graph theory and modal logic - chapman...

43
Graph Theory and Modal Logic Yutaka Miyazaki Osaka University of Economics and Law (OUEL) Aug. 5, 2013 BLAST 2013 at Chapman University Yutaka Miyazaki Graph Theory and Modal Logic

Upload: others

Post on 04-Sep-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Graph Theory and Modal Logic - Chapman Universitymath.chapman.edu/~jipsen/blast2013/slides/MiyazakiBLAST... · 2013. 8. 12. · 1. Graphs = Kripke frames. 2. Completeness for the

. . . . . .

.

.

. ..

.

.

Graph Theory and Modal Logic

Yutaka Miyazaki

Osaka University of Economics and Law (OUEL)

Aug. 5, 2013

BLAST 2013 at Chapman University

Yutaka Miyazaki Graph Theory and Modal Logic

Page 2: Graph Theory and Modal Logic - Chapman Universitymath.chapman.edu/~jipsen/blast2013/slides/MiyazakiBLAST... · 2013. 8. 12. · 1. Graphs = Kripke frames. 2. Completeness for the

. . . . . .

Contents of this Talk

1. Graphs = Kripke frames.

2. Completeness for the basic hybrid logic H.

3. The hybrid logic G for all graphs.

4. Hybrid formulas characterizing some properties ofgraphs .

Yutaka Miyazaki Graph Theory and Modal Logic

Page 3: Graph Theory and Modal Logic - Chapman Universitymath.chapman.edu/~jipsen/blast2013/slides/MiyazakiBLAST... · 2013. 8. 12. · 1. Graphs = Kripke frames. 2. Completeness for the

. . . . . .

Contents of this Talk

1. Graphs = Kripke frames.

2. Completeness for the basic hybrid logic H.

3. The hybrid logic G for all graphs.

4. Hybrid formulas characterizing some properties ofgraphs .

Yutaka Miyazaki Graph Theory and Modal Logic

Page 4: Graph Theory and Modal Logic - Chapman Universitymath.chapman.edu/~jipsen/blast2013/slides/MiyazakiBLAST... · 2013. 8. 12. · 1. Graphs = Kripke frames. 2. Completeness for the

. . . . . .

Contents of this Talk

1. Graphs = Kripke frames.

2. Completeness for the basic hybrid logic H.

3. The hybrid logic G for all graphs.

4. Hybrid formulas characterizing some properties ofgraphs .

Yutaka Miyazaki Graph Theory and Modal Logic

Page 5: Graph Theory and Modal Logic - Chapman Universitymath.chapman.edu/~jipsen/blast2013/slides/MiyazakiBLAST... · 2013. 8. 12. · 1. Graphs = Kripke frames. 2. Completeness for the

. . . . . .

Contents of this Talk

1. Graphs = Kripke frames.

2. Completeness for the basic hybrid logic H.

3. The hybrid logic G for all graphs.

4. Hybrid formulas characterizing some properties ofgraphs .

Yutaka Miyazaki Graph Theory and Modal Logic

Page 6: Graph Theory and Modal Logic - Chapman Universitymath.chapman.edu/~jipsen/blast2013/slides/MiyazakiBLAST... · 2013. 8. 12. · 1. Graphs = Kripke frames. 2. Completeness for the

. . . . . .

Contents of this Talk

1. Graphs = Kripke frames.

2. Completeness for the basic hybrid logic H.

3. The hybrid logic G for all graphs.

4. Hybrid formulas characterizing some properties ofgraphs .

Yutaka Miyazaki Graph Theory and Modal Logic

Page 7: Graph Theory and Modal Logic - Chapman Universitymath.chapman.edu/~jipsen/blast2013/slides/MiyazakiBLAST... · 2013. 8. 12. · 1. Graphs = Kripke frames. 2. Completeness for the

. . . . . .

Why symmetric frames?

= My research history =

Quantum Logic = a logic of quantum mechanics

Orthologic /orthomodular logic

Modal logic KTB and its extension

· · · complete for reflexive and symmetric frames.

Yutaka Miyazaki Graph Theory and Modal Logic

Page 8: Graph Theory and Modal Logic - Chapman Universitymath.chapman.edu/~jipsen/blast2013/slides/MiyazakiBLAST... · 2013. 8. 12. · 1. Graphs = Kripke frames. 2. Completeness for the

. . . . . .

Why symmetric frames?

= My research history =

Quantum Logic = a logic of quantum mechanics

Orthologic /orthomodular logic

Modal logic KTB and its extension

· · · complete for reflexive and symmetric frames.

Yutaka Miyazaki Graph Theory and Modal Logic

Page 9: Graph Theory and Modal Logic - Chapman Universitymath.chapman.edu/~jipsen/blast2013/slides/MiyazakiBLAST... · 2013. 8. 12. · 1. Graphs = Kripke frames. 2. Completeness for the

. . . . . .

Why symmetric frames?

= My research history =

Quantum Logic = a logic of quantum mechanics

Orthologic /orthomodular logic

Modal logic KTB and its extension

· · · complete for reflexive and symmetric frames.

Yutaka Miyazaki Graph Theory and Modal Logic

Page 10: Graph Theory and Modal Logic - Chapman Universitymath.chapman.edu/~jipsen/blast2013/slides/MiyazakiBLAST... · 2013. 8. 12. · 1. Graphs = Kripke frames. 2. Completeness for the

. . . . . .

Why symmetric frames?

= My research history =

Quantum Logic = a logic of quantum mechanics

Orthologic /orthomodular logic

Modal logic KTB and its extension

· · · complete for reflexive and symmetric frames.

Yutaka Miyazaki Graph Theory and Modal Logic

Page 11: Graph Theory and Modal Logic - Chapman Universitymath.chapman.edu/~jipsen/blast2013/slides/MiyazakiBLAST... · 2013. 8. 12. · 1. Graphs = Kripke frames. 2. Completeness for the

. . . . . .

Kripke frames and graphs

Undirected Graphs = Symmetric Kripke frames

Every point (node) in an undirected graph must be treatedas an irreflexive point!

Yutaka Miyazaki Graph Theory and Modal Logic

Page 12: Graph Theory and Modal Logic - Chapman Universitymath.chapman.edu/~jipsen/blast2013/slides/MiyazakiBLAST... · 2013. 8. 12. · 1. Graphs = Kripke frames. 2. Completeness for the

. . . . . .

Kripke frames and graphs

Undirected Graphs = Symmetric Kripke frames

Every point (node) in an undirected graph must be treatedas an irreflexive point!

Yutaka Miyazaki Graph Theory and Modal Logic

Page 13: Graph Theory and Modal Logic - Chapman Universitymath.chapman.edu/~jipsen/blast2013/slides/MiyazakiBLAST... · 2013. 8. 12. · 1. Graphs = Kripke frames. 2. Completeness for the

. . . . . .

To characterize irreflexivity

.

Proposition

.

.

.

. ..

.

.

There is NO formula in propositional modal logic thatcharacterizes the class of irreflexive frames.

=⇒ We have to enrich our language.

Employ a kind of hybrid language (nominals)

Yutaka Miyazaki Graph Theory and Modal Logic

Page 14: Graph Theory and Modal Logic - Chapman Universitymath.chapman.edu/~jipsen/blast2013/slides/MiyazakiBLAST... · 2013. 8. 12. · 1. Graphs = Kripke frames. 2. Completeness for the

. . . . . .

To characterize irreflexivity

.

Proposition

.

.

.

. ..

.

.

There is NO formula in propositional modal logic thatcharacterizes the class of irreflexive frames.

=⇒ We have to enrich our language.

Employ a kind of hybrid language (nominals)

Yutaka Miyazaki Graph Theory and Modal Logic

Page 15: Graph Theory and Modal Logic - Chapman Universitymath.chapman.edu/~jipsen/blast2013/slides/MiyazakiBLAST... · 2013. 8. 12. · 1. Graphs = Kripke frames. 2. Completeness for the

. . . . . .

To characterize irreflexivity

.

Proposition

.

.

.

. ..

.

.

There is NO formula in propositional modal logic thatcharacterizes the class of irreflexive frames.

=⇒ We have to enrich our language.

Employ a kind of hybrid language (nominals)

Yutaka Miyazaki Graph Theory and Modal Logic

Page 16: Graph Theory and Modal Logic - Chapman Universitymath.chapman.edu/~jipsen/blast2013/slides/MiyazakiBLAST... · 2013. 8. 12. · 1. Graphs = Kripke frames. 2. Completeness for the

. . . . . .

To characterize irreflexivity

.

Proposition

.

.

.

. ..

.

.

There is NO formula in propositional modal logic thatcharacterizes the class of irreflexive frames.

=⇒ We have to enrich our language.

Employ a kind of hybrid language (nominals)

Yutaka Miyazaki Graph Theory and Modal Logic

Page 17: Graph Theory and Modal Logic - Chapman Universitymath.chapman.edu/~jipsen/blast2013/slides/MiyazakiBLAST... · 2013. 8. 12. · 1. Graphs = Kripke frames. 2. Completeness for the

. . . . . .

A Hybrid Language

¤ 2 sorts of variables:

• Φ := p, q, r, . . . · · · the set of prop. variables• Ω := i, j, k, . . . · · · the set of nominals

where Φ ∩ Ω = ∅.

Nominals are used to distinguish points(states) in a frame from one another.

¤ Our language L (the set of formulas) consists ofA ::= p | i | ⊥ | ¬A | A ∧ B | 2A

· · · No satisfaction operator (@i)

Yutaka Miyazaki Graph Theory and Modal Logic

Page 18: Graph Theory and Modal Logic - Chapman Universitymath.chapman.edu/~jipsen/blast2013/slides/MiyazakiBLAST... · 2013. 8. 12. · 1. Graphs = Kripke frames. 2. Completeness for the

. . . . . .

Normal hybrid logic(1)

A normal hybrid logic L over L is a set of formulas in Lthat contains:

(1) All classical tautologies

(2) 2(p → q) → (2p → 2q)

(3) (i ∧ p) → 2n(i → p) for all n ∈ ω: (nominality axiom)

and closed under the following rules:

(4) Modus PonensA, A → B

B

(5) NecessitationA

2A

Yutaka Miyazaki Graph Theory and Modal Logic

Page 19: Graph Theory and Modal Logic - Chapman Universitymath.chapman.edu/~jipsen/blast2013/slides/MiyazakiBLAST... · 2013. 8. 12. · 1. Graphs = Kripke frames. 2. Completeness for the

. . . . . .

Normal hybrid logic(2)

(6) Sorted substitution

AA[B/p] ,

AA[j/i]

p : prop. variable, i, j: nominals

(7) Namingi → A

A

i: not occurring in A

(8) Pasting(i ∧ 3(j ∧ A)) → B

(i ∧ 3A) → B

j 6≡ i, j:not occurring in A or B.

Yutaka Miyazaki Graph Theory and Modal Logic

Page 20: Graph Theory and Modal Logic - Chapman Universitymath.chapman.edu/~jipsen/blast2013/slides/MiyazakiBLAST... · 2013. 8. 12. · 1. Graphs = Kripke frames. 2. Completeness for the

. . . . . .

Normal hybrid logic(3)

H: the smallest normal hybrid logic over L

For Γ ⊆ L,

H ⊕ Γ: the smallest normal hybrid extension containing Γ

Yutaka Miyazaki Graph Theory and Modal Logic

Page 21: Graph Theory and Modal Logic - Chapman Universitymath.chapman.edu/~jipsen/blast2013/slides/MiyazakiBLAST... · 2013. 8. 12. · 1. Graphs = Kripke frames. 2. Completeness for the

. . . . . .

Semantics

F := 〈W,R〉: a (Kripke) frame

M := 〈F , V 〉: a model,where, V : Φ ∪ Ω → 2W such that:

For p ∈ Φ, V (p): a subset of W ,for i ∈ Ω, V (i): a singleton of W .

Interpretation of a nominal:

(M, a) |= i if and only if V (i) = a

In this sense, i is a name for the point a in this model M!

Yutaka Miyazaki Graph Theory and Modal Logic

Page 22: Graph Theory and Modal Logic - Chapman Universitymath.chapman.edu/~jipsen/blast2013/slides/MiyazakiBLAST... · 2013. 8. 12. · 1. Graphs = Kripke frames. 2. Completeness for the

. . . . . .

Soundness for H

For a frame F ,

F |= A ⇐ def ⇒ ∀V on F ,∀a ∈ W,((〈F , V 〉, a) |= A

)

.

Theorem (Soundness for the logic H)

.

.

.

. ..

.

.

For A ∈ L, A ∈ H implies F |= A for any frame F .

Yutaka Miyazaki Graph Theory and Modal Logic

Page 23: Graph Theory and Modal Logic - Chapman Universitymath.chapman.edu/~jipsen/blast2013/slides/MiyazakiBLAST... · 2013. 8. 12. · 1. Graphs = Kripke frames. 2. Completeness for the

. . . . . .

Soundness for H

For a frame F ,

F |= A ⇐ def ⇒ ∀V on F ,∀a ∈ W,((〈F , V 〉, a) |= A

)

.

Theorem (Soundness for the logic H)

.

.

.

. ..

.

.

For A ∈ L, A ∈ H implies F |= A for any frame F .

Yutaka Miyazaki Graph Theory and Modal Logic

Page 24: Graph Theory and Modal Logic - Chapman Universitymath.chapman.edu/~jipsen/blast2013/slides/MiyazakiBLAST... · 2013. 8. 12. · 1. Graphs = Kripke frames. 2. Completeness for the

. . . . . .

Completeness for H

For Γ ⊆ L, A ∈ L,

H : Γ ` A⇐ def ⇒ ∃B1, B2, . . . , Bn ∈ Γ

(H ` (B1∧B2∧· · ·∧Bn) → A

)

.

Theorem (Strong completeness for the logic H)

.

.

.

. ..

.

.

For Γ ⊆ L, A ∈ L, suppose that H : Γ 6` A.Then there exists a model M and a point a such that:

(1) (M, a) |= B for all B ∈ Γ,

(2) (M, a) 6|= A

Yutaka Miyazaki Graph Theory and Modal Logic

Page 25: Graph Theory and Modal Logic - Chapman Universitymath.chapman.edu/~jipsen/blast2013/slides/MiyazakiBLAST... · 2013. 8. 12. · 1. Graphs = Kripke frames. 2. Completeness for the

. . . . . .

Completeness for H

For Γ ⊆ L, A ∈ L,

H : Γ ` A⇐ def ⇒ ∃B1, B2, . . . , Bn ∈ Γ

(H ` (B1∧B2∧· · ·∧Bn) → A

)

.

Theorem (Strong completeness for the logic H)

.

.

.

. ..

.

.

For Γ ⊆ L, A ∈ L, suppose that H : Γ 6` A.Then there exists a model M and a point a such that:

(1) (M, a) |= B for all B ∈ Γ,

(2) (M, a) 6|= A

Yutaka Miyazaki Graph Theory and Modal Logic

Page 26: Graph Theory and Modal Logic - Chapman Universitymath.chapman.edu/~jipsen/blast2013/slides/MiyazakiBLAST... · 2013. 8. 12. · 1. Graphs = Kripke frames. 2. Completeness for the

. . . . . .

FMP and Decidability for H

.

Theorem

.

.

.

. ..

.

.

(1) H admits filtration, and so, it has the finite modelproperty.

(2) H is decidable.

Yutaka Miyazaki Graph Theory and Modal Logic

Page 27: Graph Theory and Modal Logic - Chapman Universitymath.chapman.edu/~jipsen/blast2013/slides/MiyazakiBLAST... · 2013. 8. 12. · 1. Graphs = Kripke frames. 2. Completeness for the

. . . . . .

Axiom for Irreflexivity

.

Proposition

.

.

.

. ..

.

.

For any frame F = 〈W,R〉,F |= i → 2¬i if and only if F |≡ ∀x ∈ W

(Not(xRx)

).

.

Proof.

.

.

.

. ..

.

.

(⇒:) Suppose that there is a point a ∈ W s.t. aRa. Definea valuation V as: V (i) := a. Then a 6|= i → 2¬i(⇐:) Suppose F 6|= i → 2¬i. Then, ther exists a ∈ W , s.t.a |= i, but a 6|= 2¬i, which is equivalent to a |= 3i. Thelatter means that there is b ∈ W s.t. aRb and b |= i. Then,V (i) = a = b. Thus a = b and that aRa

Yutaka Miyazaki Graph Theory and Modal Logic

Page 28: Graph Theory and Modal Logic - Chapman Universitymath.chapman.edu/~jipsen/blast2013/slides/MiyazakiBLAST... · 2013. 8. 12. · 1. Graphs = Kripke frames. 2. Completeness for the

. . . . . .

Axiom for Irreflexivity

.

Proposition

.

.

.

. ..

.

.

For any frame F = 〈W,R〉,F |= i → 2¬i if and only if F |≡ ∀x ∈ W

(Not(xRx)

).

.

Proof.

.

.

.

. ..

.

.

(⇒:) Suppose that there is a point a ∈ W s.t. aRa. Definea valuation V as: V (i) := a. Then a 6|= i → 2¬i(⇐:) Suppose F 6|= i → 2¬i. Then, ther exists a ∈ W , s.t.a |= i, but a 6|= 2¬i, which is equivalent to a |= 3i. Thelatter means that there is b ∈ W s.t. aRb and b |= i. Then,V (i) = a = b. Thus a = b and that aRa

Yutaka Miyazaki Graph Theory and Modal Logic

Page 29: Graph Theory and Modal Logic - Chapman Universitymath.chapman.edu/~jipsen/blast2013/slides/MiyazakiBLAST... · 2013. 8. 12. · 1. Graphs = Kripke frames. 2. Completeness for the

. . . . . .

The logic G for undirected graphs

G := H ⊕ (p → 23p) ⊕ (i → 2¬i)

.

Lemma

.

.

.

. ..

.

.

(1) For any frame F , F |= (p → 23p) ∧ (i → 2¬i) if andonly if F is an undirected graph.

(2) The canonical frame for G is also irreflexive andsymmetric.

.

Theorem

.

.

.

. ..

.

.

The logic G is strong complete for the class of allundirected graphs.

Question: Does G admit filtration?

Yutaka Miyazaki Graph Theory and Modal Logic

Page 30: Graph Theory and Modal Logic - Chapman Universitymath.chapman.edu/~jipsen/blast2013/slides/MiyazakiBLAST... · 2013. 8. 12. · 1. Graphs = Kripke frames. 2. Completeness for the

. . . . . .

The logic G for undirected graphs

G := H ⊕ (p → 23p) ⊕ (i → 2¬i)

.

Lemma

.

.

.

. ..

.

.

(1) For any frame F , F |= (p → 23p) ∧ (i → 2¬i) if andonly if F is an undirected graph.

(2) The canonical frame for G is also irreflexive andsymmetric.

.

Theorem

.

.

.

. ..

.

.

The logic G is strong complete for the class of allundirected graphs.

Question: Does G admit filtration?

Yutaka Miyazaki Graph Theory and Modal Logic

Page 31: Graph Theory and Modal Logic - Chapman Universitymath.chapman.edu/~jipsen/blast2013/slides/MiyazakiBLAST... · 2013. 8. 12. · 1. Graphs = Kripke frames. 2. Completeness for the

. . . . . .

The logic G for undirected graphs

G := H ⊕ (p → 23p) ⊕ (i → 2¬i)

.

Lemma

.

.

.

. ..

.

.

(1) For any frame F , F |= (p → 23p) ∧ (i → 2¬i) if andonly if F is an undirected graph.

(2) The canonical frame for G is also irreflexive andsymmetric.

.

Theorem

.

.

.

. ..

.

.

The logic G is strong complete for the class of allundirected graphs.

Question: Does G admit filtration?

Yutaka Miyazaki Graph Theory and Modal Logic

Page 32: Graph Theory and Modal Logic - Chapman Universitymath.chapman.edu/~jipsen/blast2013/slides/MiyazakiBLAST... · 2013. 8. 12. · 1. Graphs = Kripke frames. 2. Completeness for the

. . . . . .

The logic G for undirected graphs

G := H ⊕ (p → 23p) ⊕ (i → 2¬i)

.

Lemma

.

.

.

. ..

.

.

(1) For any frame F , F |= (p → 23p) ∧ (i → 2¬i) if andonly if F is an undirected graph.

(2) The canonical frame for G is also irreflexive andsymmetric.

.

Theorem

.

.

.

. ..

.

.

The logic G is strong complete for the class of allundirected graphs.

Question: Does G admit filtration?

Yutaka Miyazaki Graph Theory and Modal Logic

Page 33: Graph Theory and Modal Logic - Chapman Universitymath.chapman.edu/~jipsen/blast2013/slides/MiyazakiBLAST... · 2013. 8. 12. · 1. Graphs = Kripke frames. 2. Completeness for the

. . . . . .

Formulas charactering some graph properties

F : a graph (irreflexive and symmetric frame)

(1) Degree of a graphEvery point in F has at most n points that connects toit iff F |= Altn

Altn := 2p1∨2(p1 → p2)∨· · ·∨2(p1∧· · ·∧pn → pn+1)

(2) Diameter of a graphThe diameter of F is less than n iff F |= ¬ϕn.

ϕ1 := p1.

ϕn+1 := pn+1 ∧ ¬pn ∧ · · · ∧ ¬p1 ∧ 3¬ϕn.

Yutaka Miyazaki Graph Theory and Modal Logic

Page 34: Graph Theory and Modal Logic - Chapman Universitymath.chapman.edu/~jipsen/blast2013/slides/MiyazakiBLAST... · 2013. 8. 12. · 1. Graphs = Kripke frames. 2. Completeness for the

. . . . . .

Formulas charactering some graph properties

F : a graph (irreflexive and symmetric frame)

(1) Degree of a graphEvery point in F has at most n points that connects toit iff F |= Altn

Altn := 2p1∨2(p1 → p2)∨· · ·∨2(p1∧· · ·∧pn → pn+1)

(2) Diameter of a graphThe diameter of F is less than n iff F |= ¬ϕn.

ϕ1 := p1.

ϕn+1 := pn+1 ∧ ¬pn ∧ · · · ∧ ¬p1 ∧ 3¬ϕn.

Yutaka Miyazaki Graph Theory and Modal Logic

Page 35: Graph Theory and Modal Logic - Chapman Universitymath.chapman.edu/~jipsen/blast2013/slides/MiyazakiBLAST... · 2013. 8. 12. · 1. Graphs = Kripke frames. 2. Completeness for the

. . . . . .

Formulas charactering some graph properties

F : a graph (irreflexive and symmetric frame)

(1) Degree of a graphEvery point in F has at most n points that connects toit iff F |= Altn

Altn := 2p1∨2(p1 → p2)∨· · ·∨2(p1∧· · ·∧pn → pn+1)

(2) Diameter of a graphThe diameter of F is less than n iff F |= ¬ϕn.

ϕ1 := p1.

ϕn+1 := pn+1 ∧ ¬pn ∧ · · · ∧ ¬p1 ∧ 3¬ϕn.

Yutaka Miyazaki Graph Theory and Modal Logic

Page 36: Graph Theory and Modal Logic - Chapman Universitymath.chapman.edu/~jipsen/blast2013/slides/MiyazakiBLAST... · 2013. 8. 12. · 1. Graphs = Kripke frames. 2. Completeness for the

. . . . . .

Formulas charactering some graph properties

(3) Hamilton cyclesF : a graph that has n points.F has a Hamilton cycle iff F sat ψn, soF does NOT have a Hamilton cycle iff F |= ¬ψn.

ψn := σ1 ∧ 3(σ2 ∧ 3(· · ·3(σn ∧ 3σ1) · · · )), whereσk := ¬i1 ∧ ¬i2 ∧ · · · ∧ ik ∧ · · · ∧ ¬in

(Q:) How to characterize having Euler cycles?

Yutaka Miyazaki Graph Theory and Modal Logic

Page 37: Graph Theory and Modal Logic - Chapman Universitymath.chapman.edu/~jipsen/blast2013/slides/MiyazakiBLAST... · 2013. 8. 12. · 1. Graphs = Kripke frames. 2. Completeness for the

. . . . . .

Formulas charactering some graph properties

(3) Hamilton cyclesF : a graph that has n points.F has a Hamilton cycle iff F sat ψn, soF does NOT have a Hamilton cycle iff F |= ¬ψn.

ψn := σ1 ∧ 3(σ2 ∧ 3(· · ·3(σn ∧ 3σ1) · · · )), whereσk := ¬i1 ∧ ¬i2 ∧ · · · ∧ ik ∧ · · · ∧ ¬in

(Q:) How to characterize having Euler cycles?

Yutaka Miyazaki Graph Theory and Modal Logic

Page 38: Graph Theory and Modal Logic - Chapman Universitymath.chapman.edu/~jipsen/blast2013/slides/MiyazakiBLAST... · 2013. 8. 12. · 1. Graphs = Kripke frames. 2. Completeness for the

. . . . . .

Formulas charactering some graph properties

(4) ColoringF : a graph whose diameter is at most n.

F is k-colorable iff F sat color(k), soF is NOT k-colorable iff F |= ¬color(k)

color(k) := 2(n)( k∨

`=1

c` ∧k∧

`=1

(c` → 2¬c`)),

each c` is a prop. variable representing a color.

(Q:) How to characterize being planar?

Yutaka Miyazaki Graph Theory and Modal Logic

Page 39: Graph Theory and Modal Logic - Chapman Universitymath.chapman.edu/~jipsen/blast2013/slides/MiyazakiBLAST... · 2013. 8. 12. · 1. Graphs = Kripke frames. 2. Completeness for the

. . . . . .

Formulas charactering some graph properties

(4) ColoringF : a graph whose diameter is at most n.

F is k-colorable iff F sat color(k), soF is NOT k-colorable iff F |= ¬color(k)

color(k) := 2(n)( k∨

`=1

c` ∧k∧

`=1

(c` → 2¬c`)),

each c` is a prop. variable representing a color.

(Q:) How to characterize being planar?

Yutaka Miyazaki Graph Theory and Modal Logic

Page 40: Graph Theory and Modal Logic - Chapman Universitymath.chapman.edu/~jipsen/blast2013/slides/MiyazakiBLAST... · 2013. 8. 12. · 1. Graphs = Kripke frames. 2. Completeness for the

. . . . . .

Future Study

(1) What kind of graph properies are definable over thelogic G?

(2) Can we prove theorems from graph theory byconstructing a fromal proof?

Yutaka Miyazaki Graph Theory and Modal Logic

Page 41: Graph Theory and Modal Logic - Chapman Universitymath.chapman.edu/~jipsen/blast2013/slides/MiyazakiBLAST... · 2013. 8. 12. · 1. Graphs = Kripke frames. 2. Completeness for the

. . . . . .

Future Study

(1) What kind of graph properies are definable over thelogic G?

(2) Can we prove theorems from graph theory byconstructing a fromal proof?

Yutaka Miyazaki Graph Theory and Modal Logic

Page 42: Graph Theory and Modal Logic - Chapman Universitymath.chapman.edu/~jipsen/blast2013/slides/MiyazakiBLAST... · 2013. 8. 12. · 1. Graphs = Kripke frames. 2. Completeness for the

. . . . . .

Yutaka Miyazaki Graph Theory and Modal Logic

Page 43: Graph Theory and Modal Logic - Chapman Universitymath.chapman.edu/~jipsen/blast2013/slides/MiyazakiBLAST... · 2013. 8. 12. · 1. Graphs = Kripke frames. 2. Completeness for the

. . . . . .

Yutaka Miyazaki Graph Theory and Modal Logic