good lecture for est theory

Upload: kashif-abbas

Post on 06-Jul-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/18/2019 Good Lecture for Est Theory

    1/99

    Chapter 5

    Estimation Theory and Applications

    References:

    S.M.Kay, Fundamentals of Statistical Signal Processing: EstimationTheory, Prentice Hall, 1993 

    1

  • 8/18/2019 Good Lecture for Est Theory

    2/99

    Estimation Theory and Applications 

     Application Areas

    1. Radar  

    Radar system transmits an electromagnetic pulse )(n s . It is reflected by

    an aircraft, causing an echo )(nr   to be received after 0τ  seconds:)()((   nwn snr    +τ−) 0α=  

    where the range  of the aircraft is related to the time delay by

    c/20 =τ  

    2

  • 8/18/2019 Good Lecture for Est Theory

    3/99

     

    3

  • 8/18/2019 Good Lecture for Est Theory

    4/99

    2. Mobile Communications 

    The position of the mobile terminal can be estimated using the time-of-arrival measurements received at the base stations.

    4

  • 8/18/2019 Good Lecture for Est Theory

    5/99

  • 8/18/2019 Good Lecture for Est Theory

    6/99

    Differences from Detection

    1. Radar  

    Radar system transmits an electromagnetic pulse )(n s . After some time,

    it receives a signal )(nr  . The detection problem is to decide whether )(nr   

    isecho from an object or it is not an echo 

    6

  • 8/18/2019 Good Lecture for Est Theory

    7/99

     

    7

  • 8/18/2019 Good Lecture for Est Theory

    8/99

    2. Communications

    In wired or wireless communications, we need to know the informationsent from the transmitter to the receiver.

    e.g., for binary phase shift keying (BPSK) signals, it consists of only two

    symbols, “0” or “1”. The detection problem is to decide whether it is “0” or“1”.

    8

  • 8/18/2019 Good Lecture for Est Theory

    9/99

  • 8/18/2019 Good Lecture for Est Theory

    10/99

  • 8/18/2019 Good Lecture for Est Theory

    11/99

    4. Image Processing 

    Fingerprint authentication: given a fingerprint image and his owner sayshe is “A”, we need to verify if it is true or not

    Other biometric examples include face authentication, iris authentication,

    etc.

    11

  • 8/18/2019 Good Lecture for Est Theory

    12/99

    5. Biomedical Engineering 

    17 Jan. 2003, Hong Kong Economics Times 

    e.g., given some X-ray slides, the detection problem is to determine if shehas breast cancer or not

    6. Seismology 

    To detect if there is oil or there is no oil at a region

    12

  • 8/18/2019 Good Lecture for Est Theory

    13/99

  • 8/18/2019 Good Lecture for Est Theory

    14/99

    Estimate the value of resistance from a set of voltage and current

    readings:1,,1,0],[][][],[][][ 2actual1actual   −=+=+=   nnwn I n I nwnV nV    L  

    Given pairs of (   ][],[   n I nV  ), we need to estimate the resistance ,

    ideally,  I V  /=  

    ⇒ the parameter is not directly observed in the received signals

    Estimate the position of the mobile terminal using time-of-arrival

    measurements:

    1,,1,0],[)()(

    ][

    22

    −=+−−−

    =   N nnwc

     y y x xnr 

      n sn sL  

    Given ][nr  , we need to find the mobile position (  s s   y x   , ) where is thesignal propagation speed and (

    c

    nn x   , ) represent the known position of

    the nth base station

    ⇒ the parameters are not directly observed in the received signals

    14

  • 8/18/2019 Good Lecture for Est Theory

    15/99

  • 8/18/2019 Good Lecture for Est Theory

    16/99

    Parameter is unknown deterministic or random

    Unknown deterministic: constant but unknown (classical)DC value is an unknown constant

    Random : random variable with prior knowledge ofPDF (Bayesian)If we have prior knowledge that the DC valueis bounded by 0−  and 0 with a particularPDF ⇒ better estimate

    Parameter is stationary or changing

    Stationary : Unknown deterministic for whole observationperiod, time-of-arrivals of a static source

    Changing : Unknown deterministic at different timeinstants, time-of-arrivals of a moving source

    16

  • 8/18/2019 Good Lecture for Est Theory

    17/99

    Performance Measures for Classical Parameter Estimation

     Accuracy:

    Is the estimator biased or unbiased?

    e.g., 1,,1,0],[][   −=+=   nnwn x  L

     

    where is a zero-mean random noise with variance][nw   2wσ 

    Proposed estimators:

    ]0[ˆ1   x A   =  

    ][1ˆ  1

    02   n x

     N  A

     N 

    n∑=

      −

    ][1

    1ˆ   1

    03   n x

     N  A

    n∑

    −=   −

     N  N  N 

    n

     N  x x xn x A   ]1[]1[]0[][ˆ1

    0

    4   −⋅=∏=−

    =

    L  

    17

  • 8/18/2019 Good Lecture for Est Theory

    18/99

    Biased :  A A E    ≠}ˆ{

    Unbiased :  A A E    =}ˆ{ Asymptotically unbiased : only if A A E    =}ˆ{   ∞→  

    Taking the expected values for , and , we have1ˆ A 2

    ˆ A 3ˆ A

      A Aw E  A E  x E  A E    =+=+==   0]}0[{}{]}0[{}ˆ{ 1  

     A N 

     A N  N 

    nw E  N 

     A N 

    nw N  E  A N  E n x N  E  A E 

     N 

    n

     N 

    n

     N 

    n

     N 

    n

     N 

    n

     N 

    n

    =∑+⋅⋅=∑+∑=

    ∑+

    ∑=

    ∑=−

    =

    =

    =

    =

    =

    =

    011

    ]}[{11

    ][

    11

    ][

    1

    }ˆ{

    1

    0

    1

    0

    1

    0

    1

    0

    1

    0

    1

    02

     

     A A N 

     A E    ⋅−

    =⋅−

    =/11

    1

    1}ˆ{ 3  

    Q. State the biasedness of , and .1ˆ

     A 2ˆ

     A 3ˆ

     A

     

    18

  • 8/18/2019 Good Lecture for Est Theory

    19/99

    For , it is difficult to analyze the biasedness. However, for4ˆ A   0][   =nw :

     A A A A A N  x x x  N    N  N  N  ==⋅=−⋅   LL   ]1[]1[]0[  

    What is the value of the mean square error  or variance?

    They correspond to the fluctuation of the estimate in the second order:

    })ˆ{(MSE   2 A A E    −=   (5.1)

    }})ˆ{ˆ{(var    2 A E  A E    −=   (5.2):

    If the estimator is unbiased, then MSE = var

    19

  • 8/18/2019 Good Lecture for Est Theory

    20/99

  • 8/18/2019 Good Lecture for Est Theory

    21/99

     An optimum estimator should give estimates which are

    Unbiased Minimum variance (MSE as well)

    Q. How do we know the estimator has the minimum variance? 

    Cramer-Rao Lower Bound (CRLB)

    Performance bound in terms of minimum achievable variance provided by

    any unbiased estimators

    Use for classical parameter estimation

    Require knowledge of the noise PDF and the PDF must have closed form

    More easier to determine than other variance bounds

    21

  • 8/18/2019 Good Lecture for Est Theory

    22/99

    Let the parameters to be estimated be T ],,,[ 21   θθθ=   Lθ , the CRLB for

    θ  in Gaussian noise is stated as followsi 

    [ ] iiiii   ,1

    ,   )()()CRLB(   θIθJ  −==θ   (5.4)

    where

    θ∂

    θ∂θ∂

    θ∂

    θ∂θ∂

    θ∂θ∂

    θ∂θ∂

    θ∂

    =

    2

    2

    1

    2

    22

    2

    12

    2

    1

    2

    21

    2

    21

    2

    );(ln);(ln

    );(ln);(ln

    );(ln);(ln);(ln

    )(

     P  P 

     P 

     p E 

     p E 

     p E 

     p E 

     p E 

     p E 

     p E 

    θx-

    θx-

    θx-

    θx-

    θx-

    θx-

    θx-

    θI

    OM

    L

      (5.5)

    22

  • 8/18/2019 Good Lecture for Est Theory

    23/99

  • 8/18/2019 Good Lecture for Est Theory

    24/99

    Review of Gaussian (Normal) Distribution

    The Gaussian PDF for a scalar random variable is defined as x 

     

     

     

     µ−

    σ

    πσ

    =   222

    )(

    2

    1exp

    2

    1)(   x x p   (5.6)

    We can write ),(~   σµ N  x  

    The Gaussian PDF for a random vector of sizex  is defined as

      

       −⋅⋅−−

    π=   )()(

    2

    1exp

    )(det)2(

    1)(   1

    2/12/  µxCµx

    Cx

      -T 

     N  p   (5.7)

    We can write ),(~   Cµx  

    24

  • 8/18/2019 Good Lecture for Est Theory

    25/99

    The covariance matrix has the form ofC 

    µ−−µ−−µ−

    µ−µ−

    µ−−µ−µ−

    =

    −⋅−=

    −−

    })]1[{()}]1[)(]0[{(

    )}]1[)(]0[{(

    )}]1[)(]0[{(})]0[{(

    })(){(

    2110

    1010

    2

    0

     N  N 

     N 

     N  x E  N  x x E 

     x x E 

     N  x x E  x E 

     E 

    L

    M

    MO

    L

    µxµxC

     

    (5.8)

    whereT  N  x x x   ]]1[,],1[],0[[   −=   Lx  

    T  N  E    ]],,,[}{ 110   −µµµ==   Lxµ  

    25

  • 8/18/2019 Good Lecture for Est Theory

    26/99

    If is a zero-mean white vector and all vector elements have variancex   2σ

     

     N T  E    IµxµxC   ⋅σ=

    σ

    σ

    σ

    =−⋅−=   2

    2

    2

    2

    00

    0

    0

    00

    })(){(

    L

    OM

    M

    L

     

    The Gaussian PDF for the random vector can be simplified asx

     

     

      

     ∑

    σ−

    πσ=

      −

    =][

    2

    1exp

    )2(

    1)(   2

    1

    022/2

      n x p N 

    n N 

    x   (5.9)

    with the use of

     N -

    IC   ⋅σ=   −21   N  N    22 )(det   σ=σ=(C)  

    26

  • 8/18/2019 Good Lecture for Est Theory

    27/99

    Example 5.1

    Determine the PDF of

    ]0[]0[   w x   +=  and

    1,,1,0],[][   −=+=   nnwn x   L  

    where { } is a white Gaussian process with known variance and)(nw   2wσ  

    is a constant

     

      

     −

    σ−

    πσ=   2

    22)]0[(

    2

    1exp

    2

    1)];0[(   A x A x p

    ww

     

     

     

     −∑

    σ−

    πσ=

      −

    =

    21

    022/2  )][(

    2

    1exp

    )2(

    1)(   An x;A p

     N 

    nw N 

    w

    x  

    27

  • 8/18/2019 Good Lecture for Est Theory

    28/99

    Example 5.2

    Find the CRLB for estimating based on single measurement:

    ]0[]0[   w x   +=  

    22

    2

    22

    22

    2

    2

    22

    1))];0[(ln(

    )]0[(1)]0[(2

    2

    1))];0[(ln(

    )]0[(2

    1

    )2ln())];0[(ln(

    )]0[(2

    1exp

    2

    1)];0[(

    w

    ww

    ww

    ww

     A

     A x p

     A x A x

     A

     A x p

     A x A x p

     A x A x p

    σ−=

    ∂⇒

    σ

    −=−⋅−⋅

    σ−=

    ∂∂

    −σ−πσ−=⇒

     

      

     −

    σ−

    πσ=

     

    28

  • 8/18/2019 Good Lecture for Est Theory

    29/99

     As a result,

    22

    2

    1))];0[(ln(w A

     A x p E σ−=

    ∂∂ 

    2

    2

    2

    )CRLB(

    )(

    1

    )()(

    w

    w

    w

     A

     A J 

     A I  A

    σ=⇒

    σ=⇒

    σ==I

     

    This means the best we can do is to achieve estimator variance = or2wσ 

    2)ˆvar( w A   σ≥  

    where ˆ  is any unbiased estimator for estimating

    29

  • 8/18/2019 Good Lecture for Est Theory

    30/99

    We also observe that a simple unbiased estimator

    ]0[ˆ1   x A   =  

    achieves the CRLB:

    222221   ]}0[{})]0[{(})]0[{(})

    ˆ{( ww E  Aw A E  A x E  A A E    σ==−+=−=−  

    Example 5.3

    Find the CRLB for estimating based on measurements:

    1,,1,0],[][   −=+=   nnwn x   L  

     

     

     −∑

    σ−

    πσ=

      −

    =

    21

    022/2  )][(

    2

    1exp

    )2(

    1)(   An x;A p

     N 

    nw N 

    w

    x  

    30

  • 8/18/2019 Good Lecture for Est Theory

    31/99

    22

    2

    2

    1

    01

    02

    21

    02

    2/2

    21

    022/2

    ));(ln(

    )][(

    1)][(22

    1));(ln(

    )][(2

    1))2ln(());(ln(

    )][(

    2

    1exp

    )2(

    1);(

    w

    w

     N 

    n N 

    nw

     N 

    nw

     N w

     N 

    nw N w

     N 

     A

     A p

     An x

     An x A

     A p

     An x A p

     An x A p

    σ−=

    ∂∂⇒

    σ

    −∑=−⋅−∑⋅⋅

    σ−=

    ∂∂

    −∑σ

    −πσ−=⇒

     

     

     

     −∑

    σ

    πσ

    =

    =−

    =

    =

    =

    x

    x

    x

    x

     

    22

    2 ));(ln(

    w

     N 

     A

     A p E 

    σ−=

    ∂⇒

      x 

    31

  • 8/18/2019 Good Lecture for Est Theory

    32/99

     As a result,

     A

     N  A J 

     A I  A

    w

    w

    w

    2

    2

    2

    )CRLB(

    )(

    )()(

    σ=⇒

    σ

    =⇒

    σ==I

     

    This means the best we can do is to achieve estimator variance =

    or

     N w /2σ

     

     A   w2

    )ˆvar(   σ≥  

    where ˆ  is any unbiased estimator for estimating

    32

  • 8/18/2019 Good Lecture for Est Theory

    33/99

    We also observe that a simple unbiased estimator

    ]0[ˆ1   x A   =  does not achieve the CRLB

    22222

    1   ]}0[{})]0[{(})]0[{(})ˆ

    {( ww E  Aw A E  A x E  A A E    σ==−+=−=−  

    On the other hand, the sample mean estimator

    ][1ˆ  1

    02   n x

     N  A

     N 

    n∑=

      −

    achieve the CRLB

     N nw E  N  An x N  E  A A E   w

     N 

    n

     N 

    n

    22

    1

    0

    21

    0

    22   ][

    1

    ][

    1

    })ˆ{(

      σ

    =

    ∑=

     

     

     

     

    −∑=−

      −

    =

    =  

    ⇒  sample mean is the optimum estimator for white Gaussian noise

    33

  • 8/18/2019 Good Lecture for Est Theory

    34/99

    Example 5.4

    Find the CRLB for and given2wσ   ]}[{   n x :

    1,,1,0],[][   −=+=   nnwn x   L  

    2

    1

    01

    02

    21

    02

    2

    21

    02

    2/2

    221

    022/2

    )][(

    1)][(22

    1));(ln(

    )][(2

    1)ln(

    2)2ln(

    2

    )][(

    2

    1))2ln(());(ln(

    ,)][(2

    1exp)2(

    1);(

    w

     N 

    n N 

    nw

     N 

    nw

    w

     N 

    nw

     N w

    w N 

    nw N 

    w

     An x

     An x A

     p

     An x N  N 

     An x p

     A, An x p

    σ

    −∑=−⋅−∑⋅⋅

    σ−=

    ∂∂

    −∑σ

    −σ−π−=

    −∑

    σ

    −πσ−=⇒

    σ=  

       −∑

    σ−

    πσ=

    −=

    =

    =

    =

    −=

    θx

    θx

    ][θθx

     

    34

  • 8/18/2019 Good Lecture for Est Theory

    35/99

    0

    ]})[{());(ln(

    ])[()][());(ln(

    ));(ln(

    ));(ln(

    4

    1

    02

    2

    4

    1

    04

    1

    02

    2

    22

    2

    22

    2

    ∑−=

    σ∂∂

    ∂⇒

    σ

    ∑−=

    σ

    −∑−=

    σ∂∂

    ∂⇒

    σ−=

    ∂⇒

    σ

    −=

    ∂⇒

    =

    =

    =

    w

     N 

    n

    w

    w

     N 

    n

    w

     N 

    n

    w

    w

    w

    nw E 

     A

     p E 

    nw An x

     A

     p

     N 

     A

     p E 

     N 

     A

     p

    θx

    θx

    θx

    θx

     

    35

  • 8/18/2019 Good Lecture for Est Theory

    36/99

    4

    2

    6422

    2

    21

    06422

    2

    21

    0422

    21

    0

    2

    2

    2

    1

    2)(

    ));(ln(

    ])[(1

    2)(

    ));(ln(

    )][(2

    1

    2

    ));(ln(

    )][(

    2

    1)ln(

    2

    )2ln(

    2

    ));(ln(

    wwwww

     N 

    nwww

     N 

    nwww

     N 

    nw

    w

     N  N 

     N  p E 

    nw N  p

     An x N  p

     An x N  N 

     p

    σ−=σ⋅

    σ−

    σ=

    σ∂

    ∂⇒

    ∑σ

    −σ

    =σ∂

    ∂⇒

    −∑σ

    −=σ∂

    ∂⇒

    −∑

    σ

    −σ−π−=

    −=

    =

    =

    θx

    θx

    θx

    θx

     

    σ

    σ=4

    2

    20

    0

    )(

    w

    w N 

     N 

    θI  

    36

  • 8/18/2019 Good Lecture for Est Theory

    37/99

    σ

    σ

    ==   N w

    w

    - 4

    2

    12

    0

    0

    )()(   θIθJ  

     N  A

    ww

    w

    42

    2

    2)CRLB(

    )CRLB(

    σ=σ⇒

    σ=⇒ 

    ⇒ the CRLBs for unknown and known noise power are identical

    Q. The CRLB is not affected by knowledge of noise power. Why?

    Q. Can you suggest a method to estimate ? 2wσ 

    37

  • 8/18/2019 Good Lecture for Est Theory

    38/99

    Example 5.5

    Find the CRLB for phase of a sinusoid in white Gaussian noise:

    1,,1,0],[)cos(][ 0   −=+φ+ω=   nnwnn x   L  

    where and are assumed known0ω The PDF is

    2

    0

    1

    02

    2/2

    20

    1

    022/2

    ))cos(][(2

    1

    ))2ln(());(ln(

    ))cos(][(2

    1exp

    )2(

    1);(

    φ+ω−∑σ−πσ−=φ⇒

     

      

     φ+ω−∑

    σ−

    πσ=φ

    =

    =

    n An x p

    n An x p

     N 

    nw

     N 

    w

     N 

    nw N 

    w

    x

    x

     

    38

  • 8/18/2019 Good Lecture for Est Theory

    39/99

    φ+ω−φ+ω∑

    σ−=

    φ+ω−⋅−⋅φ+ω−∑

    σ

    −=

    φ∂

    φ∂

    =

    =

    )22sin(2

    )sin(][

    )sin())cos(][(2

    2

    1));(ln(

    00

    1

    02

    00

    1

    0

    2

    n A

    nn x A

    n An An x p

     N 

    nw

     N 

    nw

    x

     

    [ ])22cos()cos(][));(ln( 001

    022

    2

    φ+ω−φ+ω∑σ

    −=φ∂

    φ∂  −

    =n Ann x A p

      N 

    nw

    x  

    [ ]

    [ ]

    φ+ω−φ+ω+∑

    σ−=

    φ+ω−φ+ω∑σ

    −=

    φ+ω−φ+ω⋅φ+ω∑

    σ

    −=

    φ∂

    φ∂

    =

    =

    =

    )22cos()22cos(2

    1

    2

    1

    )22cos()(cos

    )22cos()cos()cos());(ln(

    001

    02

    2

    002

    1

    02

    2

    000

    1

    0

    22

    2

    nn A

    nn A

    n Ann A A p

     E 

     N 

    nw

     N 

    nw

     N 

    nw

    x

     

    39

  • 8/18/2019 Good Lecture for Est Theory

    40/99

    )22cos(22

    )22cos(

    22

    ));(ln(

    0

    1

    02

    2

    2

    2

    0

    1

    02

    2

    2

    2

    2

    2

    φ+ω∑σ

    −=

    φ+ω∑

    σ

    +⋅

    σ

    −=

    φ∂

    φ∂

    =

    =

    n A NA

    n A N  A p

     E 

     N 

    nww

     N 

    nww

    x

     

     As a result,11

    002

    211

    002

    2

    2

    2

    )22cos(1

    12

    )22cos(22

    )CRLB(

    −−

    =

    −−

    ∑   φ+ω−

    σ=

    ∑   φ+ω

    σ−

    σ=φ

      N 

    n

    w N 

    nww

    n N  NA

    n A NA

     

    If 1>> , 0)22cos(1

    0

    1

    0

    ≈φ+ω∑−

    =n

     N 

     N 

    n

     

    then

    2

    22)CRLB(

     NA

    wσ≈φ  

    40

  • 8/18/2019 Good Lecture for Est Theory

    41/99

  • 8/18/2019 Good Lecture for Est Theory

    42/99

    2

    0

    1

    020

    21

    022

    2

    2

    )22cos(

    2

    1

    2

    11)(cos

    1));(ln(

    w

     N 

    nw

     N 

    nw

     N 

    nn

     A

     p

    σ−≈

    φ+ω+∑

    σ

    −=φ+ω∑

    σ

    −=

    ∂   −

    =

    =

    θx

     

    22

    2

    2

    ));(ln(

    w

     N 

     A

     p E 

    σ−≈

    ∂   θx 

    Similarly,

    0)22sin(

    2

    ))θ;x(ln(0

    1

    0

    2

    0

    2

    ≈φ+ω∑

    σ

    =

    ω∂∂

    ∂   −

    =

    nn A

     A

     p E 

     N 

    nw

     

    0)22sin(2

    ))θ;x(ln(0

    1

    02

    2

    ≈φ+ω∑σ

    =

    φ∂∂∂   −

    =n

     A

     A

     p E 

     N 

    nw

     

    42

  • 8/18/2019 Good Lecture for Est Theory

    43/99

    21

    02

    2

    02

    1

    02

    2

    20

    2

    2

    )22cos(

    2

    1

    2

    1));(ln(n

     Ann

     A p E 

     N 

    nw

     N 

    nw

    σ

    −≈

     

     

     

      φ+ω−∑

    σ

    −=

    ω∂

    ∂   −

    =

    =

    θx 

    n A

    nn A p

     E  N 

    nw

     N 

    nw

    ∑σ

    −≈φ+ω∑σ

    −=

    φ∂ω∂∂   −

    =

    =

    1

    02

    2

    02

    1

    02

    2

    0

    2

    2)(sin

    ))θ;x(ln( 

    2

    20

    21

    02

    2

    2

    2

    2)(sin));(ln(

    w

     N 

    nw

     NAn A p E σ

    −≈φ+ω∑σ

    −=

    φ∂∂   −

    =

    θx  

    ∑∑σ

    =

    =

    =

    220

    220

    002

    1)(

    21

    0

    2

    1

    0

    22

    1

    0

    2

    2

     NAn

     A

    n A

    n A

     N 

     N 

    n

     N 

    n

     N 

    nw

    θI  

    43

    Aft t i i i h

  • 8/18/2019 Good Lecture for Est Theory

    44/99

     After matrix inversion, we have

     N  A   w

    22)CRLB(  σ≈  

    2

    2

    20

    2

    SNR ,

    )1(SNR 

    12)CRLB(

    w

     A

     N  N    σ=

    −⋅≈ω  

    )1(SNR 

    )12(2)CRLB(

    +⋅−

    ≈φ N  N 

     N  

    Note that

     NA N  N  N  N 

     N  w22

    SNR 

    1

    SNR 

    4

    )1(SNR 

    )12(2)CRLB(

      σ=

    ⋅>

    ⋅≈

    +⋅−

    ≈φ  

    ⇒  In general, the CRLB increases as the number of parameters to beestimated increases

    ⇒  CRLB decreases as the number of samples increases

    44

    P t T f ti i CRLB

  • 8/18/2019 Good Lecture for Est Theory

    45/99

    Parameter Transformation in CRLB

    Find the CRLB for θ)α   ( g =  where () g   is a function

    e.g., 1,,1,0],[][   −=+=   nnwn x   L  

    What is the CRLB for 2?

    The CRLB for parameter transformation of )(α   θ  g =  is given by

    θ∂

    θ∂

      

      

    θ∂θ∂

    2

    2

    2

    ));(ln(

    )(

    )CRLB(x p

     E 

     g 

      (5.10)

    For nonlinear function, “=” is replaced by “ ” and it is true only for large≈  

    45

    E l 5 7

  • 8/18/2019 Good Lecture for Est Theory

    46/99

    Example 5.7

    Find the CRLB for the power of the DC value, i.e., 2 :

    1,,1,0],[][   −=+=   nnwn x   L  

    22

    2

    4)(

    2)(

    )(

     A A

     A g  A

     A

     A g 

     A A g 

      

    ∂∂

    ⇒=∂

    ∂⇒

    ==α 

    From Example 5.3, we have

    22

    2 ));(ln(

    w

     N 

     A

     A p E 

    σ=

    ∂−

      x 

     As a result,

    1,4

    4)CRLB(222

    22 >>σ

    ⋅≈   N  A

     A A   ww  

    46

    Example 5 8

  • 8/18/2019 Good Lecture for Est Theory

    47/99

    Example 5.8

    Find the CRLB for cc 21 +=α  from

    1,,1,0],[][   −=+=   nnwn x   L  

    c

    22

    2

    2

    21

    )()(

    )(

    c A

     A g c

     A

     A g 

    c g 

    =  

      

    ∂∂

    ⇒=∂

    ∂⇒

    +==α 

     As a result,

    c

     N c Ac

    w

    w

    222

    222

    22   )CRLB()CRLB(

    σ=

    σ⋅=⋅=α

     

    47

    Maximum Likelihood Estimation

  • 8/18/2019 Good Lecture for Est Theory

    48/99

    Maximum Likelihood Estimation

    Parameter estimation is achieved via maximizing the likelihood function

    Optimum realizable approach and can give performance close to CRLB

    Use for classical parameter estimation

    Require knowledge of the noise PDF and the PDF must have closed form

    Generally computationally demanding

    Let be the PDF of the observed vector parameterized by the

    parameter vector θ. The maximum likelihood (ML) estimate is

    );(   θx p   x

     );(maxargˆ   θxθ

    θ

     p=   (5.11)

    48

  • 8/18/2019 Good Lecture for Est Theory

    49/99

    Example 5 9

  • 8/18/2019 Good Lecture for Est Theory

    50/99

    Example 5.9

    Given1,,1,0],[][   −=+=   nnwn x   L  

    where is an unknown constant and is a white Gaussian noise with

    known variance 2 . Find the ML estimate of

    ][nw

    wσ .

     

     

     −∑

    σ

    πσ

    =  −

    =

    21

    022/2

      )][(

    2

    1exp

    )2(

    1)(   An x;A p

     N 

    nw N w

    x  

    Since ))};({ln(maxarg);(maxarg   θxθxθθ

     p p   = , taking log for gives)(   ;A p x

     2

    1

    02

    2/2 )][(2

    1))2ln(());(ln(   An x A p

     N 

    nw

     N w   −∑

    σ−πσ−=

      −

    =x  

    50

    Differentiate with respect to yields

  • 8/18/2019 Good Lecture for Est Theory

    51/99

    Differentiate with respect to yields

    2

    1

    01

    02

    )][(1)][(2

    2

    1));(ln(

    w

     N 

    n N 

    nw

     An x An x

     A

     A p

    σ−∑=−⋅−∑⋅⋅

    σ−=

    ∂∂

    =−

    =

    )};({ln(maxargˆ   A p A   x=  is determined from

    ][1ˆ0)ˆ][(0

    )ˆ][(1

    0

    1

    02

    1

    0 n x N 

     A An x

     An x N 

    n

     N 

    nw

     N 

    n ∑=⇒=−∑⇒=σ

    −∑ −

    =

    =

    =  

    Note that

    ML estimate is identical to the sample mean  Attain CRLB

    Q. How about if is unknown?2wσ 

    51

    Example 5 10

  • 8/18/2019 Good Lecture for Est Theory

    52/99

    Example 5.10

    Find the ML estimate for phase of a sinusoid in white Gaussian noise:

    1,,1,0],[)cos(][ 0   −=+φ+ω=   nnwnn x   L  

    where and are assumed known0ω The PDF is

    2

    0

    1

    02

    2/2

    20

    1

    022/2

    ))cos(][(2

    1

    ))2ln(());(ln(

    ))cos(][(2

    1exp

    )2(

    1);(

    φ+ω−∑σ−πσ−=φ⇒

     

      

      φ+ω−∑σ

    −πσ

    =

    =

    n An x p

    n An x p

     N 

    nw

     N 

    w

     N 

    nw N 

    w

    x

    x

     

    52

    It is obvious that the maximum of );( φxp or ));(ln( φxp corresponds to the

  • 8/18/2019 Good Lecture for Est Theory

    53/99

    It is obvious that the maximum of );(   φx p  or ));(ln(   φx p  corresponds to theminimum of

    20

    1

    02

      ))cos(][(2

    1φ+ω−∑

    σ

    =n An x

    nw

      or 201

    0

    ))cos(][(   φ+ω−∑−

    =n An x

     N 

    n

     

    Differentiating with respect to φ and then set the result to zero:

    0)22sin(2

    )sin(][

    )sin())cos(][(2

    001

    0

    00

    1

    0

    =

    φ+ω−φ+ω∑=

    φ+ω−⋅−⋅φ+ω−∑

    −=

    =

    n Ann x A

    n An An x

     N 

    n

     N 

    ⇒  )ˆ22sin(2

    )ˆsin(][ 01

    0

    0

    1

    0

    φ+ω∑=φ+ω∑−

    =

    =n

     Ann x

     N 

    n

     N 

    n

     

    The ML estimate for φ is determined from the root of the above equation

    Q. Any ideas to solve the nonlinear equation?

    53

     Approximate ML (AML) solution may exist and it depends on the structure

  • 8/18/2019 Good Lecture for Est Theory

    54/99

    pp o ate ( ) so ut o ay e st a d t depe ds o t e st uctu eof the ML expression. For example, there exists an AML solution for φ 

    1,002)ˆ22sin(

    1

    2)ˆsin(][

    1

    )ˆ22sin(2

    )ˆsin(][

    0

    1

    00

    1

    0

    0

    1

    00

    1

    0

    >>=⋅≈φ+ω∑⋅=φ+ω∑⇒

    φ+ω∑=φ+ω∑

    =

    =

    =

    =

     N 

     A

    n N 

     A

    nn x N 

    n A

    nn x

     N 

    n

     N 

    n

     N 

    n

     N 

    The AML solution is obtained from

    )cos(][)ˆsin()sin(][)ˆcos(

    0)ˆsin()cos(][)ˆcos()sin(][

    0)ˆsin(][

    0

    1

    00

    1

    0

    0

    1

    0

    0

    1

    0

    01

    0

    nn xnn x

    nn xnn x

    nn x

     N 

    n

     N 

    n

     N 

    n

     N 

    n

     N 

    n

    ω∑⋅φ−=ω∑⋅φ⇒

    =φω∑+φω∑⇒

    =φ+ω∑

    =

    =

    =

    =

    =

     

    54

    ω∑ − )sin(][ˆ 0

    101 nnx

     N 

  • 8/18/2019 Good Lecture for Est Theory

    55/99

     

     

     

    ω∑

    ω∑−=φ

    −=

    =−

    )cos(][

    )sin(][tanˆ

    010

    001

    nn x

    nn x

     N n

    n  

    In fact, the AML solution is reasonable:

     

     

     

     

    ω∑+φ

    ω∑−φ=

    >>

     

     

     

     

    ω∑+φ

    ω∑+φ−−≈

     

      

     ω+φ+ω∑ω+φ+ω∑−=φ

    −=

    −=−

    −=

    =−

    −=

    −=−

    )cos(][2

    )cos(

    )sin(][

    2

    )sin(tan

    1,

    )cos(][)cos(2

    )sin(][)sin(2tan

    )cos(])[)cos((

    )sin(])[)cos((tanˆ

    010

    0101

    010

    0

    1

    01

    0010

    00101

    nnw NA

    nnw NA

     N 

    nnw NA

    nnw NA

    nnwn A

    nnwn A

     N n

     N n

     N n

     N 

    n

     N n

     N n

     

    55

    For parameter transformation, if there is a one-to-one relationship

  • 8/18/2019 Good Lecture for Est Theory

    56/99

    p , pbetween )(θ=α   g   and θ, the ML estimate for α is simply:

    )ˆ(ˆ   θ=α   g    (5.12)

    Example 5.11

    Given samples of a white Gaussian process ,][nw   1,,1,0   −=n   L , with

    unknown variance 2. Determine the power of in dB.σ   ]n[w 

    The power in dB is related to 2σ  by

    )(log10   210  σ= P   

    which is a one-to-one relationship. To find the ML estimate for , we first

    find the ML estimate for 2σ  

    56

    ][11

    )( 21

    2 N 

     

     

    ∑−

  • 8/18/2019 Good Lecture for Est Theory

    57/99

    ][2

    1)ln(

    2)2ln(

    2))σ(ln(

    ][

    2

    exp

    )2(

    )σ(

    21

    02

    22

    2

    0

    22/2

    2

    n x N  N 

    ; p

    n x; p

     N 

    n

    n

     N 

    ∑σ

    −σ−π−=⇒

     

     

    σ

    πσ

    =

    =

    =

    w

    w

     

    Differentiating the log-likelihood function w.r.t. to

    2

    σ :

    ][2

    1

    ))σ(ln(   21

    0422

    2

    n x N ; p   N 

    n∑

    σ+

    σ−=

    ∂   −

    =

    Setting the resultant expression to zero:

    ][1

    ˆ][ˆ2

    1

    ˆ2

    21

    0

    221

    042

      n x N 

    n x N    N 

    n

     N 

    n∑=σ⇒∑

    σ=

    σ

    =

     As a result, 

     

     

     ∑=σ=

      −

    =][

    1log10)ˆ(log10ˆ

      21

    010

    210   n x

     N  P 

     N 

    n

     

    57

    Example 5.12

  • 8/18/2019 Good Lecture for Est Theory

    58/99

    Given1,,1,0],[][   −=+=   nnwn x   L  

    where is an unknown constant and is a white Gaussian noise with

    unknown variance 2. Find the ML estimates of

    ][nw

    σ  and 2σ .

    T  N 

    n

     N   A An x; p   ][θθx   22

    1

    0

    22/2  ,)][(

    2

    1exp

    )2(

    1)(   σ=

     

     

     

     −∑

    σ

    πσ

    =  −

    =

     

    ⇒ 21

    0422

    1

    02

    )][(2

    1

    ))(ln(

    )][(1))(ln(

     An x N ; p

     An x A

    ; p

     N 

    n

     N 

    n

    −∑σ

    −=∂

    −∑σ

    =∂

    =

    =

    θx

    θx

     

    58

    Solving the first equation:

  • 8/18/2019 Good Lecture for Est Theory

    59/99

     xn x N 

     A N 

    n

    =∑=   −=

    ][1ˆ  1

    0

     

    Putting  x==   ˆ  in the second equation:

    21

    0

    2 )][(1

    ˆ   xn x N 

     N 

    n

    −∑=σ  −

    Numerical Computation of ML Solution

    When the ML solution is not of closed form, it can be computed by

    Grid search

    Numerical methods: Newton-Raphson, Golden section, bisection, etc

    59

    Example 5.13

  • 8/18/2019 Good Lecture for Est Theory

    60/99

    From Example 5.10, the ML solution of φ is determined from

    )ˆ22sin(2

    )ˆsin(][ 01

    00

    1

    0

    φ+ω∑=φ+ω∑−

    =

    =n

     Ann x

     N 

    n

     N 

    n

     

    Suggest methods to find φ̂  Approach 1: Grid search

    Let

    )22sin(2

    )sin(][)( 01

    00

    1

    0

    φ+ω∑−φ+ω∑=φ  −

    =

    =n

     Ann x g 

     N 

    n

     N 

    n

     

    It is obvious that

    φ̂ = root of )(φ g   

    60

    The idea of grid search is simple:

  • 8/18/2019 Good Lecture for Est Theory

    61/99

    Search for all possible values of or a given range of to find root⇒ φˆ

      φˆ

    Values are discrete tradeoff between resolution & computation

    e.g., Range for : any values inφ̂   )2,0[   π  ⇒Discrete points : 1000 resolution is 1000/2π  

    MATLAB source code:

    N=100;n=[0:N-1];

    w = 0.2*pi; A = sqrt(2);p = 0.3*pi;np = 0.1;q = sqrt(np).*randn(1,N);x = A.*cos(w.*n+p)+q;

    for j=1:1000pe = j/1000*2*pi;s1 =sin(w.*n+pe);s2 =sin(2.*w.*n+2.*pe);g(j) = x*s1'-A/2*sum(s2);

    end

    61

    pe = [1:1000]/1000;plot(pe,g)

  • 8/18/2019 Good Lecture for Est Theory

    62/99

    plot(pe,g)

    Note: x-axis is )2/(   πφ 

    62

     stem(pe g)

  • 8/18/2019 Good Lecture for Est Theory

    63/99

    stem(pe,g)axis([0.14 0.16 -2 2])

     

    23240)2152.0(   .- g    =π⋅ , 21680)2153.0(   . g    =π⋅  

    ⇒  (π=π⋅=φ   306.02153.0ˆ   π±   001.0 )

    63

     For a smaller resolution say 200 discrete points:

  • 8/18/2019 Good Lecture for Est Theory

    64/99

    For a smaller resolution, say 200 discrete points:

    clear pe;clear s1;clear s2;clear g;

    for j=1:200pe = j/200*2*pi;s1 =sin(w.*n+pe);s2 =sin(2.*w.*n+2.*pe);g(j) = x*s1'-A/2*sum(s2);

    endpe = [1:200]/200;plot(pe,g)

    64

     stem(pe,g)

  • 8/18/2019 Good Lecture for Est Theory

    65/99

    axis([0.14 0.16 -2 2])

    13061)2150.0(   .- g    =π⋅ , 11501)2155.0(   . g    =π⋅  

    ⇒  (π=π⋅=φ   310.02155.0ˆ   π±   005.0 ) 

    ⇒ Accuracy increases as number of grids increases

    65

  • 8/18/2019 Good Lecture for Est Theory

    66/99

    p1 = 0;for k=1:10

    ( * )

  • 8/18/2019 Good Lecture for Est Theory

    67/99

    s1 =sin(w.*n+p1);

    s2 =sin(2.*w.*n+2.*p1);c1 =cos(w.*n+p1);c2 =cos(2.*w.*n+2.*p1);g = x*s1'-A/2*sum(s2);g1 = x*c1'-A*sum(c2);p1 = p1 - g/g1;p1_vector(k) = p1;

    endstem(p1_vector/(2*pi))

    Newton/Raphson method converges at ~ 3rd iteration

    π=π⋅=φ   305.021525.0ˆ  

    Q. Can you comment on the grid search & Newton/Raphson method?

    67

    ML Estimation for General Linear Model

  • 8/18/2019 Good Lecture for Est Theory

    68/99

    The general linear data model is given by

    wHθx   +=   (5.14)

    where

    x is the observed vector of sizew  is Gaussian noise vector with known covariance matrix

     p

    C

    ×H  is known matrix of sizeθ is parameter vector of size  p

     Based on (5.7), the PDF of parameterized by isx   θ

     

      

       −⋅⋅−−

    π=   )()(

    2

    1exp

    )(det)2(

    1)(   1

    2/12/  HθxCHθx

    Cθx;

      -T 

     N  p   (5.15)

    68

  • 8/18/2019 Good Lecture for Est Theory

    69/99

    Example 5.14

  • 8/18/2019 Good Lecture for Est Theory

    70/99

    Given pair of (   y x, ) where is error-free but x y  is subject to error:

    1,,1,0,][][][   −=++⋅=   nnwcn xmn   L  

    where is white Gaussian noise vector with known covariance matrixw C

     Find the ML estimates for andm c 

    T cmnwn xnwc

    mn xn y

    nwcn xmn y

    ][],[]1][[][]1][[][

    ][][][

    =+⋅=+

    ⋅=⇒

    ++⋅=

    θθ 

    ⇒ 

    ]1[]1]1[[]1[

    ]1[]1]1[[]1[

    ]0[]1]0[[]0[

    −+⋅−=−

    +⋅=

    +⋅=

     N w N  x N  y

    w x y

    w x y

    θ

    θ

    θ

    LLL 

    70

    Writing in matrix form:wHθy   +=  

  • 8/18/2019 Good Lecture for Est Theory

    71/99

    y

    where

    T  N  y y y   ]]1[,],1[],0[[   −=   Ly  

    =

    1]1[

    1]1[

    1[0]

     N  x

     x

     x

    MMH  

     Applying (5.16) gives

    yCHHCHθ   111 )(ˆˆˆ   −−− ⋅=

    =   T T 

    cm  

    71

    Example 5.15

  • 8/18/2019 Good Lecture for Est Theory

    72/99

    Find the ML estimates of , 0ω  and φ for

    1,1,,1,0],[)cos(][ 0   >>−=+φ+ω=   nnwnn x   L  

    where is a white Gaussian noise with variance][nw  2

    wσ Recall from Example 5.6:

    ],[θθx   φω= 

       φ+ω−∑

    σ−

    πσ=   −

    =  0

    20

    1

    022/2

      ,))cos(][(2

    1exp)2(

    1);(   A,n An x p N 

    nw N 

    w

     

    The ML solution for can be found by minimizingθ

     

    20

    1

    00   ))cos(][(),,(   φ+ω−∑=φω

      −

    =n An x A J 

    n

     

    72

    This can be achieved by using a 3-D grid search or Netwon/Raphsonmethod but it is computationally complex

  • 8/18/2019 Good Lecture for Est Theory

    73/99

    p y p

     Another simpler solution is as follows

    200

    1

    0

    20

    1

    00

    ))sin()sin()cos()cos(][(

    ))cos(][(),,(

    n An An x

    n An x A J 

     N 

    n

     N 

    n

    ωφ+ωφ−∑=

    φ+ω−∑=φω

    =

    Since and are not quadratic inφ   ),,(0  φω , the first step is to use

    parameter transformation:

    )sin(

    )cos(

    2

    1

    φ−=α

    φ=α

     A   ⇒   

      

    αα−=φ

    α+α=

    1

    21

    22

    21

    tan

     A

     

    73

  • 8/18/2019 Good Lecture for Est Theory

    74/99

    Substituting back to ),,( 021   ωαα :

    ααT 

  • 8/18/2019 Good Lecture for Est Theory

    75/99

    ( ) ( )

    xHHHHx-xx

    xHHHH-Ix

    xHHHH-IHHHH-Ix

    xHHHH-IxHHHH-I

    xHHHH-xxHHHH-x

    αH-x

    αH-x

    ⋅⋅⋅⋅=

    ⋅⋅⋅=

    ⋅⋅⋅⋅=

    ⋅⋅⋅⋅=

    ⋅⋅==ω

    −−

    −−

    −−

    T T T T 

    T T T 

    T T T T T T 

    T T T T T 

    T T T T T  J 

    1

    1

    11

    11

    110

    )(

    ))((

    ))(())((

    ))(())((

    ))(())(()ˆ()ˆ()(

     

    Minimizing )( 0ω  is identical to maximizing

    xHHHHx   ⋅⋅⋅   −   T T T    1)(  or

    xHHHHx   ⋅⋅⋅=ω   −ω

    T T T    10   )(maxargˆ

    0

     

    ⇒ 3-D search is reduced to a 1-D search

    75

     After determining , can be obtained as well0ω̂   α̂ 

  • 8/18/2019 Good Lecture for Est Theory

    76/99

    For sufficiently large :

    [ ]

    [ ]

    ( ) ( ) 20

    1

    0

    22

    1

    1

    1

    )exp(][2

    2

    2/0

    02/

    )(

    n jn x N 

     N 

     N 

     N 

     N 

    n

    T T 

    T T T 

    T T 

    T T T T T T T 

    ω−∑=

     

      

      +=

    ⋅≈

    ⋅=⋅⋅⋅

    =

    −−

    xsxc

    xs

    xcxsxc

    xs

    xc

    sscs

    scccxsxcxHHHHx

     

    ω−∑=  −

    2

    0

    1

    00   )exp(][

    1maxargˆ

    0

    n jn x N 

     N 

    n

    ω   periodogram maximum⇒

     

    76

    Least Squares Methods

  • 8/18/2019 Good Lecture for Est Theory

    77/99

    Parameter estimation is achieved via minimizing a least squares (LS) costfunction

    Generally not optimum but computationally simple

    Use for classical parameter estimation

    No knowledge of the noise PDF is required

    Can be considered as a generalization of LS filtering

    77

     Variants of LS Methods

  • 8/18/2019 Good Lecture for Est Theory

    78/99

    1. Standard LS 

    Consider the general linear data model:

    wHθx   +=  where

    x is the observed vector of sizew  is zero-mean noise vector with unknown covariance matrix

     p×H  is known matrix of sizeθ is parameter vector of size  p 

    The LS solution is given by

    ( ) ( )   xHHHHθ-xHθ-xθθ

    T T T    1)(minargˆ   −==   (5.18)

    which is equal to (5.17)

    78

    ⇒ LS solution is optimum if covariance matrix of is and isw IC   ⋅σ=   2w   w  Gaussian distributed

  • 8/18/2019 Good Lecture for Est Theory

    79/99

    Define

    Hθ-xe =  

    where

    T  N eee   )]1()1()0([   −=   Le  

    (5.18) is equivalent to

    ∑=  −

    =)(minargˆ   2

    1

    0

    k e N 

    k θθ   (5.19)

    which is similar to LS filtering

    Q. Any differences between (5.19) and LS filtering?

    79

     Example 5.16

  • 8/18/2019 Good Lecture for Est Theory

    80/99

    Given1,,1,0],[][   −=+=   nnwn x   L  

    where is an unknown constant and is a zero-mean noise][nw Find the LS solution of

    Using (5.19),

    ( )

    −∑=  −

    =

    21

    0

    ][minargˆ   An x A N 

    n A 

    Differentiating ( )2

    1

    0][   An x

     N 

    n −∑

    =  with respect to and set the result to 0:

    ][1ˆ  1

    0

    n x N 

     A N 

    n∑=

      −

    80

     On the other hand, writing ]}[{   n x  in matrix form: 

  • 8/18/2019 Good Lecture for Est Theory

    81/99

    wHx   +=  where

    =1

    1

    1

    MH  

    Using (5.18),

    ][

    ]1[

    ]1[

    ]0[

    111

    1

    1

    1

    111ˆ  1

    0

    1

    1

    n x N 

     N  x

     x

     x

     A N 

    n∑⋅=

     

     

     

    ⋅=  −

    =

    ML

    ML   ][][  

    Both (5.18) and (5.19) give the same answer and the LS solution is

    81

    optimum if the noise is white GaussianExample 5.17

  • 8/18/2019 Good Lecture for Est Theory

    82/99

    Consider the LS filtering problem again. Given

    1,,1,0],[][][   −=+⋅=   N nnqW n X nd    T  L  where

    ][nd   is desired responseT  Ln xn xn xn X    ]]1[]1[][[][   +−−=   L  is the input signal vector

     LwwwW    ][

    110   −=   L  is the unknown filter weight vector][nq  is zero-mean noise

    Writing in matrix form:

    W  ,   =+⋅=   WqWHd  Using (5.18):dHHHW   T T    1)(ˆ   −=  

    82

    where

    00]0[)0(  x X T  L

  • 8/18/2019 Good Lecture for Est Theory

    83/99

    −−−

    =

    =

    ][]2[]1[

    0]0[]1[

    )1(

    )1(

     L N  x N  x N  x

     x x

     N  X 

     X 

    L

    MMMM

    L

    MH  

    with 0]2[]1[   ==−=−   L x x  

    Note that

    dH

    HH

    T dx

    T  xx

     R

     R

    =

    =  

    where  xx  is not the original version but not modified version of (3.6)

    83

  • 8/18/2019 Good Lecture for Est Theory

    84/99

    The LS solution is then

    )cos(][1

    φ+ω∑−

    nn x N 

  • 8/18/2019 Good Lecture for Est Theory

    85/99

    )(cos

    ˆ

    02

    1

    0

    00

    φ+ω∑

    =−

    =

    =

    n

     A N 

    n

    n  

    2. Weighted LS 

    Use a general form of LS via a symmetric weighting matrix W 

    ( ) ( )   WxHWHHHθ-xWHθ-xθθ

    T T T    1)(minargˆ   −==   (5.20)

    such thatT 

    WW =  

    Due to the presence of , it is generally difficult to write the cost function

    ( )W

    ( )Hθ-xWHθ-x   T   in scalar form as in (5.19)

    85

     Rationale of using : put larger weights on data with smaller errors W

  • 8/18/2019 Good Lecture for Est Theory

    86/99

     put smaller weights on data with larger errors 

    When = where is covariance matrix of the noise vector:W   1-C C

     xCHHCHθ

      111 )(ˆ   -T -T    −=   (5.21)

    which is equal to the ML solution and is optimum for Gaussian noise

    Example 5.19

    Given two noisy measurements of :

    11   w x   +=   and 22   w x   +=  

    where and are zero-mean uncorrelated noises with known

    variances 2 and . Determine the optimum weighted LS solution

    1w 2w22σ1σ

     

    86

     Use

    212 0/10

  • 8/18/2019 Good Lecture for Est Theory

    87/99

    σ

    σ=

    σ

    σ== −22

    21

    1

    22

    211

    /10

    0/1

    0

    0-CW  

    Grouping and into matrix form:1 x 2 x 

    +⋅

    =

    2

    1

    2

    1

    1

    1

    w

    w A

     x

     x 

    orwHx   +⋅=  

    Using (5.21)

    [ ] [ ]

    σ

    σ 

     

     

    σ

    σ==

    −−

    2

    1

    22

    21

    1

    22

    21111

    /10

    0/111

    1

    1

    /10

    0/111)(ˆ

     x

     x A   -T -T  xCHHCH  

    87

      As a result,

    22111

  • 8/18/2019 Good Lecture for Est Theory

    88/99

    222

    21

    21

    122

    21

    22

    22

    221

    11

    22

    21

    11ˆ   x x x x

     A   ⋅σ+σ

    σ+⋅σ+σ

    σ= 

     

     σ

      

     σ

    = −  

    Note that

    If , a larger weight is placed on and vice versa2122   σ>σ   1 x

    If , the solution is equal to the standard sample mean

    w w

    21

    22   σ=σ

    The solution will be more complicated if and are correlated2 2

    1 2

    Exact values for and are not necessary, only ratio is needed1σ   2σ 

    Define , we have22

    21 / σσ=λ

     

    2111

    1ˆ   x x A   ⋅λ+

    λ+⋅

    λ+=  

    88

     3. Nonlinear LS 

    Th LS t f ti t b t d li d l i

  • 8/18/2019 Good Lecture for Est Theory

    89/99

    The LS cost function cannot be represented as a linear model as in

    wHθx   +=  

    In general, it is more complex to solve, e.g.,

    The LS estimates for 0,ω  and φ can be found by minimizing

    20

    1

    0

    ))cos(][(   φ+ω−∑−=

    n An x N 

    n

     

    whose solution is not straightforward as seen in Example 5.15

    Grid search and numerical methods are used to find the minimum

    89

    4. Constrained LS 

    The linear LS cost function is minimized subject to constraints:

  • 8/18/2019 Good Lecture for Est Theory

    90/99

    ( ) ( )Hθ-xHθ-xθθ

    T minargˆ =   subject to (5.22)S

     

    where is a set of equalities/inequalities in terms ofS   θ

     Generally it can be solved by linear/nonlinear programming, but simplersolution exists for linear and quadratic constraint equations, e.g.,

    Linear constraint equation: 10321   =θ+θ+θ  

    Quadratic constraint equation: 1002322

    21   =θ+θ+θ

     Other types of constraints: 10321   >θ>θ>θ  

    10033221   ≥θ+θ+θ

     

    90

    Consider the constraints isS 

    bAθ

  • 8/18/2019 Good Lecture for Est Theory

    91/99

    bA  =  which contains r   linear equations. The constrained LS problem for linearmodel is

    ( ) ( )Hθ-xHθ-xθθ

    T minargˆ =   subject to bAθ =   (5.23)

    The technique of Lagrangian multipliers can solve (5.23) as follows

    Define the Lagrangian 

    ( ) ( )   )(   b-Aθλ Hθ-xHθ-x   T T c J    +=   (5.24)

    where λ  is a r -length vector of Lagrangian multipliers

    The procedure is first solve λ  then θ

     

    91

    Expanding (5.24):

    bλ 

    Aθλ 

    xH2θ

    xx

      T T T T T T T 

    cJ

  • 8/18/2019 Good Lecture for Est Theory

    92/99

    b-AHHxH2-xxc J    ++=  Differentiate c  with respect to :θ 

    λ AHθHx-2Hθ

    T T T c

    ++=∂

    ∂2  

    Set the result to zero:

    λ AHH-θλ AHH-xHHHθ

    0λ AθHHx2H-

    T T T T T T c

    T cT T 

    111 )(2

    1ˆ)(2

    1)(ˆ

    ˆ2

    −−− ==⇒

    =++ 

    where is the LS solution. Put into :θ̂

    cθ̂

      bAθ

     = 

    )ˆ())((2

    )(2

    1ˆˆ   111 b-θAAHHAλ 

    bλ AHHA-θAθA  −−− =⇒==   T T T T c  

    92

    Put λ  back to :cθ̂ 

    ())(()(ˆˆ   111

    bθAAHHAAHHθθ

      −−−   T T T T c

  • 8/18/2019 Good Lecture for Est Theory

    93/99

    )())(()( b-θAAHHAAHH-θθ =c  Idea of constrained LS can be illustrated by finding minimum value of  y : 

    2 23   +−=   x x y   subject to 1=−  y x  

    93

    5. Total LS 

    Motivation: Noises at both and :x Hθ

  • 8/18/2019 Good Lecture for Est Theory

    94/99

     

    21   wHθwx   +=+   (5.25)

    where and are zero-mean noise vectors1w 2w

      A typical example is LS filtering in the presence of both input noise andoutput noise. The noisy input is

    1,,1,0),()()(   −=+=   nk nk  sk  x i   L  

    and the noisy output is

    1,,1,0),()()()(   −=+⊗=   nk nk hk  sk r  o   L  

    The parameters to be estimated are )}({   k h  given )(k  x  and )(k  y  

    94

      Another example is in frequency estimation using linear prediction:

    For a single sinusoid )cos()( φ+ωkks it is true that

  • 8/18/2019 Good Lecture for Est Theory

    95/99

    For a single sinusoid )cos()(   φ+ω=   k k  s , it is true that

    )2()1()cos(2)(   −−−ω=   k  sk  sk  s  

     s   )(k   is perfectly predicted by )1(   −k  s  and )1(   −k  s :

    )2()1()( 10   −+−=   k  sak  sak  s  

    It is desirable to obtain )cos(20   ω=a  and 11   −=a  in estimation process

    In the presence of noise, the observed signal is

    1,,1,0),()()(   −=+=   nk wk  sk  x   L  

    The linear prediction model is now

    95

    1,,1,0),2()1()( 10   −=−+−=   nk  xak  xak  x   L  0

    )1()2()3(

    )0()1()2(

    10

    10

    +=

    +=

    xaxax

     xa xa x

    0)1()2(

    )()1(

    )3(

    )2(

    axx

     x x

    x

     x

  • 8/18/2019 Good Lecture for Est Theory

    96/99

    )3()2()1(

    )1()2()3(

    10

    10

    −+−=−

    +=

     N  xa N  xa N  x

     xa xa x

    LLL⇒

    −−

    =

    −1

    0

    )2()2(

    )1()2(

    )1(

    )3(

    a

    a

     N  x N  x

     x x

     N  x

     x

    MMM 

    −−

    +

    −−

    =

    +

      −1

    0

    1

    0

    )2()2(

    )1()2(

    )0()1(

    )2()2(

    )1()2(

    )0()1(

    )1(

    )3(

    )2(

    )1(

    )3(

    )2(

    a

    a

     N w N w

    ww

    ww

    a

    a

     N  s N  s

     s s

     s s

     N w

    w

    w

     N  s

     s

     s

    MMMMMM 

    6. Mixed LS 

     A combination of LS, weighted LS, nonlinear LS, constrained LS and/ortotal LS

    Examples: weighted LS with constraints, total LS with constraints, etc.

    96

     

  • 8/18/2019 Good Lecture for Est Theory

    97/99

    Questions for Discussion

    1. Suppose you have pairs of ),( ii   y x , i   ,,2,1   L=   and you need to fitthem into the model of ax= . Assuming that only }{ i y  contain zero-mean noise, determine the least squares estimate for .a

     (Hint: ithe relationship between andi x i y  is

    inax y iii   ,,2,1,   L=+=  

    where { } are the noise inin   }{ i y .)

    97

     2. Use least squares to estimate the line ax=   in Q.1 but now only }{ i x  

    contain zero-mean noise.

  • 8/18/2019 Good Lecture for Est Theory

    98/99

    contain zero mean noise.

    3. In a radar system, the received signal is

    )()()( 0   nwn snr    +τ−α=  where the range of an object is related to the time delay by

    c/20 =τ  

    Suppose we get an unbiased estimate of , say,0τ   0τ̂ , and its variance is. Determine the corresponding range variance ˆ , where)ˆvar( 0τ   )var( R   ˆ  is

    the estimate of .

    If and20   )1.0()ˆvar(   sµ=τ  18103   −×=   msc , what is the value of ?)ˆvar( R

     

    98

     

  • 8/18/2019 Good Lecture for Est Theory

    99/99

    99