grid connection requirements of renewable energy presented ... · grid connection requirements of...

21
Grid connection requirements of Renewable Energy Presented by: Riaan Smit Chief Engineer: Network Planning 2010-09-28

Upload: truongdang

Post on 25-May-2018

222 views

Category:

Documents


0 download

TRANSCRIPT

Grid connection requirements of Renewable Energy

Presented by: Riaan SmitChief Engineer: Network Planning

2010-09-28

2Content

• Summary of interest in renewable energy developments to date

• Renewable Energy Development Areas

• Embedded Generation (EG) Applications

• Interconnection of Embedded Generation

• Joint Transmission & Distribution Grid Planning

• Western Cape GTZ-DigSilent-Eskom grid integration study

2010/10/11 2

• Western Cape GTZ-DigSilent-Eskom grid integration study

• Conclusion

• Q&A

Renewable Energy “Potential” Summary (MW)

• Development interest in MW: WR SR NWR Total

• Wind Applications (Letter, Rev 1&2) 6 350 5 212 1 682 13 252

• Other RE sources 795 20 1 082 1 902

• Requests for RE Grid Connection 7 145 5 232 2 764 15 154

• Number of “application” projects 85 45 24 156

• Max potential listed for these sites 12 172 5 519 5 063 22 772

2010/10/11 3

• Alternatives, Duplicate sites, too close to coast, “long term dreams”,…..

• New applications will assist with data cleanup - latest requirements

• Formal process Applications expected ??

• Expected approval levels by 2013 (IRP1) 1 025

• Actual RE potential Precisely unknown• Uncertainty high Await IRP 2 by Nov 2010 / REFIT programme• Excellent cooperation by potential developers – to share data• Database with RE Projects shared with Eskom Network Planners only

Renewable Energy Development Areas (REDA) – Indicative “applications”

Higher Solar Resource

• MTS substation areas / Technical Areas

• Numerous extra ~500 MVA substations required – long term

• Additional transformer capacity required

“Application” Rev 1 & 2All interest in area

2010/10/11 4

Radio Astronomy

required• Allow 3+ year lead

time – EIA, technical & resource, etc.

• Funding for shared networks need NERSA approval

400 kV220 kV132 kV66 kV

Embedded Generation (EG) Applications

• Use Eskom EG Application form Revision 02, Dated 30 June 2010

• Forward request for Indicative Costs on Company Letterhead and Rev 2 to Customer Services (see contacts below)

• All letters, Rev 1 and Rev 2 considered in scenarios

• Formal national process not initiated as yet – all are waiting

2010/10/11 5

• Formal national process not initiated as yet – all are waiting

• Company & Technical data

������������ ��� ��� ������������ �

������������� ��� ���� ����������� �

����� ���������� ��� ��� � ������������� �

������������� ��� ��� � ����������� �

� ������� ������� ��� ��� � ����������� �

������ �������� ��� ��� ����������� �

WR

SR

NWR

ER

NR

CR

Renewable Energy applications

• Applications to be processed once REFIT programme requirements fully available

• Indicative costs to support developers

• A quotation requires detail work for project submissions – Application Form Rev 2 Part 2 to be updated with all required technical data

2010/10/11 6

Form Rev 2 Part 2 to be updated with all required technical data

• Selected projects to continue once commitment fee is paid to Budget Quote stage

• Project execution will follow once PPA allocated / financial close

• Will require a Connection and Use of System Agreement to be signed

• Any programme must cater realistically for project lead times and risks, including quotation phase, EIA, construction….

Interconnection of Embedded Generation

• SA Grid Code (Transmission) and Distribution Grid Codes from NERSA

• DST 34-1765 Distribution standard serves to fulfil Eskom Distribution’s obligation under Section 8.2 (4) of the South African Distribution Code: Network Code:

• “The Distributor shall develop the protection requirement guide for connecting Embedded Generators to the Distribution System to ensure safe and reliable operation of the Distribution System”.

2010/10/11 7

• This standard does not apply to generator interconnections at Low Voltage, or generators of capacity less than 100kW. NRS097 will cater for it.

• The present revision of this standard does not cater for specific requirements with regard to the interconnection of wind farms

• Additional Wind Grid Code requirements under development

• Will require developer/IPP cooperation with proper technical data• E.g. wind turbine models

Joint Transmission & Distribution Grid Planning

• First real wind energy course in South Africa – March 2009• Arranged by DEADP, Western Province and Eskom with GTZ & DigSilent• Involved various role players and developers in industry

• GTZ-DigSilent-Eskom Western Province grid capacity study – March – Nov 2009

• GTZ-DigSilent-Eskom grid capacity credit study – March – Oct 2010

• Transmission and Distribution in-house network capacity, and fault studies in progress

• Will be used in feedback to developers to assist with applications

2010/10/11 8

• Will be used in feedback to developers to assist with applications• Transmission & Distribution workshop held Sep 2010

• Planning procedures being developed and tested

• Developers treated as if only developer, until optimisation for projects accepted for REFIT programme

• DigSilent wind turbine modelling course to Eskom Network Planners – Oct 2010 – to support proper analysis and consistent approach

• The above deals only with Eskom, Municipal needs to be considered

Grid connection “technical concerns”

• Thermal loading of lines/transformers• Voltage variations during normal operation

• Over voltages studies for Renewable Energy projects• Voltage recovery after faults (incl. Low Voltage Ride Through)• Voltage sags due to breaker operation• Reactive power control

2010/10/11 9

• Cable/Transformer inrush currents• Short circuit currents• Impact on Power Quality aspects (Harmonics/Flicker, IEC 61400-21)• Influence on ripple control system• Limit system losses• Reliability required by wind developer• Transmission system requirements such as stability, sub-resonance...• Need to do technical studies / analysis to ensure acceptance

GTZ-DigSilent-Eskom Western Cape grid capacity study

Western Cape

Stage 3

Stage 2

2010/10/11 10

Stage 2

Stage 1

Western Cape Province area

Stage 1: 150MW – Impact on Thermal Limits

To DROERIVIER

Continued onBacchus 132kV diagram

BOSKLOOF 1

BOSKLOOF 2QUARY1_2

QUARY1_1

PIETM1_2 BANTM2_2

BANTM1_1

WHITH1_2

WHITH1_1

BAVIN1_2

BAVIN1_1PIETM1_1

GEELB1_2

GEELB1_1

RUITK1_2

RUITK1_1

KOUP1_2

KOUP1_1

GEMSB1_2

GEMSB1_1

ANTJK1_2

ANTJK1_1

BOTES_2

BOTES_1

2181

WO

LF

12,4

1 km

0,00

%

lod_72962_1 lod_72932_1

lod_72852_1

lod_70922_1 lod_70842_1

2181WOLF 12,93 km20,17 %

2181WOLF 12,93 km22,62 %

2181WOLF 11,05 km19,67 %

2181WOLF 11,05 km20,68 %

2181WOLF 13,16 km18,27 %

2181WOLF 13,16 km20,32 %

2181WOLF 9,64 km17,76 %

2181WOLF 9,64 km17,88 %

2181WOLF 14,20 km17,12 %

2181WOLF 14,20 km17,53 %

2181WOLF 24,09 km16,59 %

2181WOLF 24,09 km16,33 %

2181

WO

LF

12,4

0 km

120,

99 %

2181WOLF 9,96 km115,69 %

2181

WO

LF

11,4

5 km

20,8

3 %

2181

WO

LF

2,08

km

0,95

%

2181

WO

LF

3,87

km

1,37

%

2181

WO

LF

0,51

km

0,39

%

2181WOLF 74,80 km0,00 %

2181

WO

LF

2,63

km

6,05

%

2181

WO

LF

2,07

km

3,36

%

2181WOLF 11,41 km0,00 %

2181WOLF 11,41 km112,44 %

2181WOLF 9,96 km0,00 %

2181WOLF 22,49 km111,37 %

2181WOLF 22,49 km0,00 %

2181WOLF 11,17 km115,48 %

2181WOLF 11,17 km0,00 %

2181WOLF 74,80 km110,86 %

• <=127% overload

Offn-1

• General mitigation options > thermal limits

• Build new 143 km line to

2010/10/11 11

��������

��� �

LAINGSBURG

LAIN132 WF

LAIN0.69 WF

LAIN33 WF

LAIN132B1

LADIS13

SWART22

SWART1

BUFPT22

BUFPT1

LAIN132B2

180,

00 M

VA

86,0

1 %

2,50

MV

A81

,36

%

2181WOLF 9,40 km31,04 %

Ladismith

M1311CH 28,11 km7,06 %

2161WOLF 6,12 km14,59 %

WP51WOLF 6,00 km14,48 %

2161

WO

LF

14,4

5 km

15,9

7 %

2181

WO

LF

9,40

km

31,0

4 %

2181

WO

LF

11,4

5 km

22,9

7 %

WP

51W

OLF

14

,45

km15

,72

%

10,0

0 M

VA

60,6

8 %

10,0

0 M

VA

14,0

0 %

• Build new 143 km line to Boskloof

• Limit wind farm output to 120MW • Limit output in case of actual line

failure • Consider dynamic line rating

systems• Or just limit size of Wind Energy

Facility

Violation of Thermal Limits – Cap Wind Farm Output

0,500 1,500 2,500 3,500 4,500 5,500 6,500 7,500 8,500 9,500 10,50 11,50 12,50 13,50 14,50 15,50 16,50 17,50 18,50 19,50 20,50

12,50

10,00

7,50

5,00

2,50

-2,50

0,000

DIg

SIL

EN

T

Pro

babi

lity

Use Weibull distribution

2010/10/11 12

x-Axis: Windpark Analysis: Wind Speed in m/sWindpark Analysis: Probability in %

100,0380,0360,0340,0320,030,03

160,00

120,00

80,00

40,00

0,00

-40,00

x-Axis: Windpark Analysis: Cummulative Probability in %Windpark Analysis: Generated Power in MW

Y =120,000 MW16.624 %

DIGSILENT High Load PlotsVoltage at Laingsburg Wind Farm Connection Point PV-Curve

Date: 7/23/2009

Annex: 1 /3

1454 h/year exceed limit

Wind m/s

Cumulative Probability

Pow

er in

MW

Voltage Variations – cos phi constant (=1)

1,08

1,05

1,02

Y = 1,050 p.u.47.697 MW58.375 MW

66.198 MW

X =150,000 MW

1.065 p.u.

1.070 p.u. 1.074 p.u.

1.050 p.u.

136.500 MW 1.074 p.u.

DIg

SIL

EN

T

Expect high voltagesSmall voltage changes due to Line outages

2010/10/11 13

207,50167,50127,5087,5047,507,50

0,99

0,96

0,93

x-Axis: Laingsburg WF: Active Power in MWLAIN132 WF: Voltage in p.u. - Base CaseLAIN132 WF: Voltage in p.u. - Lain132kV_Laingsburg_OffLAIN132 WF: Voltage in p.u. - Laingsburg_Boskloof_OffLAIN132 WF: Voltage in p.u. - Laingsburg_Droerivier_Off

DIGSILENT High Load Voltage

Voltage at Laingsburg Wind Farm Connection Point PV-Curve

Date: 7/24/2009

Annex: 1 /2

Small voltage changes due to Line outages

Voltage Variations – cos phi(P)-characteristic

1,075

1,050

1,025

Y = 1,050 p.u.

X =150,000 MW

1.037 p.u. 1.038 p.u. 1.044 p.u.

1.050 p.u.

DIg

SIL

EN

T

Power Factor control characteristic

2010/10/11 14

200,00160,00120,0080,0040,000,00

1,000

0,975

0,950

x-Axis: Laingsburg WF: Active Power in MWLAIN132 WF: Voltage in p.u. - Base CaseLAIN132 WF: Voltage in p.u. - Lain132kV_Laingsburg_OffLAIN132 WF: Voltage in p.u. - Laingsburg_Boskloof_OffLAIN132 WF: Voltage in p.u. - Laingsburg_Droerivier_Off

DIGSILENT High Load Voltage

Voltage at Laingsburg Wind Farm Connection Point PV-Curve - cosphi(P)-characteristic

Date: 7/24/2009

Annex: 1 /2

Power Factor control characteristicNeed to choose correct wind turbine technologye.g. Type C or D

Specialist studies – e.g. Impact on Short Circuit Currents

• DFIG:• Considerable contribution to peak short circuit current.• Contribution to thermal short circuit ratings: approx 1 p.u. shc-current

• WTG with fully rated converter:• Contribution to initial short circuit current: approx. 1 p.u. shc-current• Contribution to thermal short circuit ratings: approx 1 p.u. shc-current

2010/10/11 15

• 150MW wind farm at Laingsburg:• Contribution to initial shc-current (Ikss): approx 2 kA (at 132kV)• Contribution to peak shc-current (ip): 4,4 kA• Contribution to transient shc-current (Iks): 0,67 kA

• Contribution to fault levels not critical in this particular example because of low fault level at wind farm connection point.

Stage 2 – 750MW of Wind Gen in KarooRepresent a group of green field projects - example

Nuweveld

750 MW

35km25km

24km

Reasonable distance• Size of load• Load centre• Conductor size• Shared networks• 50-70 km ?•Coverage area?•Location?

?

2010/10/11 16

12km

20km

KomsbergInfluence on series capacitors,sub-synchronous

?

?

Stage 2 – 750MW wind in Karoo - Voltages

1,08

1,05

1,02

X =750,000 MW

1.050 p.u.

1.034 p.u.

1.045 p.u.

1.052 p.u. 1.050 p.u.

X =750,000 MW

1.050 p.u.

1.034 p.u.

1.045 p.u.

1.052 p.u. 1.050 p.u. Y = 1,050 p.u.613.272 MW Y = 1,050 p.u.613.272 MW

DIg

SIL

EN

T

Expect high voltages

2010/10/11 17

1000,00800,00600,00400,00200,000,00

0,99

0,96

0,93

x-Axis: Static Generator: Active Power in MWStatic Generator: Voltage in p.u. - Base CaseStatic Generator: Voltage in p.u. Droerivier - Muldersvlei outStatic Generator: Voltage in p.u. Droerivier - Bacchus out

0.950 p.u. 0.950 p.u. 0.950 p.u. 0.950 p.u. Y = 0,950 p.u.Y = 0,950 p.u.

Stage 2 – 750MW – Summary of Results

• No thermal overloads under n-1 conditions

• Voltage variations very small, even in constant power factor operation.

• Operation with constant Q (var-control) is appropriate.

• (Slow) voltage control is possible and should be considered.

• 4x100Mvar shunt reactors required at Nuweveld substation (or equivalent var-absorption of the wind farms) because of proximity to

2010/10/11 18

equivalent var-absorption of the wind farms) because of proximity to Komsberg series compensation.

• Series compensation at Komsberg should be resized for considering new line configuration.

• With adjusted series compensation, shunt reactors at Nuweveld might not be required.

• No power quality issues because of the large number of turbines and high fault level at the grid connection point

Stage 3 – 2800MW of Wind – Example: Low Load + High Wind, 2xKoeberg units, no OCGT‘s

967,56 MW-814,79 Mvar

Hyd

ra-L

uckh

of 4

00_3

(Per

seus

3)

25,4

5 %

253,87 MW-166,20 Mvar

Hyd

ra-L

uckh

of (B

eta)

400

_1

21,9

9 %

225,01 MW-134,50 Mvar

Hyd

ra-L

uckh

of 4

00_2

(Per

seus

2)

25,3

6 %

250,16 MW-169,79 Mvar

Bet

a-H

ydra

765

_2

6,42

%

238,53 MW-344,31 Mvar

968 MWNorthHydra

Substation

2010/10/11 19

Hydra

-1912,25 MW407,80 Mvar

736,12 MW-183,35 Mvar

Hydra-Poseidon 400_1 31,32 %

362,80 MW-88,77 Mvar

Hydra-Poseidon 400_2 32,30 %

373,31 MW-94,58 Mvar-365,36 MW

94,39 Mvar

Hyd

r a- V

icto

r ia 4

00_1

S1

21

,43

%

-452,87 MW81,11 Mvar

452,91 MW-81,47 Mvar

Hyd

ra-V

icto

ria 4

00_2

40

,47

%-458,95 MW84,74 Mvar

Hydr

a-Vi

ctor

ia 4

00_1

S2

..39

,90

%

-452,91 MW81,47 Mvar

-635,08 MW147,56 Mvar

1912 MW 736 MW

W Cape

E Cape

E Cape RE Source

N Cape RE Source

Conclusion

• Various exciting disciplines• Skills development good progress• Methods and techniques being

improved• Eskom application form available• Embedded Generation standard • REDA being studied – to motivate

long term grid solutions

Extract EnergyExpand Vision

2010/10/11 20

long term grid solutions• Await REFIT Rules & Criteria &

IRP to determine grid requirements

• Need long term allocations and approvals to ensure 3-7 year large infrastructure lead times can be met

• Let us make RE work

Thank you

Riaan [email protected]

Contributions by:Nish RathanlallShirley Salvoldi