glycocalyx engineering - 東京大学

35
Glycocalyx Engineering LS: Dec 16, 2017 Hiroaki Itoh 1

Upload: others

Post on 26-Oct-2021

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Glycocalyx Engineering - 東京大学

Glycocalyx Engineering

LS: Dec 16, 2017

Hiroaki Itoh

1

Page 2: Glycocalyx Engineering - 東京大学

1-1. Glycocalyx

glycocalyx: a glycoprotein and glycolipid covering the membrane of endothelial cells, bacteria, and other cells.

1) Bennett, H. S. J. Histochem. Cytochem. 1963, 11, 15. 2) Tarbell, J. M.; Cancel, L. M. J. Intern. Med. 2016, 280, 97.

Transmission electron micrographs of the glycocalyx (GCX) on cultured bovine aortic endothelial cells (EC)2)

The term was introduced by Bennett, H. S. in 1963.1)

“sweet husk” (ancient Greeks used the word “sweet” for sugars)

2

Page 3: Glycocalyx Engineering - 東京大学

1-2. Cell Surface Glycoconjugates

1) Pinho, S. S.; Reis, C. A. Nat. Rev. Cancer 2015, 15, 540. 3

Page 4: Glycocalyx Engineering - 東京大学

1-3. Glycosylation Alteration in Cancer Cells

1) Pinho, S. S.; Reis, C. A. Nat. Rev. Cancer 2015, 15, 540.

Several glycoprotein and origosaccharides are known to be overexpressed on cancer cells: e.g. mucin 1 (MUC1) , hyaluronic acid (HA)

4

Page 5: Glycocalyx Engineering - 東京大学

1-4. Issue

The composition of glycocalyx changes markedly cellular functions.

Understanding the biochemical functions of glycocalyx has been insufficient: Why are broad changes in glycosylation and glycoprotein expression critical to cellular functions? How do the changes of glycocalyx cause diseases?

5

Page 6: Glycocalyx Engineering - 東京大学

1-5. Glycocalyx Engineering

1) Saxon, E.; Bertozzi, C. R. Science 2000, 287, 2007. 2) Prescher, J. A.; Dube, D. H.; Bertozzi, C. R. Nature 2004, 430, 873. 3) Paszek, M. J.; DuFort, C. C.; Rossier, O.; Bainer, R.; Mouw, J. K.; Godula, K.; Hudak, J. E.; Lakins, J. N.; Wijekoon, A. C.; Cassereau, L.; Rubashkin, M. G.; Magbanua, M. J.; Thorn, K. S.; Davidson, M. W.; Rugo, H. S.; Park, J. W.; Hammer, D. A.; Giannone, G.; Bertozzi, C. R.; Weaver, V. M. Nature 2014, 511, 319. 4) Xiao, H.; Woods, E. C.; Vukojicic, P.; Bertozzi, C. R. Proc. Natl. Acad. Sci. USA 2016, 113, 10304.

understanding precise functions of glycocalyx

seeking new therapeutic methods4)

bioorthogonal chemical reporters (Staudinger ligation)1,2)

Chemical or enzymatic editing of glycocalyx: potentially applicable to understanding biological functions of glycocalyx and development of therapeutic methods

analysis by using glycoprotein mimetics3)

glycoprotein editing

6

Page 7: Glycocalyx Engineering - 東京大学

1-6. Mucin

1) Hattrup, C. L.; Gendler, S. J. Annu. Rev. Physiol. 2008, 70, 431. 2) Nath, S.; Mukherjee, P. Trends Mol. Med. 2014, 20, 332.

MUC11)

tandem repeat: PDTRPAPGSTAPPAHGVTSA

mucin: a class of modular proteins characterized by the presence of a mucin domain (also called the PTS domain) rich in proline/serine/threonine amino acids.

7

2)

Page 8: Glycocalyx Engineering - 東京大学

1-7. Mucin Mimetics

1) Marcaurelle, L. A.; Shin, Y.; Goon, S.; Bertozzi, C. R. Org. Lett. 2001, 3, 3691. 2) Macmillan, D.; Bertozzi, C. R. Angew. Chem., Int. Ed. 2004, 43, 1355.

To develop simple mimetics for mucin, oxime-linked peptide-sugar conjugates were designed and utilized.

NH

O

R O

R = H or Me

O

AcHNHO

OH OH

NH

O

O

AcHNHO

OH OH

NO

NH

O

O

O

AcHNHO

OH OH

ONH2

+

peptide scaffold1,2) not applicable for larger molecule

(up to 132 residues)2)

8

Page 9: Glycocalyx Engineering - 東京大学

1-7. Mucin Mimetics

macromolecular scaffold

O

AcHNHO

OH OH

ONH2

+N

n

O

n

O

AcHNHO

OH OH

O

9

Page 10: Glycocalyx Engineering - 東京大学

1) Rabuka, D.; Parthasarathy, R.; Lee, G. S.; Chen, X.; Groves, J. T.; Bertozzi, C. R. J. Am. Chem. Soc. 2007, 129, 5462.

1-8. DPPE-Functionalized MVK Polymer

NN

NC

CN

OO

O

O

FFF

FF

F

FF

FF

OO

O

O

O

POH

OO

NH2

DPPE

OO

O

O

O

POH

OO

NH

NN

NC

CNDPPE

O

O

CHCl3/MeOH (3:1)

DPPE-functionalized radical initiator

O, toluene, 95 °C, 24 h

OO

O

O

O

POH

OO

NH NC

O

O

n

DPPE-MVK polymerMw

= 11800, PDI = 1.31

10

Page 11: Glycocalyx Engineering - 東京大学

1-9. Radical Polymerization of MVK Polymer

DPPENC

O

O

n

DPPE-MVK polymerMw

= 11800 (GPC), PDI = 1.31

DPPENC

O

N

n

N

0.03n

O

AcHNHO

OH OH

O HNS

O O

O

N

N+SO3-

Texas Red (TR)

DPPENC

O

N

n

N

0.03n

O

AcHNHO

OH OH

O HNTR

DPPENC

O

N

n

N

0.03n

O

AcHNHO

OOH

O HNTR

O

HOHO

OH OH

aminooxy saccharideTexas Red hydrazideCH3CN/H2O/AcOH95 °C MVK-A

MVK-B

MVK-C

1) Rabuka, D.; Parthasarathy, R.; Lee, G. S.; Chen, X.; Groves, J. T.; Bertozzi, C. R. J. Am. Chem. Soc. 2007, 129, 5462. 11

Page 12: Glycocalyx Engineering - 東京大学

1-10. Binding of Lectins against MVK Polymers

Lectins selectively recognized MVK polymer-conjugated saccharides.

DPPENC

O

N

n

N

0.03n

O

AcHNHO

OH OH

O HNTR

DPPENC

O

N

n

N

0.03n

O

AcHNHO

OH OH

O HNTR

DPPENC

O

N

n

N

0.03n

O

AcHNHO

OOH

O HNTR

O

HOHO

OH OH

glass cover slip

SUV (DOPC/DOTAP = 95:5)/PBS

supported bilayer

MVK polymer FITC-lectin

500 molecules/µm2 MVK-A

MVK-B

MVK-C

HPA

α-linked GalNAc selective

BPA

β-linked GalNAc selective

ECA

LacNAc selective

MVK-C MVK-A MVK-A MVK-B

polymers lectins

1) Rabuka, D.; Parthasarathy, R.; Lee, G. S.; Chen, X.; Groves, J. T.; Bertozzi, C. R. J. Am. Chem. Soc. 2007, 129, 5462. 12

Page 13: Glycocalyx Engineering - 東京大学

1-11. Application of RAFT Polymerization

conventional radical polymerization

RAFT (Reversible Addition Fragmentation chain Transfer) polymerization

monomer

initiator

initiator

RAFT agent

1) Chiefari, J.; Chong, Y. K.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T. P. T.; Mayadunne, R. T. A. ; Meijs, G. F.; Moad, C. L.; Moad, G.; Rizzardo, E.; Thang, S. H. Macromolecules 1998, 31, 5559.

RAFT polymerization was discovered in 1998.1)

13

Page 14: Glycocalyx Engineering - 東京大学

1-11. Application of RAFT Polymerization

1) Moad, G.; Rizzardo, E.; Thang, S. H. Polymer 2008, 49, 1079.

initiator IM (monomer)

Pn

PnXX

ZR

M

+XX

ZRPn

XX

ZRPn +

RM

Pm

PmXX

ZPn

M

+XX

ZPnPm

XX

ZPm + Pn

M

Pn Pm+ dead polymer

dormantpolymericcompound

propagatingradical

dormantpolymericcompound

propagatingradical

1. initiation

2. reversible chain transfer

3. reinitiation

4. chain equilibration

5. termination

14

Page 15: Glycocalyx Engineering - 東京大学

2-1. Adhesion Sites of Cells

1) Sun, Z.; Guo, S. S.; Fässler, R. J. Cell Biol. 2016, 215, 1. 2) Desgrosellier, J. S.; Cheresh, D. A. Nat. Rev. Cancer 2010, 10, 9.

Integrins connect the ECM with intracellular actin cytoskeleton. Several observation indicated that integrin is involved with tumor cell survival,

migration, invasion, and proliferation.2)

1)

15

Page 16: Glycocalyx Engineering - 東京大学

2-2. RAFT Polymers for the Analysis

1) Paszek, M. J.; DuFort, C. C.; Rossier, O.; Bainer, R.; Mouw, J. K.; Godula, K.; Hudak, J. E.; Lakins, J. N.; Wijekoon, A. C.; Cassereau, L.; Rubashkin, M. G.; Magbanua, M. J.; Thorn, K. S.; Davidson, M. W.; Rugo, H. S.; Park, J. W.; Hammer, D. A.; Giannone, G.; Bertozzi, C. R.; Weaver, V. M. Nature 2014, 511, 319.

chain length was estimated from MM2 force field-based molecular mechanics prediction, DLS, and TEM.

O

C12H25 S

SDPPE

OACVA, 2-butanone, 65 °C

C12H25 S

SDPPE

O

O

n

H2NSH

DMFHS DPPE

O

O

n

O

O

SO3-

H2NSO3

-

NH

CO2-

N

O

O

5

AF488-maleimide

1. AF488-maleimide DMF

2.

THF/pH 5.5 NaOAc buffer 50 °C

O

AcHNHO

OH OH

ONH2

S DPPE

O

N

nN

O

O5

O

O

-O3S

NH2

-O3S

HN-O2C

O

AcHNHO

OH OH

O

short (85%, Mw = 2802, PDI = 1.25, n = 25)medium (85%, Mw = 17749, PDI = 1.19, n = 238)long (82%, Mw = 45454, PDI = 1.33, n = 634)

quant.

mutin mimetic

short

medium

long

yield/%

70

76

93

GalNAc loading/%

92

90

89

Mw

8700

64900

168900

AF488/polymer

0.7

0.6

0.5

estimated length/nm

3

30

80

16

Page 17: Glycocalyx Engineering - 東京大学

2-3. Integrin Clustering Driven by Glycopolymer

1) Paszek, M. J.; DuFort, C. C.; Rossier, O.; Bainer, R.; Mouw, J. K.; Godula, K.; Hudak, J. E.; Lakins, J. N.; Wijekoon, A. C.; Cassereau, L.; Rubashkin, M. G.; Magbanua, M. J.; Thorn, K. S.; Davidson, M. W.; Rugo, H. S.; Park, J. W.; Hammer, D. A.; Giannone, G.; Bertozzi, C. R.; Weaver, V. M. Nature 2014, 511, 319.

cells: glycopolymer (3 nm or 80 nm)-introduced non-malignant mammary epithelial cell (MCF-10A) vinculin: adapter protein

Longer glycopolymer are excluded from the sites of integrin adhesion.

scale bar: 3 µm

17

Page 18: Glycocalyx Engineering - 東京大学

2-4. Integrin Clustering Driven by MUC1

1) Paszek, M. J.; DuFort, C. C.; Rossier, O.; Bainer, R.; Mouw, J. K.; Godula, K.; Hudak, J. E.; Lakins, J. N.; Wijekoon, A. C.; Cassereau, L.; Rubashkin, M. G.; Magbanua, M. J.; Thorn, K. S.; Davidson, M. W.; Rugo, H. S.; Park, J. W.; Hammer, D. A.; Giannone, G.; Bertozzi, C. R.; Weaver, V. M. Nature 2014, 511, 319.

scale bar: 3 µm [region of interest (ROI): 1.5 µm] Full-length MUC1 enhanced the size of adhesion clusters/total adhesion area.

18

Page 19: Glycocalyx Engineering - 東京大学

2-5. sptPALM

1) Huang, B.; Babcock, H.; Zhuang, X. Cell 2010, 143, 1047. 19

405 nm activation repeat

live cell

Gaussian fitting

sptPALM: single particle tracking photoactivated localization microscopy

1)

smallest resolvable distance: δ = 0.61λ/NA

If λ = 500 nm, NA = 1.45 (oil immersion):

δ = 210 nm

Page 20: Glycocalyx Engineering - 東京大学

2-6. Integrin Dynamics on Cell Surface

1) Paszek, M. J.; DuFort, C. C.; Rossier, O.; Bainer, R.; Mouw, J. K.; Godula, K.; Hudak, J. E.; Lakins, J. N.; Wijekoon, A. C.; Cassereau, L.; Rubashkin, M. G.; Magbanua, M. J.; Thorn, K. S.; Davidson, M. W.; Rugo, H. S.; Park, J. W.; Hammer, D. A.; Giannone, G.; Bertozzi, C. R.; Weaver, V. M. Nature 2014, 511, 319.

Immobilized integrin in MEF expressing high MUC1 was restricted to sites of adhesion.

cells: mouse embryotic fibroblast (MEF) expressing paxillin-GFP or MUC1-GFP/mEOS2-fused β3 integrin, scale bar: 3 µm

20

Page 21: Glycocalyx Engineering - 東京大学

1) Paszek, M. J.; DuFort, C. C.; Rossier, O.; Bainer, R.; Mouw, J. K.; Godula, K.; Hudak, J. E.; Lakins, J. N.; Wijekoon, A. C.; Cassereau, L.; Rubashkin, M. G.; Magbanua, M. J.; Thorn, K. S.; Davidson, M. W.; Rugo, H. S.; Park, J. W.; Hammer, D. A.; Giannone, G.; Bertozzi, C. R.; Weaver, V. M. Nature 2014, 511, 319.

2-7. Strained Glycoprotein by Integrin Adhesion

Highest FRET efficiency was observed in the sites of adhesive contact.

FRET efficiency/% = [1-(Ipre- Bpre)/(Ipost - Bpost)] x 100 Ipre: CFP intensity before bleaching YFP Bpre : CFP channel background before bleaching YFP Ipost: CFP intensity after bleaching YFP Bpost : CFP channel background after bleaching YFP

42 tandem repeat

vinc.: vinculin

“MUC1-based strain gauge” cells: MCF-10A

21

Page 22: Glycocalyx Engineering - 東京大学

2-8. Bulky Glycoproteins in CTCs

1) Paszek, M. J.; DuFort, C. C.; Rossier, O.; Bainer, R.; Mouw, J. K.; Godula, K.; Hudak, J. E.; Lakins, J. N.; Wijekoon, A. C.; Cassereau, L.; Rubashkin, M. G.; Magbanua, M. J.; Thorn, K. S.; Davidson, M. W.; Rugo, H. S.; Park, J. W.; Hammer, D. A.; Giannone, G.; Bertozzi, C. R.; Weaver, V. M. Nature 2014, 511, 319.

Bulky glycoproteins were highly expressed in patients with circulating tumor cells (CTCs).

MUC1 was confirmed to be highly expressed in CTCs

isolated from 18 breast cancer patients.

22

Page 23: Glycocalyx Engineering - 東京大学

2-9. Bulky Glycoproteins Promote Survival of CTCs

1) Paszek, M. J.; DuFort, C. C.; Rossier, O.; Bainer, R.; Mouw, J. K.; Godula, K.; Hudak, J. E.; Lakins, J. N.; Wijekoon, A. C.; Cassereau, L.; Rubashkin, M. G.; Magbanua, M. J.; Thorn, K. S.; Davidson, M. W.; Rugo, H. S.; Park, J. W.; Hammer, D. A.; Giannone, G.; Bertozzi, C. R.; Weaver, V. M. Nature 2014, 511, 319.

Cell death (MCF-10A) was reduced by long glycopolymer (80 nm) and MUC1 (∆CT).

Growth and survival phenotype requires integrin signaling through FAK

cells: MCF-10A soft ECM: soft polyacrylamide (Young’s modulus E = 140 Pa) functionalized with fibronectin, mimicking soft sites of colonization (e.g. lung or brain)

23

Page 24: Glycocalyx Engineering - 東京大学

2-10. Integrin-GCX-Mediated Mechanotransduction

1) Paszek, M. J.; DuFort, C. C.; Rossier, O.; Bainer, R.; Mouw, J. K.; Godula, K.; Hudak, J. E.; Lakins, J. N.; Wijekoon, A. C.; Cassereau, L.; Rubashkin, M. G.; Magbanua, M. J.; Thorn, K. S.; Davidson, M. W.; Rugo, H. S.; Park, J. W.; Hammer, D. A.; Giannone, G.; Bertozzi, C. R.; Weaver, V. M. Nature 2014, 511, 319.

Bulky glycocalyx component can physically influence receptor organization such as integrin clustering and the activity.

24

Page 25: Glycocalyx Engineering - 東京大学

3-1. Siglec-Based Immunoevasion

1) Hudak, J. E.; Canham, S. M.; Bertozzi, C. R. Nat. Chem. Biol. 2014, 10, 69.

Upregulation of sialic acid on the surface of cancer cells is known to lead to decresed immunogenicity and natural killer (NK) cell resistance

Molecular details between hypersialylation and immunoevasion remains to be solved.

concept: remodeling sialylation status of cancer cell surface by glycopolymer

25

Page 26: Glycocalyx Engineering - 東京大学

1) Hudak, J. E.; Canham, S. M.; Bertozzi, C. R. Nat. Chem. Biol. 2014, 10, 69. 2) Hudak, J. E.; Yu, H. H.; Bertozzi, C. R. J. Am. Chem. Soc. 2011, 133, 16127.

3-2. Origosaccharide Panel

DPPENC

O

N

n

DPPE-MVK-oxime polymerMw

= 26000, PDI = 2.89

X

O

AcHNHO

OH OH

O

GalNAc

O

acetic acid

HO

OO

glycerol

OHHOO

OHHOO

OH

lactose

OO

OHHO

OHOH

O

HO

CO2H

O

OH

OHHO

AcHN

Sia

O

NHAcHOO

OH

OO

OHHO

OOHO

HO

CO2HOH

OHHO

AcHN

2,6-SiaLacNAc 2,3-SiaLacNAc

O

NHAcHOO

OH

OO

OHO

OHOH

O

HO

CO2HOH

OHHO

AcHN

O

OHHOO

OH

OO

OHO

OHOH

O

HO

CO2HHOO

HOAcHN

GD3

O

HO

CO2HOH

OHHO

AcHNO

NHAcO

OOH

OO

OHO

OHOH

O

HO

CO2HOH

OHHO

AcHN

O

OHHO

OH

SiaLex

X =

26

Various aminooxy glycans were prepared by chemical/chemoenzymatic synthesis.2)

1)

Page 27: Glycocalyx Engineering - 東京大学

3-3. Protection Effect of Glycopolymer

1) Hudak, J. E.; Canham, S. M.; Bertozzi, C. R. Nat. Chem. Biol. 2014, 10, 69.

: sialic acid-conjugated polymer

cells: Jurkat cells polymer conc.: 1 µM incubation: 4 h with purified NK cells (effector/target = 3:1) Siglec-7-Fc: soluble siglec-7-Fc chimera protein (detected on flow cytometry, labelled by anti-human Fc-647)

Sia polymer exhibited the strongest protection against NK-mediated killing.

27

Page 28: Glycocalyx Engineering - 東京大学

3-4. Protection Effect of Glycopolymer

1) Hudak, J. E.; Canham, S. M.; Bertozzi, C. R. Nat. Chem. Biol. 2014, 10, 69.

Protection effect was diminished by Siglec-7 blocking antibody. Protection was dependent on the Sia polymer density.

cells: Jurkat cells incubation: 4 h with purified NK cells (effector/target = 4:1)

28

Page 29: Glycocalyx Engineering - 東京大学

3-5. Recruiting Siglec-7 by Sia Polymer

1) Hudak, J. E.; Canham, S. M.; Bertozzi, C. R. Nat. Chem. Biol. 2014, 10, 69.

Recruiting Siglec-7 by Sia polymer was observed.

cells: Jurkat cells/NK cells, fixed and stained by antibodies polymer: Alexa-Fluor 488-Sia polymers scale bar: 10 µm

29

Page 30: Glycocalyx Engineering - 東京大学

3-6. Reduced NK Cell-Promoted Cytotoxicity

1) Hudak, J. E.; Canham, S. M.; Bertozzi, C. R. Nat. Chem. Biol. 2014, 10, 69.

cells: Jurkat cells treated with Sia polymer/NK-92 cells overexpressing Flag-tagged Siglec-7 anti-pY: anti-phosphotyrosine antibody NK-92 cells: highly cytotoxic human NK line exhibiting low expression of inhibitory receptors

NK-92 cells expressing Siglec-7 were susceptible to Sia polymer inhibition.

30

Page 31: Glycocalyx Engineering - 東京大学

3-7. Protection of Xenogeneic and Allogeneic Cells

1) Hudak, J. E.; Canham, S. M.; Bertozzi, C. R. Nat. Chem. Biol. 2014, 10, 69.

Addition of Sia polymer reduced NK-induced cytotoxicity against xenogenic porcine and allogenic hematopoietic stem cells.

31

CD34+ HSC from bone marrow pig aortic epithelial cells

Page 32: Glycocalyx Engineering - 東京大学

4-1. Synthesis of T-Sia for Glycocalyx Editing

1) Xiao, H.; Woods, E. C.; Vukojicic, P.; Bertozzi, C. R. Proc. Natl. Acad. Sci. 2016, 113, 10304.

Sialidase-conjugated trastuzumab (Tras) was prepared for glycocalyx editing.

Tras-N3: light chain 23 kDa/heavy chain 50 kDa T-Sia: light chain 23 kDa/conjugated heavy chain 134 kDa

32

Page 33: Glycocalyx Engineering - 東京大学

4-2. Glycocalyx Editing by T-Sia

1) Xiao, H.; Woods, E. C.; Vukojicic, P.; Bertozzi, C. R. Proc. Natl. Acad. Sci. 2016, 113, 10304.

cells: coculturing SKBR3 (HER2+++)/MDA-MB-468 (HER2-negative) staining: FITC-conjugated Sambucus nigra agglutinin (SNA, recognition of sialic acid)/Alexa Fluor 647-labeled anti-HER2 (HER2)

T-Sia (6 nM) selectively desialylated HER-2-positive cells. 33

Page 34: Glycocalyx Engineering - 東京大学

4-3. T-Sia Enhances NK-Promoted Cytotoxicity

1) Xiao, H.; Woods, E. C.; Vukojicic, P.; Bertozzi, C. R. Proc. Natl. Acad. Sci. 2016, 113, 10304.

HER2+++ HER2+

HER2+ HER2-negative

T-Sia was more potent than Tras alone in NK-mediated cell killing against the cell lines expressing lower levels of HER2.

NK cells/target cells = 4:1

34

Page 35: Glycocalyx Engineering - 東京大学

5. Summary and Future Perspective

Understanding the functions of glycocalyx by using the glycomimetics was valuable in the context of glycobiology.

Seeking of the methods for editing glycocalyx on cancer cells potentially enables us to develop new cancer therapeutic methods.

35