gesec r&d inc. semiconductor materials engineering prediction of space degradation of...

8
GESEC R&D Inc. Semiconductor Materials Engineering PREDICTION OF SPACE DEGRADATION OF MULTIJUNCTION SOLAR CELLS J. C. BOURGOIN, S. MAKHAM & G.C. SUN GESEC R&D, 68 av. de la forêt, 77210 Avon, FRANCE .

Upload: eleanor-hubbard

Post on 13-Dec-2015

212 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: GESEC R&D Inc. Semiconductor Materials Engineering PREDICTION OF SPACE DEGRADATION OF MULTIJUNCTION SOLAR CELLS J. C. BOURGOIN, S. MAKHAM & G.C. SUN GESEC

GESEC R&D Inc.Semiconductor Materials Engineering

PREDICTION OF SPACE DEGRADATION OF

MULTIJUNCTION SOLAR CELLS

J. C. BOURGOIN, S. MAKHAM & G.C. SUN

GESEC R&D, 68 av. de la forêt, 77210 Avon, FRANCE .

Page 2: GESEC R&D Inc. Semiconductor Materials Engineering PREDICTION OF SPACE DEGRADATION OF MULTIJUNCTION SOLAR CELLS J. C. BOURGOIN, S. MAKHAM & G.C. SUN GESEC

p

e

p=

e

electron (1 MeV )

proton(EP)P

m

Voc

Isc

Log fluence

A – Semi-empirical method

= 71 /Enl (eV.cm-1) , ( in cm-2)

For GaAs:

Page 3: GESEC R&D Inc. Semiconductor Materials Engineering PREDICTION OF SPACE DEGRADATION OF MULTIJUNCTION SOLAR CELLS J. C. BOURGOIN, S. MAKHAM & G.C. SUN GESEC

Experimental verification

Standard: the degradation curve of Pm corresponding to 1 MeV electron irradiation.

Using GaAs cell NASA data (proton energies from 0,2 to 9,5keV)*:

(*) B.E. Anspaugh Solar Cell Radiation Handbook, JPL Pub, (1996).

104 105 106

10-13

10-12

10-11

10-10

10-9

p-1 (

cm2 )

Enl (eV.cm-1)

108 1010 1012 1014 1016

0,4

0,6

0,8

1,0

No

rmal

ized

Max

imu

m p

ow

er

Particle Fluence (cm-2)

Page 4: GESEC R&D Inc. Semiconductor Materials Engineering PREDICTION OF SPACE DEGRADATION OF MULTIJUNCTION SOLAR CELLS J. C. BOURGOIN, S. MAKHAM & G.C. SUN GESEC

B – Non empirical method

1-Classical calculation of the current-voltage characteristics of each subcell knowing the minority carrier lifetimes τ of the base and emitter for a given fluence φ:

1/= 1/0 + kk: Introduction rate  

n & p : Capture cross sections of minority carriers 

2- Construction of the degradation of the MJ cell from that of each subcell i:

Isc(φ) = minimum (Isci (φ))

Voc (φ) = i (Voci(φ))

Page 5: GESEC R&D Inc. Semiconductor Materials Engineering PREDICTION OF SPACE DEGRADATION OF MULTIJUNCTION SOLAR CELLS J. C. BOURGOIN, S. MAKHAM & G.C. SUN GESEC

Case of a GaInP/GaAs cell (Emcore):

Experimental verification

Page 6: GESEC R&D Inc. Semiconductor Materials Engineering PREDICTION OF SPACE DEGRADATION OF MULTIJUNCTION SOLAR CELLS J. C. BOURGOIN, S. MAKHAM & G.C. SUN GESEC

Necessary knowledge, for both base and emitter for each subcell

k, introduction rate (or concentration kφ).σb, σe, minority capture carrier cross section.τ0e, τ0b, initial lifetimes.thicknesses .Recombination velocities at interfaces.alloy composition x.

Techniques to determine these parameters:

• k DLTS, I-V in dark, electroluminescence.

• x Low temperature electroluminescence.

• τ0e,b I-V under illumination.

Page 7: GESEC R&D Inc. Semiconductor Materials Engineering PREDICTION OF SPACE DEGRADATION OF MULTIJUNCTION SOLAR CELLS J. C. BOURGOIN, S. MAKHAM & G.C. SUN GESEC

Prediction of degradation (2J Emcore)

Page 8: GESEC R&D Inc. Semiconductor Materials Engineering PREDICTION OF SPACE DEGRADATION OF MULTIJUNCTION SOLAR CELLS J. C. BOURGOIN, S. MAKHAM & G.C. SUN GESEC

0,00 0,03 0,06 0,09 0,12 0,15

0

10

20

k (

102 c

m-1)

Enl (107 eV/cm)

Determination of k versus energy