generative models for brain imaging - fil | ucl

17
Generative Models for Brain Imaging Will Penny Wellcome Department of Imaging Neuroscience, UCL http://www.fil.ion.ucl.ac.uk/~wpenny Natural Computing Applications Forum (NCAF), ‘Cognitive Systems – from Neural Imaging to Neurocomputing’, 18-19 May, 2005, York University, UK.

Upload: others

Post on 23-May-2022

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Generative Models for Brain Imaging - FIL | UCL

Generative Models for Brain Imaging

Will Penny

Wellcome Department of Imaging Neuroscience, UCLhttp://www.fil.ion.ucl.ac.uk/~wpenny

Natural Computing Applications Forum (NCAF), ‘Cognitive Systems –from Neural Imaging to Neurocomputing’, 18-19 May, 2005,

York University, UK.

Page 2: Generative Models for Brain Imaging - FIL | UCL

2D fMRI time-series

Time

Serial snapshotsof blood –

oxygenation levels

Time

Page 3: Generative Models for Brain Imaging - FIL | UCL

Even without applied spatial smoothing, activation maps (and maps of eg. AR coefficients) have spatial structure

Motivation

We can increase the sensitivity of our inferences by smoothing data with Gaussian kernels (SPM2). This is worthwhile, but crude.Can we do better with a spatial model (SPM5) ?

AR(1)

Aim: For SPM5 to remove the need for spatial smoothing just as SPM2 removed the need for temporal smoothing

Contrast

Page 4: Generative Models for Brain Imaging - FIL | UCL

β

A

q1 q2

α

W

Y

( ) ( )

( ) ( )1

1 2; ,

K

kk

k k

p p

p Ga q q

α

α α=

=

=

∏α

( ) ( )

( ) ( )( )1

11; ,

KTk

k

T T Tk k k

p p

p N α

=

−−

=

=

∏W w

w w 0 S S

u1 u2

λ

( ) ( )

( ) ( )1

1 2; ,

N

nn

n n

p p

p Ga u u

λ

λ λ=

=

=

∏λ

( )1

1 1

( ) ( )

( ) ; , ( )

P

pp

Tp p p

p p

p N β=

− −

=

=

∏A a

a a 0 S S

Y=XW+E[TxN] [TxK] [KxN] [TxN]

r1 r2

1

1 2

( ) ( )

( ) ( ; , )

P

pp

p p

p p

p Ga r r

β

β β=

=

=

∏β

0pβ →

pβ →∞

Voxel-wise AR:

Spatial pooled AR:

The Model

Page 5: Generative Models for Brain Imaging - FIL | UCL

t

Synthetic Data 1 : from Laplacian Prior

reshape(w1,32,32)

Page 6: Generative Models for Brain Imaging - FIL | UCL

Prior, Likelihood and PosteriorIn the prior, W factorises over k and A factorises over p:

1 2 1 2( , , , , ) ( | ) ( | , ) ( | ) ( | , )k k k p p pk p

p p p q q p p r rα α β β

= ∏ ∏W A λ α β w a

1 2( | , )nn

p u uλ ∏

The likelihood factorises over n:

( | , , ) ( | , , )n n n nn

p p λ=∏Y W A λ y w a

The posterior over W therefore does’nt factor over k or n. It is a Gaussianwith an NK-by-NK full covariance matrix. This is unwieldy to even store, let alone invert ! So exact inference is intractable.

Page 7: Generative Models for Brain Imaging - FIL | UCL

Variational Bayes

L F KL= +

( , )( )( | )ppp

=Y θYθ Y

log ( ) log ( , ) log ( | )p p p= −Y Y θ θ Y

log ( ) ( ) log ( , ) ( ) log ( | )p q p d q p d= −∫ ∫Y θ Y θ θ θ θ Y θ

( , ) ( )log ( ) ( ) log ( ) log( ) ( | )

p qp q d q dq p

= +∫ ∫Y θ θY θ θ θ θθ θ Y

L

F

KL

Page 8: Generative Models for Brain Imaging - FIL | UCL

Variational Bayes

( ) ( )ii

q q=∏θ θ

If you assume posterior factorises

then F can be maximised by letting

exp[ ( )]( )exp[ ( )]

ii

i i

IqI d

=∫

θθθ θ

where

/ /( ) ( ) log ( , )i i iI q p d= ∫θ θ Y θ θ

Page 9: Generative Models for Brain Imaging - FIL | UCL

Variational Bayes

( , , , | ) ( | ) ( | ) ( | ) ( | ) ( | )k p n n nk p n

q q q q q qα β λ

= ∏ ∏ ∏W A λ α Y Y Y w Y a Y Y

In chosen approximate posterior, W and A factorise over n:

In the prior, W factorises over k and A factorises over p:

1 2 1 2( , , , , ) ( | ) ( | , ) ( | ) ( | , )k k k p p pk p

p p p q q p p r rα α β β

= ∏ ∏W A λ α β w a

1 2( | , )nn

p u uλ ∏

So, in the posterior for W we only have to store and invert N K-by-K covariance matrices.

Page 10: Generative Models for Brain Imaging - FIL | UCL

( )ˆˆ( ) ; ,n n n nq N=w w w Σ

[ ]( )T Tdiag= ⊗B H α S S H

1,

ˆN

n ni ii i n= ≠

= − ∑r B w

( )( ) 1

Tnn n n n

n n n nn

λ

λ−

= +

= +

w Σ b r

Σ A B

( ) ( )

( ) ( )

( )

1

1

2

; ,1 1 1

2

2

K

kk

k k k k

TT Tk k k

k

k

k k k

q q

q Ga g h

Trg q

Nh q

g h

α

α α

α

=

=

=

= + +

= +

=

∏α

Σ S S w S Sw

Regression coefficients, W

Spatial precisions for W

1

2

( ) ( ; , )

1 12

2

n n n n

n

n

n

q Ga b c

Gb u

Tc u

λ λ=

= +

= +

Observation noise

AR coefficients, A

( )( )( )

1

1,

( ) ( ; , )

( )

n n n n

nn n nn

nn n n n

T Ta a

N

n ni ii i n

q N

diag

λ

λ

= ≠

=

= +

= +

= ⊗

= − ∑

a a m V

V C J

m V d j

J H β S S H

j J m

( )

1

1 2

1 1

2 2

1 2

( ) ( )

( ) ( ; , )

1 1 1( )2

2

P

pp

p p p p

T T Tp p p

p

p

p pp

q q

q Ga r r

Trr r

Pr r

r r

β

β β

β

=

=

=

= + +

= +

=

∏β

V S S m S Sm

Spatial precisions for A

Updating approximate posterior

Page 11: Generative Models for Brain Imaging - FIL | UCL

y

x t

Synthetic Data 1 : from Laplacian Prior

Page 12: Generative Models for Brain Imaging - FIL | UCL

Iteration Number

F

Page 13: Generative Models for Brain Imaging - FIL | UCL

y

x

y

x

Least Squares VB – Laplacian Prior

`Coefficient RESELS’ = 366Coefficients = 1024

Page 14: Generative Models for Brain Imaging - FIL | UCL

Synthetic Data II : blobs

True Smoothing

Global prior Laplacian prior

Page 15: Generative Models for Brain Imaging - FIL | UCL

1-Specificity

Sen

sitiv

ity

Page 16: Generative Models for Brain Imaging - FIL | UCL

Event-related fMRI: Faces versus chequerboard

Smoothing

Global prior Laplacian Prior

Page 17: Generative Models for Brain Imaging - FIL | UCL

Event-related fMRI: Familiar faces versus unfamiliar faces

Smoothing

Global prior Laplacian Prior