genetic stiudies on quantitative characters in soybean : Ⅲ. … · 2019. 4. 25. · file...

12
Instructions for use Title Genetic Stiudies on Quantitative Characters in Soybean : Ⅲ. Inheritance Modes of F2 generations in the crosses between indeterminate and determinate varieties Author(s) THSENG, Fu-Sheng; SANBUICHI, Takashi; HOSOKAWA, Sadaji Citation Journal of the Faculty of Agriculture, Hokkaido University, 56(4), 543-553 Issue Date 1971-08 Doc URL http://hdl.handle.net/2115/12863 Type bulletin (article) File Information 56(4)_p543-553.pdf Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

Upload: others

Post on 07-Mar-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Genetic Stiudies on Quantitative Characters in Soybean : Ⅲ. … · 2019. 4. 25. · File Information 56(4)_p543-553.pdf Hokkaido University Collection of Scholarly and Academic

Instructions for use

Title Genetic Stiudies on Quantitative Characters in Soybean : Ⅲ. Inheritance Modes of F2 generations in the crossesbetween indeterminate and determinate varieties

Author(s) THSENG, Fu-Sheng; SANBUICHI, Takashi; HOSOKAWA, Sadaji

Citation Journal of the Faculty of Agriculture, Hokkaido University, 56(4), 543-553

Issue Date 1971-08

Doc URL http://hdl.handle.net/2115/12863

Type bulletin (article)

File Information 56(4)_p543-553.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

Page 2: Genetic Stiudies on Quantitative Characters in Soybean : Ⅲ. … · 2019. 4. 25. · File Information 56(4)_p543-553.pdf Hokkaido University Collection of Scholarly and Academic

GENETIC STUDIES ON QUANTITATIVE CHARACTERS IN SOYBEAN

III. Inheritance modes of F2 generations in the crosses between indeterminate and determinate varieties

Fu-Sheng THSENG*, Takashi SANBUICHI** and Sadaji HOSOKA WA *

(* Laboratory of Industrial Crops, Faculty of Agriculture, Hokkaido University, Sapporo, Japan.

** Hokkaido Tokachi Agriculture Experimental Station, Japan)

Received November 30, 1970

Although the indeterminate and the determinate types of soybean have been known to differ in physiological and ecological characteristics (NAGATA 1960 a, b, c; THSENG and HOSOKA W A 1971), the genetic behavior of such habit has not been clarified completely. But the introduction of the indeter­minate habit into determinate varieties to make the "half-indeterminate type", seems to be a promising method to creat a new subject of soybean breeding in Japan. Consequently, in order to raise such variety effectively, it is indispensable to obtain the information of the inheritance mode of these characters.

This study is devoted to the analysis of the inheritance mode of the several agronomic characters in the early segregating generations from the some crosses between indeterminate and determinate varieties.

Materials and Methods

Four F2 populations i. e., Harosoy x Tokachi-nagaha, Harosoy x Kitami­shiro, Kogane-jiro x Shinsei and Isuzu x Toiku No. 122, and seven parental varieties were used for' experiments. Harosoy and Kogane-jiro are known as a indeterminate variety, and Tokachi-nagaha, Kitami-shiro, Shinsei and Toiku No. 122 are determinate variety.

In 1969, the PI' P2, F2 plants were grown in the farm of Tokachi Agriculture Experimental Station, Hokkaido.

The experimental designs were as follows: 1) Two crosses, Harosoy x Tokachi-nagaha and Harosoy x Kitami-shiro,

were designed following a completely randomized block with six replications. Each replication contained two plots of PI> Pz, and ten

[Jour. Facul. Agr., Hokkaido Univ., Sapporo, Vol. 56, Pt. 4, 1971]

Page 3: Genetic Stiudies on Quantitative Characters in Soybean : Ⅲ. … · 2019. 4. 25. · File Information 56(4)_p543-553.pdf Hokkaido University Collection of Scholarly and Academic

TABLE l. Total Fz variance, error variance, and

heritability in four Fz populations

F?, Harosoy X F z, Harosoyx F z Kogane-jiro X

Character Tokachi-nagaha Kitami-shiro Shinsei

a~"'l aZ e hZ aj,z (J~ hZ a~2 a~ h2

Days to first 64.817 1.426 97.8 130.367 2.347 98.2 flowering

Plant height 734.572 26.445 96.4 1074.492 47.000 95.6 694.652 20.029 97.1

Node no. in main 13.714 stem 0.741 94.6 18.442 0.852 95.4 9.714 0.564 94.2

Branch number 5.940 0.791 86.8 5.296 0.678 87.2 3.541 0.925 73.9

Pod number 3045.235 228.493 92.5 2761.325 234.712 91.5 608.392 150.541 75.3

Seed number 2053.165 571.095 72.2

Seed weight 89.749 27.748 70.0

Ratio of node no.* 164.685 13.011 92.1 204.012 24.278 88.1

* Increment of node number after first flowering in percent of the total node number.

F2, Isuzux Toiku No. 122

a 2 F, a 2

e hZ

43.733 40.912 6.5

0.567 0.448 13.7

0.949 0.658 30.7

132.604 77.678 41.4

733.544 440.581 39.9

42.921 27.103 36.8

CJl

""" """

:'l \fl o-J ::r: (FJ t7j Z 9 ;1 (FJ

~ Z tJ:j c: () [:5 ~ Z tJ

V'

::r: 0 (FJ

0 :;.:: ~ :;;: ~

Page 4: Genetic Stiudies on Quantitative Characters in Soybean : Ⅲ. … · 2019. 4. 25. · File Information 56(4)_p543-553.pdf Hokkaido University Collection of Scholarly and Academic

GENETIC STUDIES O?\f QUANTITATIVE CHARACTERS IN SOYBEAN 545

plots of F 2• Each plot consisted of 12 plants, 10 of them being used for taking records. All the plants were planted in 60 x 60 cm spacing.

2) Other two crosses, Kogane-jiro x Shinsei and Isuzu x Toiku No 122, were also designed following a completely randomized block with four replications. Each replication contained one plot of PI and P2,

and four plots of F 2• Each plot consisted of 20 plants, 15 of them being used for taking records. All the plants were space-planted at 60 x 20 cm.

Results

1. Genetic parameter in F2 population (Table 1)

In spite of the difference in the planting density, experimental error in all characters seemed to be small enough to inference that the phenotypic values of Fz plants were made up almost only of the genotypic effects.

The heritability values in broad sense were estimated by the following formula:

Genetic variance (Va) = VF , -HVp , + Vp ,)

Heritability (h2) = Va/VI',

Where VI.', is phenotypic variance in F2 population, V p , and V p , are phenotypic variance in PI and P2 populations, respectively.

The heritability values estimated from the F2 population of indeterminate x determinate crosses were rather high in all characters, especially most of them from wide spaced experiment exceeded over 90%. On the other hand, the heritability values estimated from the F2 population crossing from the determinate x determinate were very low.

2. Days to first flowering (Fig. 1)

In both populations, the ranges of F2 vanatlOn exceeded the parental difference by more than twelve times. The F2 mean exceeded the parental mean about ten days. There were two peaks of distributions; one of them located at the class of 100-120 days was bigger, and another one located at the class of 60-70 days was small.

3. Plant height (Fig. 2)

The distributions of plant height observed in each of the three F2

populations derived from the crosses between indeterminate and determinate varieties were continuous showing the deviation from the normal distributions. On the other hand, F2 populations derived from the crosses among deter-

Page 5: Genetic Stiudies on Quantitative Characters in Soybean : Ⅲ. … · 2019. 4. 25. · File Information 56(4)_p543-553.pdf Hokkaido University Collection of Scholarly and Academic

546 F. S. TI-ISENG, T. SANBUICI-Ii AND S. HOSOKA W A

140

100

~ Harosoj x Tokachi-nagaha

-!2 "-~ '- 60 " -0 EO

~

20 6 6

50 100 Days to firs! floweringrday)

-:3 60 " Harosog ,Kliami-shiro -!2 "-"-" '-"'. -0 EO 20 ~

SO /00 Oa!!s to fl(,st flowering (day)

Fig.!. Fz distribution of days to first flowering (cross figures indicate the parental mean with Gel.

/00 J<ogane -j/r. x Shinsei

+ ~

Harosoy x 'okachi -nagaha

80 IsulUx -!:l ToiklJ -! No.l22

1; ~ 20 SO 80 I/O

Plant height (em)

H arosoy xXitami -shim

~ ..-¢---<

so 80 110 50 20 SO 80 I/O

plani heigh! (cm) Plant height lem) Plant height (em)

Fig. 2. F2 distribution of plant height (c.ross figures indicate the parental mean with Ge).

Page 6: Genetic Stiudies on Quantitative Characters in Soybean : Ⅲ. … · 2019. 4. 25. · File Information 56(4)_p543-553.pdf Hokkaido University Collection of Scholarly and Academic

GENETIC STUDIES ON QUA:"TITATIVE CHARACTERS IN SOYBEAN 547

minate varieties showed the normal distribution. The ranges of variation in F2 populations were greatly wider in the crosses between indeterminate and determinate varieties, and the mean of F2 populations overwhelmingly exceed­ed the parental means. In the F2 population from the crosses between the determinate varieties, mean value was equal to the parental. mean and noticed that amount of F2 population plants lower than both the low and high parents is very few.

4. Node number in main stem (Fig. 3)

In three crosses, Harosoy x Tokachi-nagaha, Harosoy x kitami-shiro and Kogane-jiro x Shinsei, the variation in the F2 populations were so big that the node number of plants in the largest classes were more than four times as much as another extreme value. Seeing the distributions of the F2 populations, the former two populations were somewhat deviated from normal distributions, while the distribution of the later population is normal. The ranges of F2 variations in all crosses were much wider than the parental differences, and these mean values exceeded the parental means.

In the population of Isuzu x Toiku No. 122, the parental mean was about equal to the F2 mean and the range of F2 variation was equal to the parental

Harosoyx lOkechi·nagaha

Node number

Harosoy x Kllami· sltiro

160

120

• Isulu<Toikullo.122

40

12 14 Node number

1;; -<r ~ 20 -<>-~

t~-2 =-=.:;;c..----..,.----_,'__ 10 15 70

Node number Node number

Fig. 3. F2 distribution of node number in main stem (cross figures indicate the parental mean with (1e).

Page 7: Genetic Stiudies on Quantitative Characters in Soybean : Ⅲ. … · 2019. 4. 25. · File Information 56(4)_p543-553.pdf Hokkaido University Collection of Scholarly and Academic

548 F. S. THSENG, T. SANBUICHI AND S. HOSOKAWA

difference.

5. Branch number (Fig. 4)

In all of the three crosses between indeterminate and determinate varieties, F2 distributions were typically normal and the ranges of F2 variation were apparently wider than the parental differences. The parental means, F2 means showed the almost same value.

In the population of Isuzu x Toiku No. 122, more than half of the plants exceeded the values of lower parents and none of the plants in F2 than the highest value in the parental varieties.

zOO

/60

1; /2fJ Isuzux ..'!! "'- ToiAuNo.

40

2 4 Branch n"moer

2 6 Branch number Brdnch number

Fig. 4. F2 distribution of branch number (cross figures indicate the parental mean with (fe).

6. Pod number (Fig. 5)

About four populations, F2 distributions were normal, especially the F2

Page 8: Genetic Stiudies on Quantitative Characters in Soybean : Ⅲ. … · 2019. 4. 25. · File Information 56(4)_p543-553.pdf Hokkaido University Collection of Scholarly and Academic

GENETIC STUDIES ON QUANTITATIVE CHARACTERS IN SOYBEAN 549

population of Isuzu x Toiku No. 122 showed the typical normal distribution, and none of these plants had a lower value than the lowest value in parental varieties. The ranges of F2 variation of the crosses between indeterminate and determinate varieties were extremely wider than the parental difference, especially in the population of Harosoy x Tokachi-nagaha, where the range exceeded the parental difference by more than four times.

Harosoy x Tokachi-nagilhil

HarosOY'/(iiami -shiro

ISO

Pod number

/00 180

2~O

80

60 Isuzux ToikuNal22

to PQdnumber

Pod number Pod number

Fig. 5. F2 distribution of pod number per plant (cross figures indicate the parental mean with (1e).

7. Seed number (Fig. 6)

In F2 populations derived from crosses Kogane-jiro x Shinsei and Isuzu x Toiku No. 122, the ranges of variation were much wider than the parental differences, only five plants in population of Isuzu x Toiku No. 122 showed the lower seed number than values of lower parents, and the distribution of the population of Isuzu x Toiku No. 122 was deviated from the normal, but the variation was continuous.

Page 9: Genetic Stiudies on Quantitative Characters in Soybean : Ⅲ. … · 2019. 4. 25. · File Information 56(4)_p543-553.pdf Hokkaido University Collection of Scholarly and Academic

550 F. S. THSENG, T. SANBUICHI AND S. HOSOKA W A

In the population of Isuzu x Toiku No. 122, the mode of F2 distribution was a extremely skewed one, and the mean value was smaller than the parental mean. On the other hand, the mean of F2 in Kogane-jiro x Shinsei was equal to the parental mean.

/(ogane·.ilfo x Shinsei

40

30 lsuzux Toiku No. 122

10

100

Seed number /40

100 140

Seed number 180

Fig. 6 F2 distribution of seed number per plant (cross figures indicate the parental mean with l1e).

8. Seed weight (Fig. 7)

In both populations, the ranges of F2 VariatIOn were greatly wider than the parental differences, while F2 distribution of Kogane-jiro x Shinsei was a typically normal.

The F2 mean of Isuzu x Toiku No. 122 exceeded the parental mean, but in the population of Kogane-jiro x Shinsei, the F2 mean and each parental means were not so much different, as the value was 24.17, 24.91 and 25.01, respectively.

Page 10: Genetic Stiudies on Quantitative Characters in Soybean : Ⅲ. … · 2019. 4. 25. · File Information 56(4)_p543-553.pdf Hokkaido University Collection of Scholarly and Academic

GENETIC STUDIES ON QUANTITATIVE CHARACTERS IN SOYBEAN 551

60

Kogan61/foXShinsei 40 ISJlluxTiJikuNJ.l22

10 20 30 . 40 io 30

Seed weight Seed weight

Fig. 7. F2 distribution of seed weight per plant (cross figures indicate the parental mean with q.).

740

100 HarosoyxTokQchi-nagaha

60

20

/0 30 Ratio of nod. number I,.)

60 Harosoyll' Kifami . shiro

20

30 50

Ratio of node number (~)

Fig. 8. F2 distribution of ratio of node number (cross figures indicate the parental mean with a.).

Page 11: Genetic Stiudies on Quantitative Characters in Soybean : Ⅲ. … · 2019. 4. 25. · File Information 56(4)_p543-553.pdf Hokkaido University Collection of Scholarly and Academic

552 F. S. THSENG, T. SANBUICHI AND S. HOSOKA W A

9. Ratio of node number (Fig. 8)

To describe the growth habit, the authors took the increment of node number after first flowering in per cent of total node number (Sanbuichi 1967 ; Thseng and Hosokawa 1971).

In both populations, the distributions of Fz populations were normal, the ranges of Fz variation were not so much bigger than the parental differences and Fz means were smaller than the parental means. There were only 1 % plants located at the tail of distribution of higher parent and lO% plants at lower parent, generally about 60% plants showed the values ranging from 35% to 55% in the F z distributions.

Discussion

To study the vanatIOns on three F2 populations III the crosses between indeterminate and determinate varieties revealed that many of the characters are similar in inheritance mode and transgressive segregation in F z distribu­tion. Also the variations of Fz populations apparently showed that the distributions are normal or far normal, and continuous, and no character is conditioned monogenically. These results as mentioned above, seem to support that the indeterminate and deteminate varieties are controlled by a different genetic basis, and its may be roughly said that the inheritance of F z plants are under the control of various gene effects, and with intra and inter-allelic interaction or additive effects, and poly-genic effects in all char­acters. Thus, the analysis of the effective number of genes and their effects will be a very important problem for breeding for which indeterminate and determinate varieties are used as the parents of the hybridizations.

THSENG and HOSOKA W A (1971) reported that the node number in main stem at first flowering was not correlated with its increment after first flowering in the F2 hybrids of indeterminate x determinate variety, and the heterosis of ratio of node number was not found in Fl plants. In this study, it is indicated that many plants located between indeterminate and determinate variety in the Fz distribution of ratio of node number.

Selection of the "half-indeterminate" plants seems to be possible III

soybean breeding. This will be discussed in the following paper.

Summary

Three Fz populations obtained from the crosses between indeterminate and determinate varieties, and one F z population of determinate x determinate variety, and their parents were used to investigate the inheritance modes of

Page 12: Genetic Stiudies on Quantitative Characters in Soybean : Ⅲ. … · 2019. 4. 25. · File Information 56(4)_p543-553.pdf Hokkaido University Collection of Scholarly and Academic

GENETIC STUDIES ON QUANTITATIVE CHARACTERS IN SOYBEAN 553

the Fz plants for several agronomic traits. The environmental variance, estimated by the VariatIOn of each parental

variety, was so small enough that the heritability values estimated by the formula (total Fz variance-environmental variance/total Fz variance), and heritability value was very higher in the populations of the crosses between indeterminate and determinate variety.

The inheritance modes of the Fz distributions were more or less normal in all characters given, i. e., plant height, node number in main stem, branch number, pod number, seed number, seed weight and ratio of node number.

Days to first flowering was only execptional character whose distribution was found by two peaks in the inheritance mode.

Ratio of node number, 60 percents of the F z plants distributed in the centre of the parents.

The Fz mean exceeded the parental mean in days to first flowering, plant height, node number in main stem, branch number, pod number, seed weight, except the ratio of node number.

Acknowledgements

The authors wish to express their hearty thanks to Dr. T. KUSUNOKI, Director, Mr. M. SAITO, Head of the Soybean Laboratory, Mr. K. SASAKI. Mr. T. TSUCHIY A and Mr. S. SAKAI of the Tokachi Agriculture Experimental Station, who encouraged them to carry out this work and helped them with valuable suggestions. Likewise, the authors are also grateful to Dr. C. TSUDA, for his interest in this work and discussions.

Literature cited

NAGAT A, T., 1960 a. Morphological, physiological and genetic aspects of the sum­

mer vs. autumn soybean habit, the plant habit and the interrelation between them

in soybean. Sci. Rept. Hyogo Univ. Agri. 4: 71-95.

-----, 1960 b. Agronomic studies on the genecological differentiation of soybean

in Japan and world. Sci. Rept. Hyogo Univ. Agri. 4: 96-122.

-----, 1960 c. Studies on the differentiation of soybeans in Japan and world.

Memo. Hyogo Univ. Agri. ;): 63-102.

SANBUICHI, T., 1967. Degree of indeterminate type of growth habit and its relations

to ecological responses in soybean varieties and cross lines. Hokkaido. Agri. Expt.

Sta. Bull. 15: 10-14.

THSENG, F. S. and S. HOSOKAW A, 1971. Genetic studies on quantitative characters in soybean. II. On the growth habit. J. Fac. of Agri., Hakkaiclo Univ., 56: 425-434.