaces of V (m, q).C(Gk) := C(ek(Gk)): Grassmann code, determined by ek(Gk) ⊆ PG(

∧k V ).

* The parameters of a Grassmann code are known, [Nogin, 1996]:

N = (qm−1)(qm−q)···(qm−qk−1)(qk−1)(qk−q)···(qk−qk−1)

, K =(mk

), dmin = q(m−k)k .

k–multilinearalternating forms on V

↔ Hyperplanes of∧k V

Remark

Minimum weight codewords in a Grassmann code correspondto non-null k–multilinear alternating forms with a maximumnumber of totally isotropic spaces.

When k = 2 these are non–null alternating forms withmaximum radical.

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 94: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

∆k : Symplectic Grassmannian of rank nεk : Grassmann embedding of ∆k .

Theorem [A.A. Premet, I.D. Suprunenko 1983; B. De Bruyn 2009]

dim(εk) =(

2nk

)−(

2nk−2

)for 1 ≤ k ≤ n.

Qk : Orthogonal Grassmannian of rank n and defect 1εk : Grassmann embedding of Qk .

Theorem [I.C., A. Pasini, JACo 2013]

If q is odd then dim(εk) =(

2n+1k

)for 1 ≤ k ≤ n.

If q is even then dim(εk) =(

2n+1k

)−(

2n+1k−2

)for 1 ≤ k ≤ n.

Hk : Hermitian Grassmannian of rank n and defect d = 0, 1εk : Grassmann embedding of Hk .

Theorem [Blok, Cooperstein, 2012; I.C., L. Giuzzi, A. Pasini, 2018]

dim(εk) =(

2n+dk

)for 1 ≤ k ≤ n.

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 95: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

∆k : Symplectic Grassmannian of rank nεk : Grassmann embedding of ∆k .

Theorem [A.A. Premet, I.D. Suprunenko 1983; B. De Bruyn 2009]

dim(εk) =(

2nk

)−(

2nk−2

)for 1 ≤ k ≤ n.

Qk : Orthogonal Grassmannian of rank n and defect 1εk : Grassmann embedding of Qk .

Theorem [I.C., A. Pasini, JACo 2013]

If q is odd then dim(εk) =(

2n+1k

)for 1 ≤ k ≤ n.

If q is even then dim(εk) =(

2n+1k

)−(

2n+1k−2

)for 1 ≤ k ≤ n.

Hk : Hermitian Grassmannian of rank n and defect d = 0, 1εk : Grassmann embedding of Hk .

Theorem [Blok, Cooperstein, 2012; I.C., L. Giuzzi, A. Pasini, 2018]

dim(εk) =(

2n+dk

)for 1 ≤ k ≤ n.

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 96: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

∆k : Symplectic Grassmannian of rank nεk : Grassmann embedding of ∆k .

Theorem [A.A. Premet, I.D. Suprunenko 1983; B. De Bruyn 2009]

dim(εk) =(

2nk

)−(

2nk−2

)for 1 ≤ k ≤ n.

Qk : Orthogonal Grassmannian of rank n and defect 1εk : Grassmann embedding of Qk .

Theorem [I.C., A. Pasini, JACo 2013]

If q is odd then dim(εk) =(

2n+1k

)for 1 ≤ k ≤ n.

If q is even then dim(εk) =(

2n+1k

)−(

2n+1k−2

)for 1 ≤ k ≤ n.

Hk : Hermitian Grassmannian of rank n and defect d = 0, 1εk : Grassmann embedding of Hk .

Theorem [Blok, Cooperstein, 2012; I.C., L. Giuzzi, A. Pasini, 2018]

dim(εk) =(

2n+dk

)for 1 ≤ k ≤ n.

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 97: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

∆k : Symplectic Grassmannian of rank nεk : Grassmann embedding of ∆k .

Theorem [A.A. Premet, I.D. Suprunenko 1983; B. De Bruyn 2009]

dim(εk) =(

2nk

)−(

2nk−2

)for 1 ≤ k ≤ n.

Qk : Orthogonal Grassmannian of rank n and defect 1εk : Grassmann embedding of Qk .

Theorem [I.C., A. Pasini, JACo 2013]

If q is odd then dim(εk) =(

2n+1k

)for 1 ≤ k ≤ n.

If q is even then dim(εk) =(

2n+1k

)−(

2n+1k−2

)for 1 ≤ k ≤ n.

Hk : Hermitian Grassmannian of rank n and defect d = 0, 1εk : Grassmann embedding of Hk .

Theorem [Blok, Cooperstein, 2012; I.C., L. Giuzzi, A. Pasini, 2018]

dim(εk) =(

2n+dk

)for 1 ≤ k ≤ n.

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 98: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

∆k : Symplectic Grassmannian of rank nεk : Grassmann embedding of ∆k .

Theorem [A.A. Premet, I.D. Suprunenko 1983; B. De Bruyn 2009]

dim(εk) =(

2nk

)−(

2nk−2

)for 1 ≤ k ≤ n.

Qk : Orthogonal Grassmannian of rank n and defect 1εk : Grassmann embedding of Qk .

Theorem [I.C., A. Pasini, JACo 2013]

If q is odd then dim(εk) =(

2n+1k

)for 1 ≤ k ≤ n.

If q is even then dim(εk) =(

2n+1k

)−(

2n+1k−2

)for 1 ≤ k ≤ n.

Hk : Hermitian Grassmannian of rank n and defect d = 0, 1εk : Grassmann embedding of Hk .

Theorem [Blok, Cooperstein, 2012; I.C., L. Giuzzi, A. Pasini, 2018]

dim(εk) =(

2n+dk

)for 1 ≤ k ≤ n.

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 99: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

∆k : Symplectic Grassmannian of rank nεk : Grassmann embedding of ∆k .

Theorem [A.A. Premet, I.D. Suprunenko 1983; B. De Bruyn 2009]

dim(εk) =(

2nk

)−(

2nk−2

)for 1 ≤ k ≤ n.

Qk : Orthogonal Grassmannian of rank n and defect 1εk : Grassmann embedding of Qk .

Theorem [I.C., A. Pasini, JACo 2013]

If q is odd then dim(εk) =(

2n+1k

)for 1 ≤ k ≤ n.

If q is even then dim(εk) =(

2n+1k

)−(

2n+1k−2

)for 1 ≤ k ≤ n.

Hk : Hermitian Grassmannian of rank n and defect d = 0, 1εk : Grassmann embedding of Hk .

Theorem [Blok, Cooperstein, 2012; I.C., L. Giuzzi, A. Pasini, 2018]

dim(εk) =(

2n+dk

)for 1 ≤ k ≤ n.

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 100: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

Definition

∆k : Orthogonal/Hermitian/Symplectic grassmannian

C(∆k) := C(εk(∆k)):

Orthogonal/Hermitian/Symplectic Grassmann code.

X if k = n→ Symplectic Grassmann codes are also calledLagrangian Grassmann code.

* I.C., Luca Giuzzi, FFA 24 (2013), 148-169.

* J. Carrillo-Pacheco, F. Zaldivar, DCC 60 (2011), 291-298.

* I.C., L. Giuzzi, K. V. Kaipa and A. Pasini, JPAA 220 (2016), 1924-1934.

* I.C., Luca Giuzzi, LAA 488 (2016), 124-134

* I.C., Luca Giuzzi, FFA 46 (2017), 107-138.

* I.C., Luca Giuzzi, FFA 51 (2018), 407-432.

* I.C., Luca Giuzzi, LAA 580 (2019), 96-120.

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 101: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

Definition

∆k : Orthogonal/Hermitian/Symplectic grassmannian

C(∆k) := C(εk(∆k)):

Orthogonal/Hermitian/Symplectic Grassmann code.

X if k = n→ Symplectic Grassmann codes are also calledLagrangian Grassmann code.

* I.C., Luca Giuzzi, FFA 24 (2013), 148-169.

* J. Carrillo-Pacheco, F. Zaldivar, DCC 60 (2011), 291-298.

* I.C., L. Giuzzi, K. V. Kaipa and A. Pasini, JPAA 220 (2016), 1924-1934.

* I.C., Luca Giuzzi, LAA 488 (2016), 124-134

* I.C., Luca Giuzzi, FFA 46 (2017), 107-138.

* I.C., Luca Giuzzi, FFA 51 (2018), 407-432.

* I.C., Luca Giuzzi, LAA 580 (2019), 96-120.

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 102: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

Orthogonal Grassmann Codes

Theorem (I.C., L. Giuzzi, K.V. Kaipa, A. Pasini 2013–2017)

The known parameters of an Orthogonal Grassmann Code are(n, k) N K d

1 ≤ k < n

k−1∏i=0

q2(n−i) − 1

qi+1 − 1

(2n + 1

k

)d ≥ d(q, n, k)

(3, 3) (q3 + 1)(q2 + 1)(q + 1) 35 q2(q − 1)(q3 − 1)

(n, 2)(q2n−1)(q2n−2−1)

(q−1)(q2−1)(2n + 1)n q4n−5 − q3n−4

q odd

(n, k) N K d

1 ≤ k < n

k−1∏i=0

q2(n−i) − 1

qi+1 − 1

(2n + 1

k

)−(

2n + 1

k − 2

)d ≥ d(q, n, k)

(3, 3) (q3 + 1)(q2 + 1)(q + 1) 28 q5(q − 1)

(n, 2)(q2n−1)(q2n−2−1)

(q−1)(q2−1)(2n + 1)n − 1 q4n−5 − q3n−4

q even

d(q, n, k) := (q + 1)(qk(n−k) − 1) + 1

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 103: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

Orthogonal Grassmann Codes

Theorem (I.C., L. Giuzzi, K.V. Kaipa, A. Pasini 2013–2017)

The known parameters of an Orthogonal Grassmann Code are(n, k) N K d

1 ≤ k < n

k−1∏i=0

q2(n−i) − 1

qi+1 − 1

(2n + 1

k

)d ≥ d(q, n, k)

(3, 3) (q3 + 1)(q2 + 1)(q + 1) 35 q2(q − 1)(q3 − 1)

(n, 2)(q2n−1)(q2n−2−1)

(q−1)(q2−1)(2n + 1)n q4n−5 − q3n−4

q odd

(n, k) N K d

1 ≤ k < n

k−1∏i=0

q2(n−i) − 1

qi+1 − 1

(2n + 1

k

)−(

2n + 1

k − 2

)d ≥ d(q, n, k)

(3, 3) (q3 + 1)(q2 + 1)(q + 1) 28 q5(q − 1)

(n, 2)(q2n−1)(q2n−2−1)

(q−1)(q2−1)(2n + 1)n − 1 q4n−5 − q3n−4

q even

d(q, n, k) := (q + 1)(qk(n−k) − 1) + 1

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 104: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

Symplectic and Hermitian Grassmann codes

Theorem (I.C., L.Giuzzi 2013–2016)

The known parameters of a Symplectic Grassmann code are

(n, k) N K d

(n, 2) (q2n−1)(q2n−2−1)(q−1)(q2−1) n(2n − 1)− 1 q4n−5 − q2n−3

(3, 3) (q3 + 1)(q2 + 1)(q + 1) 14 q6 − q4

Theorem (I.C., L.Giuzzi 2018)

The known parameters of a Hermitian Grassmann code are

(n, 2) N K d

n = 4, 6 (qn−1)(qn−1+1)(qn−2−1)(qn−3+1)(q2−1)2(q2+1)

(n2

)q4n−12 − q2n−6

n ≥ 8, even (qn−1)(qn−1+1)(qn−2−1)(qn−3+1)(q2−1)2(q2+1)

(n2

)q4n−12

n odd (qn+1)(qn−1−1)(qn−2+1)(qn−3−1)(q2−1)2(q2+1)

(n2

)q4n−12 − q3n−9

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 105: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

Symplectic and Hermitian Grassmann codes

Theorem (I.C., L.Giuzzi 2013–2016)

The known parameters of a Symplectic Grassmann code are

(n, k) N K d

(n, 2) (q2n−1)(q2n−2−1)(q−1)(q2−1) n(2n − 1)− 1 q4n−5 − q2n−3

(3, 3) (q3 + 1)(q2 + 1)(q + 1) 14 q6 − q4

Theorem (I.C., L.Giuzzi 2018)

The known parameters of a Hermitian Grassmann code are

(n, 2) N K d

n = 4, 6 (qn−1)(qn−1+1)(qn−2−1)(qn−3+1)(q2−1)2(q2+1)

(n2

)q4n−12 − q2n−6

n ≥ 8, even (qn−1)(qn−1+1)(qn−2−1)(qn−3+1)(q2−1)2(q2+1)

(n2

)q4n−12

n odd (qn+1)(qn−1−1)(qn−2+1)(qn−3−1)(q2−1)2(q2+1)

(n2

)q4n−12 − q3n−9

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 106: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

Future Developments

Minimum distance of C(∆k) with k > 2

Higher weights

Dual code of C(∆k)

Implementation of C(∆k), k > 2.

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 107: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

Future Developments

Minimum distance of C(∆k) with k > 2

Higher weights

Dual code of C(∆k)

Implementation of C(∆k), k > 2.

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 108: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

Future Developments

Minimum distance of C(∆k) with k > 2

Higher weights

Dual code of C(∆k)

Implementation of C(∆k), k > 2.

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 109: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

Future Developments

Minimum distance of C(∆k) with k > 2

Higher weights

Dual code of C(∆k)

Implementation of C(∆k), k > 2.

Ilaria Cardinali Generating Sets of Polar Grassmannians

Page 110: Generating Sets of Polar Grassmannians...Polar spaces = ( P;L): non-degenerate polar space of nite rank n > 2: p ?q if p and q are collinear in : X?:= fx 2P: x ?y; 8y 2Xg; X P X Pis

Basics on polar grassmanniansGenerating sets

New results

Future Developments

Minimum distance of C(∆k) with k > 2

Higher weights

Dual code of C(∆k)

Implementation of C(∆k), k > 2.

Ilaria Cardinali Generating Sets of Polar Grassmannians