greenhouse 89: modelling present and past snowline ......last 60 years on the remarkables...

5
Weather and Climate (1991) 11: 43-47 4 3 MODELLING PRESENT AND PAST SNOWLINE ALTITUDE AND SNOWFALLS ON THE REMARKABLES Introduction James R. F. Barringer Division of Land and Soil Sciences, DSIR A computer model simulating snowlines and snowfalls from readily available daily meteorological data has been used to obtain estimates of snowlines over the last 60 years on the Remarkables (Barringer, 1986). The model, based on extrapolation of temperature and precipitation from a nearby low altitude site (ie, Queenstown Airport or Queenstown), uses daily calculations o f snow accumulation and ablation to estimate the mountain snowpack over a range o f altitudes. Snow ablation is calculated using a simple degree-day melt equation, and accumulation is modelled using a complex rain/snow threshold calculation to give sensitivity to estimates of snowline altitude. The model relies upon the use of four temperature lapse rates for extrapolating temperatures t o higher altitudes. Selection o f temperature lapse rate type i s made using a discriminant analysis o f meteorological data from the low altitude base site. This offers a substantial improvement over temperature extrapolation techniques i n other studies (eg. Moore & Owens, 1984a) and is crucial to the models ability to accurately simulate snowline altitude. Details o f this modelling approach are outlined in Barringer (1986 and in press). The model was calibrated using photographs of the daily winter snowline in the study area during 1984 and 1985. The model was optimised to a best fit of the daily winter snowline data for each year, and this calibration tested against snowline data for the other year. Goodness of fit of modelled to observed data was variable, but in all cases acceptable. Scenarios Because the model can be used to estimate snowline and snowfalls from low altitude daily meteorological records, it is possible to use it in conjunction with scenario data (ie. real data modified to approximate a different climate) to assess the sensitivity o f snowline altitude and snowfalls to changes in climate. The use of scenarios to assess the impacts of a climate different from the present does not constitute a prediction. Instead, scenarios "represent a systematic process that uses available theory, facts and judgments to explore the implications o f hypothesised conditions" (Lave & Epple, 1985). Clearly the scenarios used in this study are considered to be plausible since there is considerable evidence that our climate is not static, and may be warming (Salinger, 1988), but they are entirely artificial and are subject to considerable uncertainty. This is particularly the case because most scenarios for changing climate are derived from Global Circulation Models (GCMs) which are difficult to apply at a regional or local scale. None of the scenarios used can be said to be any more probable than the others. In this case the implications for snowline altitude o f a climate scenario (Salinger, pers. comm.) of cooler temperatures in the 1850s (n 1°C cooler than at present) are considered. Cooler temperatures in the 1930s are also hypothesised, being assumed to be 0.5°C cooler than present, and snowline altitude under these intermediate conditions estimated. The estimated snowlines for these scenarios are then compared with snowlines for warm climate scenarios.

Upload: others

Post on 20-Jul-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Greenhouse 89: Modelling Present and Past Snowline ......last 60 years on the Remarkables (Barringer, 1986). The model, based on extrapolation of temperature and precipitation from

Weather and Climate (1991) 11: 43-47 4 3

MODELLING PRESENT AND PAST SNOWLINE ALTITUDEAND SNOWFALLS ON THE REMARKABLES

Introduct ion

James R. F. Barr ingerDivision o f Land and Soil Sciences, DSIR

A compu te r m o d e l s imu la t ing snowl ines a n d snowfa l l s f r o m r e a d i l y ava i lab ledaily meteorological data has been used t o obtain estimates o f snowlines ove r thelast 6 0 y e a r s o n t h e Remarkables (Bar r inger, 1 9 8 6 ) . T h e m o d e l , based o nextrapolation o f temperature and precipitation f r o m a nearby l o w alt i tude s i te ( i e ,Queenstown A i r p o r t o r Queenstown), uses da i l y calculations o f snow accumulationand ablat ion t o estimate t h e mountain snowpack o v e r a range o f altitudes. Snowablation i s calculated us ing a s imple degree-day m e l t equation, a n d accumulationis modelled us ing a complex rain/snow threshold calculation t o g i ve sensit ivity t oestimates o f snowline altitude. T h e model re l ies upon t he use o f f ou r temperaturelapse r a t e s f o r ex t rapo la t ing temperatures t o h i g h e r a l t i tudes . Se lec t i on o ftemperature l a p s e r a t e t y p e i s m a d e u s i n g a d i s c r i m i n a n t a n a l y s i s o fmeteorological d a t a f r o m t h e l o w a l t i tude base s i t e . T h i s o f f e r s a substantialimprovement o v e r temperature ext rapolat ion techniques i n o t h e r s tud ies ( e g .Moore & Owens, 1984a) and i s crucial t o the models abi l i ty t o accurately simulatesnowline a l t i tude. De ta i l s o f t h i s model l ing approach a r e out l ined i n Barr inger(1986 and i n press).

The model w a s calibrated us ing photographs o f the da i l y w in te r snowline i n t h estudy area during 1984 and 1985. The model was optimised t o a best f i t o f the dai lywinter snowline da ta f o r each year, a n d t h i s cal ibrat ion tested against snowl inedata f o r the other year. Goodness o f f i t o f modelled t o observed data was variable,but i n a l l cases acceptable.

Scenarios

Because t h e mode l c a n b e used t o estimate snowl ine a n d snowfal ls f r o m l o waltitude d a i l y meteorological records, i t i s possible t o use i t i n conjunction w i t hscenario data ( ie . r ea l data modif ied t o approximate a di fferent cl imate) t o assessthe sensitivity o f snowline altitude and snowfalls t o changes i n climate. The use o fscenarios t o assess t h e impacts o f a cl imate d i f ferent f r o m t h e present does n o tconstitute a predict ion. Instead, scenarios "represent a systematic process t h a tuses ava i l ab le t h e o r y, f a c t s a n d judgments t o e x p l o r e t h e imp l i ca t i ons o fhypothesised conditions" (Lave & Epp le, 1985). Clear ly t he scenarios used i n th i sstudy a re considered t o b e plausible since there i s considerable evidence tha t o u rclimate i s n o t static, and may b e warming (Salinger, 1988), b u t they a re entirelyartificial a n d a re subject t o considerable uncertainty. T h i s i s part icularly t h e casebecause mos t scenarios f o r changing c l imate a r e der ived f r o m Globa l Circulat ionModels (GCMs) which are di ff icul t t o apply a t a regional o r local scale. None o f thescenarios used can be said t o be any more probable than the others.

In t h i s case t he implications f o r snowline alt i tude o f a cl imate scenario (Salinger,pers. comm.) o f cooler temperatures i n the 1850s ( n 1°C cooler than a t present) areconsidered. Cooler temperatures i n the 1930s a re a lso hypothesised, being assumedto b e 0 .5 °C coo le r than present, a n d snowl ine a l t i tude under these intermediateconditions est imated. T h e est imated snowl ines f o r t h e s e scenar ios a r e t h e ncompared w i t h snowlines f o r warm c l imate scenarios.

Page 2: Greenhouse 89: Modelling Present and Past Snowline ......last 60 years on the Remarkables (Barringer, 1986). The model, based on extrapolation of temperature and precipitation from

44 S n o w l i n e Altitude

Snowlines i n t h e 1850s a n d To d a y

By us ing meteorological records f r o m Queenstown A i r p o r t f o r the per iod 1972 t o1981 a n d altering the da i l y temperature data t o match the 1 ° C cooler scenario f o rthe 1 8 5 0 s , t h e m o d e l i nd i ca tes t h a t t h e m e a n w i n t e r s n o w l i n e w o u l d b eapproximately 1330 m . Values ranging f r om 1160 m t o 1420 m are estimated f o rindividual years i n t h i s scenario "decade". These f igures can b e compared w i t h avalue f o r mean w in te r snowline o f 1524 m calculated f o r t h e unaltered 1972 t o1981 period, indicating that snowline altitude may have been lower b y as much as190 m i f the scenario f o r t he 1850s i s correct. W i t h respect t o temperature th i ssuggests that snowline altitude may change b y as much as 190 m per ' C change i nmean w i n t e r temperature.

These f igures c a n b e compared w i t h those obtained f r o m s im i l a r analyses us ingother scenarios f o r c l imate d i f f e r i ng f r o m t h a t be ing experienced today (F igure1).

These estimates o f mean w i n t e r snowl ine a l t i tude unde r a range o f condit ionsprovide u s w i t h t h e fo l low ing values f o r change i n snowl ine al t i tude relat ive t ochange i n m e a n temperature.

1. Te m p e r a t u r e and rainfal l changing a t same rate as f o r the periodsince 1930 (ie. +0.6°C by 2050 wi th +10% precipitation) s n o w l i n e altituderises by E 100 in / "C r ise i n mean winter temperature. Calculated usingmodified 1972-1981 data.

2. + 1 . 5 ° C by 2050, no change i n rainfall (Salinger & Hicks Scenario 1) -snowline alt i tude rises b y 1 1 3 W C rise i n mean winter temperature,calculated using modif ied 1972-1981 data.

3. + 3 . 0 ° C by 2050, no change i n rainfall (Salinger & Hicks Scenario 2 ) -snowline alt i tude rises b y -a 8 6 m/"C rise i n mean winter temperature,calculated using modif ied 1972-1981 data. Th i s f igure i s an underestimatebecause o f the e ffec t o f undefined snowline where t h e snowline alt i tude i sabove the highest po int o n the range and hence defaults t o the maximumaltitude o f 2300 m.

2000

1800 -

1600 -

1400 -

1200 -

10001800 1900

Years

2000

Fig. 1. A comparison o f rates o fmean w i n t e r snow l i neretreat f o r the 1850

3 s c e n a r i o ( D ), the 1930A/ s c e n a r i o ( • ) , a

/ •-• 2 2 0 5 0 scenario( a ) ,/ • • • • a n d a n u m b e rof o ther scenariosfor changed

co c l i m a t e ( ) . Alsoshown a re snowlines

estimated b y dai lyrainfall a n dtemperature d a t a f r o mQueenstown 1930-1985(4).

2100

Snowline Altitude (metres)

Page 3: Greenhouse 89: Modelling Present and Past Snowline ......last 60 years on the Remarkables (Barringer, 1986). The model, based on extrapolation of temperature and precipitation from

Snowline Altitude 4 5

4. A s for 1. but calculated using 1930-85 (ie. 55 years) data to estimate altitudegives the same estimate o f rate o f change but higher snowline altitudes.The analysis in this case is o f poorer quality being based on temperature

and rainfall data only.

These analyses suggest a range o f values from a minimum o f 86 m to a maximumof 1 9 0 m r ise i n snowline altitude p e r degree centigrade r ise i n mean wintertemperature. I t i s notable however, that a l l t h e analyses involving estimates f o rsnowline altitude f o r conditions warmer than a t present suggest snowline altitudewould r ise b y about 1 0 0 m p e r degree centigrade, whi le t h e analysis o f pastclimate scenarios gives t h e higher figure o f 1 9 0 m p e r degree centigrade. Th ismay we l l b e a function o f the temperature lapse rate profiles a t this site which,because temperature inversions a r e common i n winter, leads t o l o w e r averagetemperature lapse rates a t altitudes below 1 2 0 0 m . W i t h lower temperature lapserates a t lower altitudes a small change i n temperature w i l l lead t o a large changein snowline altitude.

Summer a n d W i n t e r S n o w line Al t i tudesThe rates o f snowline retreat relative t o temperature increase indicated b y t h escenario based analysis above can be compared wi th figures derived b y modellingpresent snowlines o n a monthly basis f r o m summer t o w in ter. T h i s a l lows u s t oconsider snowl ine al t i tudes o v e r a range o f temperatures f a r greater t han thoseanticipated b y c l imate change scenarios f o r t he n e x t 5 0 years. T h i s method a lsoincludes a n a t tempt t o account f o r changes i n temperature lapse r a t e t y p e a n dfrequency i n wa rmer condit ions, s ince t h e scenario approach assumes s im i la r i t yof temperature lapse ra te under warmer conditions w i t h those o f present winters,while f o r t he seasonal analysis, lapse prof i les a re calculated o n a seasonal basis,and d isp lay s ign i f i cant differences between seasons.

This analysis d o e s assume a s im i la r i t y o f mean w i n t e r snowlines f o r possiblewarmer ( o r coo le r ) w in te rs w i t h mean mon th l y snowl ines w i t h o u t a l l ow ing f o rthe antecedent e f fec ts o f snowl ine a l t i tude i n prev ious months. T h i s e f f e c t i sclearly seen i n F igure 2 where a hysteresis e f fec t i s evident i n t h e plot ted data,with s p r i n g s n o w l i n e s ( i e . w i n t e r antecedent cond i t i ons ) b e i n g l o w e r t h a nautumn snow l i nes ( i e . s u m m e r antecedent cond i t ions) . F i g u r e 2 s h o w s d a t acalculated f o r the 1972 t o 1981 decade w i th a maximum snowline altitude o f 3500 m(cf. 2300 m f o r the top o f the Remarkables).

The analysis has been repeated us ing a longer t imes series ( ie . 5 0 years 1 9 3 0 -1984), b u t o f precipitation and temperature da ta o n l y f o r Queenstown (F igure 3 ) .The results o f these t w o analyses a re remarkably s imi la r. W i t h 1 0 years o f f u l lmeteorological record f r o m Frankton t h e ra te o f snowline change w i t h respect t omean mon th l y temperature i s calculated t o b e 1 0 1 m r C , a n d f o r t h e 5 0 y e a rQueenstown record 1 0 6 m P C . Both these results are also remarkably s imi lar t o theestimates obta ined f r o m t h e scenar io analyses i n t h e prev ious sec t ion , w h i c hapart f r o m t h e coo le r scenario, gave rates o f snowl ine change ranging f r o m 9 0mi0C to 113 m r C .

Temperature a n d Precipitation - S n o w line a n d SnowfallsWhen analys ing t h e resu l ts o f t h e mode l , i t i s interest ing t o corre late m o d e loutputs o f mean w i n t e r snowl ine a l t i tude a n d m e a n w i n t e r s n o w accumulat ionagainst m e a n w i n t e r temperatures a n d p rec ip i ta t ion , t o s e e w h e t h e r s i m p l erelationships ex i s t between these parameters a n d mode l output . The re i s a g rea tdeal o f var iabi l i ty present i n t h e i npu t a n d ou tpu t data,which means correlationsare n o t a lways good . Nonetheless, t he re i s genera l ly a s ign i f icant re lat ionshipbetween t h e amount o f snow accumulation, par t icu lar ly a t h i ghe r alt i tudes, a n d

Page 4: Greenhouse 89: Modelling Present and Past Snowline ......last 60 years on the Remarkables (Barringer, 1986). The model, based on extrapolation of temperature and precipitation from

46 S n o w l i n e Altitude

(1)

›,E

4000 -

3000‘*ma0 =

2000

1000

Fig. 2. A scatter p l o t o f mean monthly snowline al t i tude and mean monthlytemperature f o r the decade 1972 t o 1981 ( i e . us ing f u l l meteorologicalrecords as model input data) indicates a good correlation betweentemperature and mean monthly snowline al t i tude (r2=0.696). T h eregression l i n e suggests tha t snowline al t i tude changes b y 101 m r C .

(,)

E 3 0 0 0tu

o 1:1

.ot2000

. -3

CA

4000

1000

Fig. 3 A scatter p lo t o f mean monthly snowline altitude and mean monthlytemperature based on model results f o r the period 1930 t o 1985 ( le.using maximum a n d min imum temperature, a n d precipitat ion o n l yas model inputs) indicates a good correlation between temperatureand snowline alt i tude ( r 2 = 0.717). The slope o f the regression l inesuggests tha t snowline alt i tude changes b y 106 m r C .

-10

-

-

0

o S u m m e r

• A u t u m n

▪ W i n t e r

o S p r i n g

0Mean Monthly Temperature (degrees C)

Queenstown Airport

Ea a

10

• 0 DC l •

••

• 0 0 ••

• 0 3 )0 •

0

0 0 4Po 4)• , a 0

01:0 o

10 2 0

Mean Monthly Temperature (degrees C)Queenstown

20

Page 5: Greenhouse 89: Modelling Present and Past Snowline ......last 60 years on the Remarkables (Barringer, 1986). The model, based on extrapolation of temperature and precipitation from

Snowline Altitude 4 7

precipitation. T h i s r e l a t i onsh ip i s o b v i o u s g i v e n t h a t a t h i g h e r a l t i t u d e stemperatures d o n o t exceed freezing very of ten, s o tha t most precipitation fa l l s assnow a n d temperature i s a secondary effect . However, nearer t h e snowl ine t h i srelationship i s less c lea r a n d temperature more important.

Just a s w e m i g h t e x p e c t prec ip i ta t ion t o b e t h e p r i m a r y c o n t r o l o f s n o waccumulation, mean w i n t e r temperature shou ld b e t h e p r imary con t ro l o n meanwinter snowl ine a l t i tude, w i t h precipi tat ion a secondary fac to r. However, w h e nthese data are correlated the result i s no t significant. Th is i s a t least i n part due t othe complex relationship between temperature a n d precipitation t h a t leads t o a n ygiven snowline alt i tude, b u t i t i s a lso due t o t he relat ively smal l range o f mean'winter temperatures ( i e . -1-1.5°C). When w e consider a w ide r range o f temperatureconditions, l i k e those shown f o r mean month ly temperatures i n Figures 2 a n d 3(ie. -1-7.5°C), t h e temperature s igna l cont ro l l ing snowl ine a l t i tude shows c lea r l ythrough t h e no ise created b y natural var iab i l i ty.

Conclusions

1. S n o w line altitude i s complex t o model, and displays a h igh degree o f naturalva r i ab i l i t y.

2. Te m p e r a t u r e i s t he f i r s t order control o n snowline altitude, b u t w i th in therange o f mean win ter temperatures experienced over the last 3 0 t o 5 0 years(ie. 4-1.5°C), variabil i ty o f snowline caused b y the interaction o ftemperature, precipitation and other factors has masked any t rend o frising s n o w l i n e .

3. R a t e s o f change o f snowline alt i tude w i t h respect t o temperature a re about100 m r C change i n mean winter temperature, b u t may b e greater undercooler conditions than t he present, when cooler va l ley temperatures lead t omore f requent a n d more intense va l l ey inversions.

References

Barringer, J A R , 1986: So i l Erosion i n relation t o Snowline i n the Remarkables, Central Otago.Unpub. MSc thesis, Geography Department, University o f Otago, New Zealand.

Barringer, J.R.F., i n press: A Var iab le Lapse Rate Snow line Mode l f o r t h e Remarkables,Central Otago, New Zealand. N.Z. J. Hydro'.

Lave, B.L. & Epple, D. , 1 9 8 5 : Scenario Analysis I n Kates, R M . , Ausubel, J.H. & Berberian, M .(Eds), Climate Impact Assessment, John Wiley & Sons Ltd., 511 - 528.

Moore, R .D . & Owens, L E , 1984a: Modell ing A lp ine Snow Accumulation and Ablat ion UsingDaily Climate Observations. N . Z . J. Hyd ro l . , 23(2), 73 - 83.

Salinger, M.J. , 1988: N e w Zealand Climate Change: Past and Present. I n C l imate Change: T h eNew Zea land Response, Proceedings o f a workshop he ld i n Wellington, March 29-30, 1988,Ministry f o r the Environment, 17 - 24.

Salinger, M.J . & Hicks, DAC, 1989: Regional Climate Change Scenarios. Unpubl ished workingscenarios prepared f o r members o f the Impacts Working Group, New Zealand Climate ChangeProgramme, Min is t ry f o r the Environment.