geo statistics

58
Builder Tutorial Geostatistical and Scripting Tools Gilles Bourgault Calgary September 2006

Upload: homero-castilla

Post on 29-Sep-2015

9 views

Category:

Documents


0 download

DESCRIPTION

Geo Statistics

TRANSCRIPT

  • Builder TutorialGeostatistical and Scripting ToolsGilles BourgaultCalgary September 2006

  • Aims and GoalsBuild maps and a simulation grid.Populate the simulation grid with spatial properties.Familiarize yourself with Geostatistical and Scripting tools available in Builder.

  • Pre-RequisitesFamiliar with Builder.Concepts of spatial interpolation and mapping.Concepts of geostatistics (variogram, kriging).Concepts of conditional simulation.Suggested Geostatistical Text Books:

    An Introduction to Applied Geostatistics, Isaaks and Srivastava, Oxford Applied Geostatistics for Reservoir Characterization, Kelkar and Perez, SPE Geostatistics and Petroleum Geology, Hohn, Kluwer Geostatistical Reservoir Modeling, Deutsch, Oxford

  • Deterministic or Probabilistic?Oil reservoir (Mineral deposit) are physical systems that are perfectly deterministic.Geological systems are created by many processes at different scales.We have few measurements. We still lack a great deal of information to fully determine those systems.We cannot write the deterministic equations that will calculate the property value we observe at any given location in the system (e.g. porosity in the reservoir). We do not know the behavior of the system in terms of mathematical equations. Based on sampling, we can still describe its behavior in terms of statistics and probabilities.

  • Probabilities for Deterministic ObjectsSpatial Random FunctionsA spatial random function Z(u,) can be defined as a collectionof regionalized random variables Z(u) over a spatial domain D. Z(u) denotes a random variable at the location uDSpace Coordinateuu:Mineral DepositOil ReservoirValues at each location u are described by a random variable. The set of all values in D represents 1 realization of the randomfunction.Z(u)Z(u,W) is the set of all possible realizations (outcomes) of the random functionZGoldPorosityPermeabilityProbability SpacePhysical SpaceAttributesZProbability spacePhysical domainD

  • DDDRealization of Random FunctionsProbability space W is filled with multiple realizationsz1(u)z2(u)z3(u)ProbabilityDensityFunction atlocation uis definedover multiplerealizations wz(u) denotes an outcome value or realization at the location uZ(u)Z(u)Z(u)All realizations are equivalentThe actual reservoir is one such realization

  • UnivariateBivariateTrivariate N-variateN = NX*NY*NZ Random Function on a Grid => N-variate DistributionRandom FunctionsDDDDDiscretization of the Spatial Domain D

  • Probabilities for Deterministic ObjectsExample of 1 realization of a Random Function in 1DDuz1(u)ubz1(ub) 1D line is discretized in 50 locations => 50-variate Random Function

  • Probabilities for Deterministic ObjectsExample of multiple realizations of a Random Function in 1D100 realizationsuD(for short)mn=100zw(u)Distribution of 100 outcomes at location uaLocal pdf at location ua R.V. at ua is characterized by a mean m and a standard deviation sR.F.

  • Probabilities for Deterministic ObjectsStationary Random Functionm and do not depend on the location u(100 realizations)All random variables have same expected value and same varianceStationary distribution (pdf)n=100local pdf is everywhere the same=> No TrendStationarity => region with homogeneous statistics

  • Probabilities for Deterministic ObjectsStationary Random FunctionStationary LogNormal distribution (pdf)m and do not depend on the location ulocal pdf is everywhere the same=> No TrendStationarity => region with homogeneous statistics

  • Probabilities for Deterministic ObjectsCharacterizing the Random Function with Correlations(100 realizations)closer random variableshave higher correlationThis is often observedin natureh=49h=1lag distance h=49lag distance h=1n=100n=100Coefficient of correlationPairinglocations

  • Probabilities for Deterministic ObjectsCharacterizing the Random Function with Moments of Inertia(100 realizations)closer random variableshave a smaller momentof inertia in their x-plotdh=49h=1lag distance h=49lag distance h=1n=100n=100Moment of inertia about first bisector

  • h=lag distance between any two random variablesCharacterizing Random FunctionsCorrelogram = correlation as a function of lag distance(100 realizations)Variogram = moment of inertia as a function of lag distanceCorrelation lengthCorrelation vanisheswhen moment ofinertia reach themaximum valueMaximum correlation at h=0 corresponds to the variance of Z(u)not to scale

  • Probabilities for Deterministic ObjectsExample of a realization of Random Function in 1DDuubLag sizez(u)z(ub)Ergodicity: Each realization reproduces the variogram and correlogram if observed over a Domain of infinite dimension (large enough)outcomes (actual values)random variablesoutcomes (actual values)random variables

  • 100 realizations100 variogramsProbabilities for Deterministic ObjectsFluctuations in the Variograms when computed for each realizationover a finite DomainThe averaged variogramidentifies the variogramof the random function.Ergodic fluctuationsErgodic fluctuations increases with the lag distancenot to scale

  • Probabilities for Deterministic ObjectsFew observations (measurements) of a realization of a Random Function in 1DDThe practice of computing variogramsThe actual reservoir (or deposit) is locally known at few data locations

  • Stationary Histogram (pdf) = Data HistogramThe actual reservoir (1 realization) is locally known at few data locationsStationary distribution (pdf)Multiple realizationsAssuming ERGODICITY => Stationary Histogram = Data HistogramData histogram

  • Computing Variograms = Data Pairing20 data locations, regular sampling => N(h=1) = 19 => N(h=2) = 18 => N(h=3) = 17 => N(h=19) = 1h=1h=2h=3h=19 regular sampling => regular lag distances

  • Computing Variograms = Data Pairing1111001020Lag sizeLag toleranceLag1: N(h1)=7 pairs1011100100Lag2: N(h2)=5 pairs11 data locations, irregular sampling

  • Computing Variograms = Data PairingAttribute Zhi4 pairshihi = lag distance vectorBandwidthDirection angleAngle toleranceAngular and distance tolerancesare used to get enough pairs of values in any given direction.Lag sizeLag toleranceExample of 2D sampling geometry(3D: vertical variogram is along wells or across grid layers)2D sampling

  • Fitting VariogramsVariogramLag distance hg(h)Semi-Variance(direction q)ExperimentalTheoreticalEach experimental point may involve a different number of data pairs N(h).Rule of thumb >=30 pairs

  • Fitting Variogram AnisotropyMajor axis = direction of maximum rangeMinor axis = direction of minimum rangeFitting anisotropies => finding directions of major and minor axisAnisotropy Ellipse

  • Variogram MapTop View.Vertical Cross-sectionalong x-axis.Sill at 10hhhhhg(h)g(h)N Would be a variogram cube in 3D Variogram is symmetric in h

  • Variogram and Spatial Heterogeneity.Spherical Modelh.Nugget Modelh.Gaussian Modelh

    Chart1

    0.5936

    -0.1591

    -2.3092

    0.5934

    0.6122

    0.8557

    0.4495

    0.3361

    -0.5289

    0.7487

    1.9103

    1.4119

    -1.121

    0.944

    1.094

    0.253

    0.3047

    0.1498

    1.1057

    -0.5229

    -0.1286

    -0.1271

    0.5736

    -0.5289

    -3.3483

    -0.4293

    -0.6486

    0.7051

    0.248

    0.3717

    0.8286

    -0.3321

    -0.3527

    -0.2224

    1.0708

    0.2485

    0.2413

    0.1439

    -1.72

    -1.4463

    -0.9804

    -1.0236

    -0.3571

    0.7013

    0.9895

    -0.2392

    -0.4623

    1.414

    0.3225

    0.8851

    1.5609

    1.346

    -0.0348

    -0.0607

    0.6829

    1.2452

    0.4341

    2.033

    -0.4491

    -0.5121

    -0.2855

    0.6015

    0.9416

    0.8031

    2.2655

    2.4484

    -2.6573

    -0.4378

    -0.6767

    0.1632

    0.4321

    -0.4696

    -0.8023

    -0.818

    0.8851

    -0.389

    0.5082

    0.1143

    -0.454

    -0.5436

    1.5325

    0.9443

    1.3674

    -0.5383

    2.4954

    0.0825

    0.4696

    0.5616

    0.7362

    0.3113

    2.2295

    0.6082

    0.1492

    -0.2572

    -0.4848

    -0.5879

    -1.5732

    -0.6523

    -0.3332

    0.4382

    sgsim1

    With Coordinates

    4

    X

    Y

    Z

    value

    1000.5936

    200-0.1591

    300-2.3092

    4000.5934

    5000.6122

    6000.8557

    7000.4495

    8000.3361

    900-0.5289

    10000.7487

    11001.9103

    12001.4119

    1300-1.121

    14000.944

    15001.094

    16000.253

    17000.3047

    18000.1498

    19001.1057

    2000-0.5229

    2100-0.1286

    2200-0.1271

    23000.5736

    2400-0.5289

    2500-3.3483

    2600-0.4293

    2700-0.6486

    28000.7051

    29000.248

    30000.3717

    31000.8286

    3200-0.3321

    3300-0.3527

    3400-0.2224

    35001.0708

    36000.2485

    37000.2413

    38000.1439

    3900-1.72

    4000-1.4463

    4100-0.9804

    4200-1.0236

    4300-0.3571

    44000.7013

    45000.9895

    4600-0.2392

    4700-0.4623

    48001.414

    49000.3225

    50000.8851

    51001.5609

    52001.346

    5300-0.0348

    5400-0.0607

    55000.6829

    56001.2452

    57000.4341

    58002.033

    5900-0.4491

    6000-0.5121

    6100-0.2855

    62000.6015

    63000.9416

    64000.8031

    65002.2655

    66002.4484

    6700-2.6573

    6800-0.4378

    6900-0.6767

    70000.1632

    71000.4321

    7200-0.4696

    7300-0.8023

    7400-0.818

    75000.8851

    7600-0.389

    77000.5082

    78000.1143

    7900-0.454

    8000-0.5436

    81001.5325

    82000.9443

    83001.3674

    8400-0.5383

    85002.4954

    86000.0825

    87000.4696

    88000.5616

    89000.7362

    90000.3113

    91002.2295

    92000.6082

    93000.1492

    9400-0.2572

    9500-0.4848

    9600-0.5879

    9700-1.5732

    9800-0.6523

    9900-0.3332

    10000.4382

    sgsim1

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    Chart1

    0.5936

    0.5275

    -0.2965

    0.1577

    0.2848

    0.6227

    0.6558

    0.442

    0.2208

    0.465

    0.8762

    0.2363

    -0.435

    -0.133

    -0.2125

    -0.8951

    -0.7837

    -0.8445

    -0.8909

    -1.4011

    -1.692

    -1.9119

    -1.9791

    -2.3556

    -2.3173

    -2.0047

    -1.452

    -0.5632

    -0.0688

    0.3717

    0.4917

    0.1414

    -0.0622

    -0.0852

    0.0699

    -0.3635

    -0.627

    -0.8636

    -1.1771

    -1.2538

    -0.5296

    -0.4663

    0.1608

    0.678

    0.7768

    0.7419

    0.6944

    0.8976

    0.9687

    1.5113

    1.5603

    1.8372

    1.5178

    1.4416

    1.3942

    1.0033

    0.2741

    0.5197

    -0.3474

    -0.4424

    -0.3944

    -0.0096

    0.0471

    -0.1775

    0.3824

    -0.2993

    -1.5173

    -0.755

    -0.9489

    -0.7833

    -0.5735

    -0.5989

    -0.7558

    -0.4722

    -0.0171

    -0.1959

    0.046

    0.0119

    -0.0538

    0.2486

    0.8506

    1.2438

    1.1247

    0.6177

    1.7487

    1.9645

    2.1324

    2.4596

    2.4747

    2.4387

    2.2295

    2.2767

    1.9904

    1.4617

    0.9273

    0.6674

    0.4937

    0.4713

    0.8169

    0.8659

    sgsim2

    With Coordinates

    4

    X

    Y

    Z

    value

    1000.5936

    2000.5275

    300-0.2965

    4000.1577

    5000.2848

    6000.6227

    7000.6558

    8000.442

    9000.2208

    10000.465

    11000.8762

    12000.2363

    1300-0.435

    1400-0.133

    1500-0.2125

    1600-0.8951

    1700-0.7837

    1800-0.8445

    1900-0.8909

    2000-1.4011

    2100-1.692

    2200-1.9119

    2300-1.9791

    2400-2.3556

    2500-2.3173

    2600-2.0047

    2700-1.452

    2800-0.5632

    2900-0.0688

    30000.3717

    31000.4917

    32000.1414

    3300-0.0622

    3400-0.0852

    35000.0699

    3600-0.3635

    3700-0.627

    3800-0.8636

    3900-1.1771

    4000-1.2538

    4100-0.5296

    4200-0.4663

    43000.1608

    44000.678

    45000.7768

    46000.7419

    47000.6944

    48000.8976

    49000.9687

    50001.5113

    51001.5603

    52001.8372

    53001.5178

    54001.4416

    55001.3942

    56001.0033

    57000.2741

    58000.5197

    5900-0.3474

    6000-0.4424

    6100-0.3944

    6200-0.0096

    63000.0471

    6400-0.1775

    65000.3824

    6600-0.2993

    6700-1.5173

    6800-0.755

    6900-0.9489

    7000-0.7833

    7100-0.5735

    7200-0.5989

    7300-0.7558

    7400-0.4722

    7500-0.0171

    7600-0.1959

    77000.046

    78000.0119

    7900-0.0538

    80000.2486

    81000.8506

    82001.2438

    83001.1247

    84000.6177

    85001.7487

    86001.9645

    87002.1324

    88002.4596

    89002.4747

    90002.4387

    91002.2295

    92002.2767

    93001.9904

    94001.4617

    95000.9273

    96000.6674

    97000.4937

    98000.4713

    99000.8169

    10000.8659

    sgsim2

    Chart1

    0.5936

    0.5438

    0.3403

    0.3118

    0.177

    0.0724

    -0.0727

    -0.2593

    -0.4366

    -0.5906

    -0.7514

    -0.9855

    -1.279

    -1.4325

    -1.5866

    -1.783

    -1.8578

    -1.9078

    -1.8662

    -1.8285

    -1.664

    -1.4779

    -1.2029

    -0.9614

    -0.645

    -0.3743

    -0.1166

    0.1465

    0.2839

    0.3717

    0.3911

    0.2789

    0.1175

    -0.0942

    -0.3226

    -0.6461

    -0.9321

    -1.1868

    -1.4444

    -1.5967

    -1.6236

    -1.7028

    -1.6404

    -1.521

    -1.3997

    -1.2888

    -1.1298

    -0.9455

    -0.766

    -0.5403

    -0.3986

    -0.2383

    -0.1647

    -0.0971

    -0.065

    -0.0846

    -0.231

    -0.2084

    -0.3708

    -0.4502

    -0.5075

    -0.5334

    -0.5851

    -0.6764

    -0.6484

    -0.6891

    -0.8424

    -0.7186

    -0.6902

    -0.6134

    -0.5179

    -0.4099

    -0.3417

    -0.2214

    -0.0497

    0.0297

    0.1633

    0.2888

    0.3976

    0.5497

    0.7574

    0.9406

    1.1117

    1.2199

    1.5456

    1.6924

    1.8764

    2.0477

    2.1671

    2.2438

    2.2295

    2.2628

    2.2223

    2.0857

    1.9421

    1.8058

    1.6406

    1.4705

    1.3448

    1.2119

    sgsim3

    With Coordinates

    4

    X

    Y

    Z

    value

    1000.5936

    2000.5438

    3000.3403

    4000.3118

    5000.177

    6000.0724

    700-0.0727

    800-0.2593

    900-0.4366

    1000-0.5906

    1100-0.7514

    1200-0.9855

    1300-1.279

    1400-1.4325

    1500-1.5866

    1600-1.783

    1700-1.8578

    1800-1.9078

    1900-1.8662

    2000-1.8285

    2100-1.664

    2200-1.4779

    2300-1.2029

    2400-0.9614

    2500-0.645

    2600-0.3743

    2700-0.1166

    28000.1465

    29000.2839

    30000.3717

    31000.3911

    32000.2789

    33000.1175

    3400-0.0942

    3500-0.3226

    3600-0.6461

    3700-0.9321

    3800-1.1868

    3900-1.4444

    4000-1.5967

    4100-1.6236

    4200-1.7028

    4300-1.6404

    4400-1.521

    4500-1.3997

    4600-1.2888

    4700-1.1298

    4800-0.9455

    4900-0.766

    5000-0.5403

    5100-0.3986

    5200-0.2383

    5300-0.1647

    5400-0.0971

    5500-0.065

    5600-0.0846

    5700-0.231

    5800-0.2084

    5900-0.3708

    6000-0.4502

    6100-0.5075

    6200-0.5334

    6300-0.5851

    6400-0.6764

    6500-0.6484

    6600-0.6891

    6700-0.8424

    6800-0.7186

    6900-0.6902

    7000-0.6134

    7100-0.5179

    7200-0.4099

    7300-0.3417

    7400-0.2214

    7500-0.0497

    76000.0297

    77000.1633

    78000.2888

    79000.3976

    80000.5497

    81000.7574

    82000.9406

    83001.1117

    84001.2199

    85001.5456

    86001.6924

    87001.8764

    88002.0477

    89002.1671

    90002.2438

    91002.2295

    92002.2628

    93002.2223

    94002.0857

    95001.9421

    96001.8058

    97001.6406

    98001.4705

    99001.3448

    10001.2119

    sgsim3

  • Isotropic-AnisotropichIsotropichDirection 30 degreesDirection 120 degreesAnisotropicAll Directions

  • Variogram and TrendEast-West DirectionNorth-South DirectionSill = Data VarianceIf possible, remove Trend before computing variogram.Compute variogram in a direction where Trend is not present.Use only the beginning of the variogram curve.Variogram does not reach a sill, instead it keeps increasing above the data variance level(Search radius
  • Reconciling Data and Random FunctionConditional probability densityfunction at location u40Stationary versus conditional distributions (pdf)z(u39) = 1Considering only realizations with zw(u39) = 1StationaryStationaryStationaryConditional

  • Conditional Random FunctionStationary or UnconditionalConditionalConsidering only realizations with z(u39) = 1Local pdf at u40 is a conditional pdfStationaryConditional

  • Stationary Random Function before Observing DataStationarity is lost when Random Function is Conditioned to DataStationary and Conditional Random Functionpdf does notdepend on thelocationpdf does dependon the location=> conditional pdf(n) Set of conditioning data, in this example n=1Away from the data, Stationarity remains

  • Unconditional Stationary Random FunctionData and Random FunctionConditional Stationary Random FunctionUnconditionalRandom VariablesConditionalRandom VariablesConditioned by(n) DataUncertainty is reduced in the vicinity of the data(n)

  • Kriging in a nutshelluSpatial location u = (x,y)Z(u) = property value at location uKriging is a linear estimatorsearching neighborhoodLinear combination of dataLinear combination of random variablesRandom Function Modeln(u) = # of data around location uEstimation Error:is also a R.V.As a R.V., the mean and variance of e(u) can be computed? None-bias condition

  • Kriging in a nutshelln+1 equationsn+1 unknownsMinimum VarianceLinear estimatorConstraintEstimation errorFind weights at min error variance under constraintVariance of estimation errorComputing variance of estimation errorOrdinary KrigingLagrange Multipliern equations1 equation

  • l1l2Error Variance at uol1l2at the minimum error varianceOrdinary Kriging with 2 Random VariablesKriging with 2 Random VariablesEstimatorError Variance

  • Kriging in a nutshellVariogramLag distance hg(h)Semi-VarianceuKriging is a linear estimatorsearching neighborhoodKriged MapKriging=>Minimizing Error Variance Solve a linear system of equationswritten in terms of weights and variograms?

  • Kriging in a nutshellKriged Map

  • Kriging and AnisotropyKriging Omni-directionalInverse distanceKriging Anisotropy 90 DegreeKriging Anisotropy 0 DegreeAzimuth 90Azimuth 0

  • KrigingInverse distanceKriging Anisotropy 90 DegreeKriging Anisotropy 0 DegreeAzimuth 90Azimuth 0

  • Kriging Variance012u0.50.5range = 10Variance = 1l1l2Screening effectl1l2012u0.3320.6683l1l2-416u0.50.5l1l2111155111Not to scale????

  • Kriging Variance012u0.50.5-416u0.50.51155-9111u0.50.51010range = 10Sphericalrange = 10GaussianNot to scaleLess uncertainty with a slow ramping variogram???

  • Estimation-Simulationu_0= Kriging variance = Error varianceSimulation => Draw a Z(u) value at randomUse the minimized error variance to characterize uncertainty around kriged valueThis uncertainty is often assumed to follow a Gaussian distribution=>Multi-Gaussian DatasetLagrange MultiplierLinear combination of Gaussian distributions is also Gaussian

  • Multi-Gaussian DistributionsUnivariate Gaussian (bell shape)Bivariate Gaussian (ellipse)Trivariate Gaussian (ellipsoid) N-variate GaussianN = NX*NY*NZ(hyper-ellipsoid in N dimensions) Gaussian Random Function on a Grid => N-variate Gaussian Distribution => Gaussian Stationary Histogram

  • Making a distribution Gaussian10 1.5 0.5 2 1 2.5 4 3 4.5 3.5 5G=>Standard Gaussian cdfData ZProbability- 0.5-1-1.5 -2 -2.5Normal Scores Yz1y1F=>Data cdf0.90.80.70.60.50.30.20.100.4TransformBack-TransformAssociating kriging mean and kriging variance with Gaussian distribution: =>Multi-Gaussiannity => Data histogram should be Gaussianpcumulative histogramcdf

  • 10 1.5 0.5 2 1 2.5 4 3 4.5 3.5 5Standard Gaussian cdf: p=G(y)Probability- 0.5-1-1.5 -2 -2.5Normal Scores0.90.80.70.60.50.30.20.100.41001Probability values can be generated with a random number generatorpSimulation of Gaussian ValuesMonte Carlo simulation calibrated by Krigingm and s from krigingSimulation at 1 locationRescaling according to kriging

  • Sequential Gaussian SimulationUnivariate Gaussian0112Bivariate GaussianPr{Z1}Z1Z2Z1Pr{Z1}Pr{Z2|Z1}Pr{Z1,Z2} = Pr{Z1}*Pr{Z2|Z1}Multi-Gaussian Distribution as Multiplications of Univariate Gaussian DistributionsZ1 = zZ1 = zZ2 = zz and z are correlatedvalues

  • Sequential Gaussian SimulationTrivariate GaussianPr{Z1}Z1Z2Z3Pr{Z2|Z1}Pr{Z3 |Z2,Z1}Pr{Z1,Z2,Z3} = Pr{Z1}*Pr{Z2|Z1}*Pr{Z3|Z2,Z1}1Z1 = zZ3 = zZ2 = zMulti-Gaussian Distribution as Multiplications of Univariate Gaussian DistributionsPr{Z2,Z3|Z1}z, z, and z are correlated values

  • 012u1 datum, 2 blank grid nodesz0??Sequential Gaussian Simulation

  • Estimation-SimulationDataKriged curveMultiple Geostatistical RealizationsKriged curve = Average of all simulated curvesKriged standard deviation

  • Geostatistical SimulationKriging EstimationKriging SimulationDataKriged map = Average of all simulated maps

  • Geostatistical SimulationDataestimationSimulationsVariogram Reproduction

  • Geostatistical SimulationKrigingDataSimulationHistogram Reproduction

  • Geostatistical SimulationKriging EstimationKriging SimulationOne answerMultiple answersFlow SimulatorFlow SimulatorUncertainty Analysis

  • Co-Kriging in a nutshelluPrimary-HarduThis weight depends oncorrelation hard-softThese weights depend on variogramuSecondary-Soft??

  • Co-KrigingKrigingSoftColocated-Kriging cc=0.7Colocated-Kriging cc=0.9

  • Tutorial Main Steps: 1. Building GridLoad Well TrajectoriesLoad Top DataInterpolating Top with KrigingImporting Thickness DataInterpolating Thickness with KrigingCombining Top and ThicknessDefine the Grid Layers

  • Tutorial Main Steps: 2. Populating GridImport Well Logs for PorositySimulate Porosity Data with GeostatisticsImport and Calibrate Well Test DataSimulate Permeability with Geostatistics

  • Tutorial Final Steps: Automatic WorkflowCreate a Script that will generate multiple versions (cases) and save the datasetsRun and Save the Script

  • Getting StartedStart LauncherSet the data directoryClick and Drag the data file tutorial_start.dat on the Builder Icon

    Open WORD document GeostatisticsTutorial.doc and follow the instructionsPlease, ask questions whenever needed.