ground-state density functional theory: an overvie › psik-training › gross-i+ii.pdf · towards...

78
Ground-state density functional theory: An overview www : http://www.physik.fu-berlin.de/~ag-gross E. K. U. GROSS Freie Universität Berlin

Upload: others

Post on 09-Jun-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Ground-state density functional theory: An overvie › Psik-training › Gross-I+II.pdf · TOWARDS THE EXACT FUNCTIONAL 1st generation of DFT : Use approximate functionals (LDA/GGA)

Ground-state density functional theory: An overview

www: http://www.physik.fu-berlin.de/~ag-gross

E. K. U. GROSS

Freie Universität Berlin

Page 2: Ground-state density functional theory: An overvie › Psik-training › Gross-I+II.pdf · TOWARDS THE EXACT FUNCTIONAL 1st generation of DFT : Use approximate functionals (LDA/GGA)

OUTLINE

• Basic theorems of ground-state DFT

• Optimized effective potential method(OPM, OEP)

• Construction of orbital functionalsto tackle van der Waals interactions

• Non-collinear OEP

THANKS

Martin PetersilkaTobias GraboNicole Helbig

Manfred LeinJohn Dobson

Sangeeta SharmaKey Dewhurst

Page 3: Ground-state density functional theory: An overvie › Psik-training › Gross-I+II.pdf · TOWARDS THE EXACT FUNCTIONAL 1st generation of DFT : Use approximate functionals (LDA/GGA)

Basic theorems of ground-state density functional theoryBasic theorems of ground-state density functional theory

Page 4: Ground-state density functional theory: An overvie › Psik-training › Gross-I+II.pdf · TOWARDS THE EXACT FUNCTIONAL 1st generation of DFT : Use approximate functionals (LDA/GGA)

Many-Body Schrödinger Equation

( ) ( )N21N21 r,...,r,rEr,...,r,rH Ψ=Ψ

WVTH ++=∑

=

∇−=

N

1j

2j

2

m2T

h

∑≠

= −=

N

kj1k,j kj

2

rr

e

2

1W

( )∑=

=N

1jjrvV

Page 5: Ground-state density functional theory: An overvie › Psik-training › Gross-I+II.pdf · TOWARDS THE EXACT FUNCTIONAL 1st generation of DFT : Use approximate functionals (LDA/GGA)

Why DFT

Example: Oxygen atom(8 electrons)

depends on 24 coordinates

rough table of the wavefunction

10 entries per coordinate: ⇒⇒⇒⇒ 1024 entries

1 byte per entry: ⇒⇒⇒⇒ 1024 bytes

5××××109 bytes per DVD: ⇒⇒⇒⇒ 2××××1014 DVDs

10 g per DVD: ⇒⇒⇒⇒ 2××××1015 g DVDs

= 2××××109 t DVDs

( )81 r,,rr

LrΨ

Page 6: Ground-state density functional theory: An overvie › Psik-training › Gross-I+II.pdf · TOWARDS THE EXACT FUNCTIONAL 1st generation of DFT : Use approximate functionals (LDA/GGA)

ESSENCE OF DENSITY-FUNTIONAL THEORY

• Every observable quantity of a quantum system can be calculated from the ground-state density of the system ALONE

• The ground-state density of particles interacting with each other can be calculated as the ground-state density of an auxiliary system of non-interacting particles

• Every observable quantity of a quantum system can be calculated from the ground-state density of the system ALONE

• The ground-state density of particles interacting with each other can be calculated as the ground-state density of an auxiliary system of non-interacting particles

Page 7: Ground-state density functional theory: An overvie › Psik-training › Gross-I+II.pdf · TOWARDS THE EXACT FUNCTIONAL 1st generation of DFT : Use approximate functionals (LDA/GGA)

compare ground-state densities ρ(r) resulting from different external potentials v(r).

QUESTION: Are the ground-state densities coming from different potentials always different?

ρ(r)

v(r)

Page 8: Ground-state density functional theory: An overvie › Psik-training › Gross-I+II.pdf · TOWARDS THE EXACT FUNCTIONAL 1st generation of DFT : Use approximate functionals (LDA/GGA)

v(r) Ψ (r1…rN)ρ (r)

single-particlepotentials havingnondegenerateground state

ground-statewavefunctions

ground-statedensities

Hohenberg-Kohn-Theorem (1964)

G: v(r) → ρ (r) is invertibleG: v(r) → ρ (r) is invertible

A

G

Ã

Page 9: Ground-state density functional theory: An overvie › Psik-training › Gross-I+II.pdf · TOWARDS THE EXACT FUNCTIONAL 1st generation of DFT : Use approximate functionals (LDA/GGA)

Proof

Step 1: Invertibility of map A

Solve many-body Schrödinger equation for the external potential:

This is manifestly the inverse map: A given Ψ uniquely yields the external potential.

( )Ψ

Ψ−−= eeWTEV

( ) ( ) constantr...rWT

rv N1ee

N

1jj +−

ΨΨ−=∑

=

rr

Page 10: Ground-state density functional theory: An overvie › Psik-training › Gross-I+II.pdf · TOWARDS THE EXACT FUNCTIONAL 1st generation of DFT : Use approximate functionals (LDA/GGA)

Step 2: Invertibility of map Ã

Given: two (nondegenerate) ground states Ψ, Ψ’ satisfying

Ψ=Ψ EH

''E''H Ψ=Ψwith

VWTH ++=

'VWT'H ++=

to be shown: ' ' ρ≠ρ⇒Ψ≠Ψ

Ψ �

Ψ’ �

� ρ = ρ’

cannot happen

Page 11: Ground-state density functional theory: An overvie › Psik-training › Gross-I+II.pdf · TOWARDS THE EXACT FUNCTIONAL 1st generation of DFT : Use approximate functionals (LDA/GGA)

Use Rayleigh-Ritz principle:

( ) ( ) ( )[ ]∫ −ρ+=

Ψ−+Ψ=ΨΨ<ΨΨ=

r'vrvr'rd'E

''VV'H''H'HE

3

( ) ( ) ( )[ ]∫ −ρ+=

ΨΨ<ΨΨ=

rvr'vrrdE

'H''H''E

3

Reductio ad absurdum:

Assumption ρ = ρ’. Add � and �⇒ E + E’ < E + E’

Page 12: Ground-state density functional theory: An overvie › Psik-training › Gross-I+II.pdf · TOWARDS THE EXACT FUNCTIONAL 1st generation of DFT : Use approximate functionals (LDA/GGA)

Every quantum mechanical observable is completely determined by the ground state density.

Proof:

observables

[ ] [ ]ρΦ →ρ→ρ−

i.E.S solveG v

1

[ ] [ ] [ ]ρΦρΦ=ρ i ii B B :B

ConsequenceConsequence

Page 13: Ground-state density functional theory: An overvie › Psik-training › Gross-I+II.pdf · TOWARDS THE EXACT FUNCTIONAL 1st generation of DFT : Use approximate functionals (LDA/GGA)

What is a FUNCTIONAL?

E[ρ]

functional

set of functions set of real numbers

ρ(r) R

Generalization:

[ ] [ ]( )rvvr

rρ=ρ

[ ] [ ]( )N1r...r r...rN1

rrrr ρψ=ρψ ( )N1 r...r

rr

functional depending parametrically onrr

or on

Page 14: Ground-state density functional theory: An overvie › Psik-training › Gross-I+II.pdf · TOWARDS THE EXACT FUNCTIONAL 1st generation of DFT : Use approximate functionals (LDA/GGA)

QUESTION:

How to calculate ground state density of a givensystem (characterized by external potential ) without recourse to the Schrödinger Equation?

Theorem:

( )ro

( )∑= rV oo

rv

There exists a density functional EHK[ρ] with properties i) EHK[ρ] > Eo for ρ ≠ ρo

ii) EHK[ρo] = Eowhere Eo = exact ground state energy of the system

Thus, Euler equation

yields exact ground state density ρo.( ) [ ] 0Er HK =ρ

δρδr

Page 15: Ground-state density functional theory: An overvie › Psik-training › Gross-I+II.pdf · TOWARDS THE EXACT FUNCTIONAL 1st generation of DFT : Use approximate functionals (LDA/GGA)

proof:

formal construction of EHK [ρ] :

for arbitrary ground state density

define: [ ] [ ] [ ]ρΨ++ρΨ≡ρ oHK VWT E

( ) [ ]ρΨ→ρ−1A

~

rr

> Eo for ρ ≠≠≠≠ ρo

= Eo for ρ = ρo

EHK [ρ] = d3r ρ(r) vo(r) [ ] [ ]ρΨ+ρΨ WT +

F[ρ] is universal

q.e.d.

Page 16: Ground-state density functional theory: An overvie › Psik-training › Gross-I+II.pdf · TOWARDS THE EXACT FUNCTIONAL 1st generation of DFT : Use approximate functionals (LDA/GGA)

HOHENBERG-KOHN THEOREMHOHENBERG-KOHN THEOREM

1. v(r) ρ(r)one-to-one correspondence between external potentials v(r) and ground-state densities ρ(r)

2. Variational principleGiven a particular system characterized by the external potential v0(r) . Then the solution of the Euler-Lagrange equation

yields the exact ground-state energy E0 and ground-state density ρρρρ0(r) of this system

3. EHK[ρ] = F [ρ] + ρ(r) v0(r) d3r

F[ρ] is UNIVERSAL. In practice, F[ρ] needs to be approximated

1—1

( ) [ ] 0Er HK =ρ

δρδ

Page 17: Ground-state density functional theory: An overvie › Psik-training › Gross-I+II.pdf · TOWARDS THE EXACT FUNCTIONAL 1st generation of DFT : Use approximate functionals (LDA/GGA)

Expansion of F[[[[ρρρρ]]]] in powers of e2

F[ρ] = F(0)[ρ] + e2 F(1)[ρ] + e4 F(2)[ρ] + ···

where: F(0)[ρ] = Ts [ρ] (kinetic energy of non-interacting particles)

⇒⇒⇒⇒ F[[[[ρρρρ]]]] = Ts [[[[ρρρρ]]]] + d3r d3r' + E x [[[[ρρρρ]]]] + Ec[[[[ρρρρ]]]]

( )[ ] ( ) ( ) [ ]ρ+−ρρ=ρ ∫∫ x

332

12 E 'rddr 'rr

'rr

2

e Fe

e2 ρρρρ (r) ρρρρ (r')2 r - r'

( ) ( )[ ] [ ]∑∞

=

ρ=ρ2i

cii2 EFe

(Hartree + exchange energies)

(correlation energy)

Page 18: Ground-state density functional theory: An overvie › Psik-training › Gross-I+II.pdf · TOWARDS THE EXACT FUNCTIONAL 1st generation of DFT : Use approximate functionals (LDA/GGA)

TOWARDS THE EXACT FUNCTIONAL

1st generation of DFT: Use approximate functionals (LDA/GGA) for Ts, Ex

and Ec e.g.

⇒ Thomas-Fermi-type equation has to be solved

2nd generation of DFT: Use exactfunctional Tsexact[ρ] and LDA/GGA for Ex

and Ec

⇒ KS equations have to be solved

3rd generation of DFT: Use Tsexact[ρ], and an orbital functional Exc[ϕ1, ϕ2, ...]

e.g.

⇒ KS equations have to be solved self-consistently with OPM integral equation

[ ] [ ] ( ) ( ) [ ] [ ]ρ+ρ+−ρρ+ρ=ρ ∫ ∫ cx

33s EE

'rr

'rr'rdrd

2

1TF

[ ] ( ) ( )∫

+

ρρ∇+ρ=ρ L

2353

s brardT

[ ] [ ]( ) [ ]( )r 2

r rdT jj

2

j3exact

s

occ

ρϕ

∇−ρϕ=ρ ∑∫∗

[ ] [ ]( ) ( ) ( ) ( )∑∑∫=↑↓σ

σσ

∗σσ

∗σ

−ϕϕϕρϕ

−=ρN

k,j

33jjkkexactx 'rrdd

'rr

'r r r'r E

Page 19: Ground-state density functional theory: An overvie › Psik-training › Gross-I+II.pdf · TOWARDS THE EXACT FUNCTIONAL 1st generation of DFT : Use approximate functionals (LDA/GGA)

[ ]( )rρvext ( )rρ [ ]( )rρvs

HK 1-1 mapping for interacting particles

HK 1-1 mapping for non-interacting particles

Kohn-Sham Theorem

Let ρo(r) be the ground-state density of interacting electrons moving in the external

potential vo(r). Then there exists a local potential vs,o(r) such that non-interacting particles exposed to vs,o(r) have the ground-state density ρo(r), i.e.

( ) ( ) ( )rr rv2 jjjos,

2

ϕ=∈ϕ

+∇− ( ) ( )∑

ϕ=N

) lowest (with j

2

jo

j

rrρ

proof:

Uniqueness follows from HK 1-1 mapping

Existence follows from V-representability theorem

( ) [ ]( )rρvrv osos, =

,

Page 20: Ground-state density functional theory: An overvie › Psik-training › Gross-I+II.pdf · TOWARDS THE EXACT FUNCTIONAL 1st generation of DFT : Use approximate functionals (LDA/GGA)

By construction, the HK mapping is well-defined for all those functions ρ(r) that are ground-state densities of some potential (so called V-representablefunctions ρ(r)).

QUESTION: Are all “reasonable” functions ρ(r) V-representable?

V-representability theorem (Chayes, Chayes, Ruskai, J Stat. Phys. 38, 497 (1985))

On a lattice (finite or infinite), any normalizable positive function ρ(r), that is compatible with the Pauli principle, is (both interacting and non-interacting) ensemble-V-representable.

In other words: For any givenρ(r) (normalizable, positive, compatible with Pauli principle) there exists a potential, vext[ρ](r), yielding ρ(r) as interacting ground-state density, and there exists another potential, vs[ρ](r), yielding ρ(r) as non-interacting ground-state density.

In the worst case, the potential has degenerate ground states such that the given ρ(r) is representable as a linear combination of the degenerate ground-state densities (ensemble-V-representable).

Page 21: Ground-state density functional theory: An overvie › Psik-training › Gross-I+II.pdf · TOWARDS THE EXACT FUNCTIONAL 1st generation of DFT : Use approximate functionals (LDA/GGA)

Define vxc[ρ](r) by the equation

[ ]( ) [ ]( ) ( ) [ ]( )rρvrρvrρv xcexts +−

ρ+= ∫ 'rd'rr

'r: 3

[ ]( )rρvH

vs[ρ] and vext[ρ] are well defined through HK.

KS equations

Note: The KS equations do notfollow from the variational principle. They follow from the HK 1-1 mapping and the V-representabilitytheorem.

[ ]( )rρv oext

fixed

[ ]( ) [ ]( ) ( ) ( )rr rρvrρv 2 jjjoxcoH

2

ϕ=∈ϕ

+++∇−

( )rvo

to be solved selfconsistently with ( ) ( )∑ ϕ=2

jo rrρ

Page 22: Ground-state density functional theory: An overvie › Psik-training › Gross-I+II.pdf · TOWARDS THE EXACT FUNCTIONAL 1st generation of DFT : Use approximate functionals (LDA/GGA)

Variational principle gives an additional property of vxc:

[ ]( ) [ ]( )

xcoxc rδρ

ρδErρv =

where [ ] [ ] ( ) ( ) [ ]ρTr'rddr'-r

r'ρ rρ

2

1ρF:ρE s

33xc −−= ∫

Consequence: Approximations can be constructed either for Exc[ρ] or directly for v xc[ρ](r).

Page 23: Ground-state density functional theory: An overvie › Psik-training › Gross-I+II.pdf · TOWARDS THE EXACT FUNCTIONAL 1st generation of DFT : Use approximate functionals (LDA/GGA)

Proof: [ ] [ ] ( ) ( ) [ ] [ ]ρEρErdrvrρρTρE xcH3

osHK +++= ∫[ ]

( ) ( ) ( ) [ ]( ) ( )ooo ρ

xcoHo

ρ

s

ρ

HK

rδρ

δErρvrv

rδρ

δT

rδρ

ρδE0 +++==

[ ]( ) [ ]( )∑∫ ϕ

∇−ϕ=j

3j

2

j rdrρ2

rρδ

δTs = change of Ts due to a change δρ which corresponds to a change δvs

( ) ( )( ) ( ) ( ) ( )

−∈=ϕ−∈ϕ= ∫∑∑∫ rdrvrρδrdrrvrδ 3

sj

jj

3jsj

*j

( ) ( ) ( ) ( )∫∫∑ −−∈= rdrδvrρrdrvrδρδ 3s

3s

jj

( ) ( ) ( )∑ ϕϕj

jsj rrδvr

( ) ( )∫−= rdrvrδρ 3s ( ) [ ]( )rρ-v

rδρ

δT s

s =⇒

Page 24: Ground-state density functional theory: An overvie › Psik-training › Gross-I+II.pdf · TOWARDS THE EXACT FUNCTIONAL 1st generation of DFT : Use approximate functionals (LDA/GGA)

[ ]( ) ( ) [ ]( ) ( )oρ

xcoHoos rδρ

δErρvrvrρv0 +++−=⇒

[ ]( ) ( )oρ

xcoxc rδρ

δErρv =⇒

Page 25: Ground-state density functional theory: An overvie › Psik-training › Gross-I+II.pdf · TOWARDS THE EXACT FUNCTIONAL 1st generation of DFT : Use approximate functionals (LDA/GGA)

Numerical solution of KS equation by expansion in basis:

Finite systems(atoms, molecules, clusters)

Periodic solids

• Gauss-type orbitals (GTOs): e.g. GAUSSIAN, GAMESS

• Slater-type orbitals (STOs): e.g. ADF

• Linear augmented plane waves (LAPWs): WIEN, FLEUR, EXCITING

• Linear muffin tin orbitals (LMTOs): MPI-Stuttgart co de

• Plane waves (used with pseudopotentials): ABINIT, PWSCF

• Local orbitals: SIESTA, CRYSTAL

Page 26: Ground-state density functional theory: An overvie › Psik-training › Gross-I+II.pdf · TOWARDS THE EXACT FUNCTIONAL 1st generation of DFT : Use approximate functionals (LDA/GGA)

3 generations of approximations for Exc

1. Local Density Approximation (LDA):

[ ] ( )( )∫ ρ=ρ re rdE homxc

3xc

2. Generalized Gradient Approximation (GGA):

[ ] ( )∫ ρ∇ρ=ρ K,,g rdE xc3

xc

3. Orbital functionals(Optimized Effective Potential Method: OPM, OEP):

[ ]N1xc

OEP

xc E E ϕϕ= K

Page 27: Ground-state density functional theory: An overvie › Psik-training › Gross-I+II.pdf · TOWARDS THE EXACT FUNCTIONAL 1st generation of DFT : Use approximate functionals (LDA/GGA)

LDA parametrization of Vosko, Wilk, Nusair (1980)

cxhomxc eee += ( ) 34

31

x

3

4

3e ρ

π−=ρ

( ) ( )( )

( )( )

( )( )

+++

Χ−

Χ−

++

Χ−⋅ρ=ρ

bx2

Qarctan

Q

x2b2

x

xxln

x

bx

bx2

Qarctan

Q

b2

x

xxlnAe

02

0

0

0

20

c

where

61

30

s a4

3rx

ρπ== ( ) cbxxx 2 ++=Χ ( ) 212bc4Q −=

A = 0.0311 b = 3.72744x0 = -0.10498 c = 12.9352

In the spin polarized case, A, x0, b, c are functions of ζ (ζ = ρ↑ - ρ↓)

Page 28: Ground-state density functional theory: An overvie › Psik-training › Gross-I+II.pdf · TOWARDS THE EXACT FUNCTIONAL 1st generation of DFT : Use approximate functionals (LDA/GGA)

SUCCESSES OF LDASUCCESSES OF LDA

Quantity Typical deviation from expt

• Atomic & molecular ground state energies

< 0.5 %

• Molecular equilibrium distances

< 5 %

• Band structure of metals Fermi surfaces

few %

• Lattice constants < 2 %

Quantity Typical deviation from expt

• Atomic & molecular ground state energies

< 0.5 %

• Molecular equilibrium distances

< 5 %

• Band structure of metals Fermi surfaces

few %

• Lattice constants < 2 %

Page 29: Ground-state density functional theory: An overvie › Psik-training › Gross-I+II.pdf · TOWARDS THE EXACT FUNCTIONAL 1st generation of DFT : Use approximate functionals (LDA/GGA)

Generalized Gradient Approximation (GGA)Generalized Gradient Approximation (GGA)

Detailed study of molecules (atomization energies)

32 molecules(all neutral diatomic with first-row atoms only + H2 )

B. G. Johnson, P. M. W. Gill, J. A. Pople, J. Chem. Phys. 97, 7847 (1992)

Atomization energies (kcal/mol) from:

mean deviation from experiment 0.1 1.0 -85.8mean absolute deviation 4.4 5.6 85.8

VWNc

Bx EE + LYP

cBx EE + HF

for comparison: MP2-22.422.4

Page 30: Ground-state density functional theory: An overvie › Psik-training › Gross-I+II.pdf · TOWARDS THE EXACT FUNCTIONAL 1st generation of DFT : Use approximate functionals (LDA/GGA)

DEFICIENCIES OF LDA/GGADEFICIENCIES OF LDA/GGA

• Not free from spurious self-interactions KS potential decays more rapidly than r -1

Consequences: – no Rydberg series– negative atomic ions not bound– ionization potentials (if calculated from highest

occupied orbital energy) too small

• Dispersion forces cannot be described

W int (R) e-R (rather than R-6)

• band gaps too small: Egap

LDA ≈ 0.5 Egapexp

• Cohesive energies of bulk metals not satisfactoryin LDA overestimatedin GGA underestimated

• Wrong ground state for strongly correlated solids, e.g. FeO, La2CuO4

predicted as metals

Page 31: Ground-state density functional theory: An overvie › Psik-training › Gross-I+II.pdf · TOWARDS THE EXACT FUNCTIONAL 1st generation of DFT : Use approximate functionals (LDA/GGA)

OPM idea: Sharp, Horton, PR 90, 317 (1953)

KS ≡≡≡≡ OPM:J. Perdew (1983 NATO ASI in Alcabideche)

First OPM calculation with orbital functional for c orrelation:T. Grabo, E.K.U.G., Chem. Phys. Lett. 240, 141 (1995)

semi-analytical (“KLI”) solution of OPM equations: Krieger, Li, Iafrate, Phys. Lett. A 148, 470 (1990)

Orbital Functionals in DFT: Historical Overview

Orbital Functionals in DFT: Historical Overview

Page 32: Ground-state density functional theory: An overvie › Psik-training › Gross-I+II.pdf · TOWARDS THE EXACT FUNCTIONAL 1st generation of DFT : Use approximate functionals (LDA/GGA)

Apply HK theorem to non-interacting particles

ρ given ⇒ vs = vs[ρ] ⇒ (– + vs[ρ](r))ϕi (r) = ∈∈∈∈i ϕi (r) ϕi = ϕi[ρ]∈∈∈∈i = ∈∈∈∈i[ρ]

∇2

2

consequence:

Any orbital functional, Exc[ϕ1 ,ϕ2 …], is an (implicit) density functional provided that the orbitals come from a local (i.e., multiplicative) potential.

“optimized effective potential”≡ KS xc potential

( ) ( ) [ ]N1xcOPMxc ...E

rrv ϕϕ

δρδ=

( ) ( )( )( )

( )( ) .c.c r

''rv

''rv

'r

'r

E ''rd'rd rv

j

s

s

j

j

xc33OPMxc +

δρδ

δδϕ

δϕδ=∑∫ ∫

χχχχKS-1(r'',r)

act with χKS on equation:

( ) ( ) ( )( )( ) .c.c rv

'r

'r

E 'rd 'rd 'rv'r,r

j s

j

j

xc33OPMxcKS +

δδϕ

δϕδ=χ ∑ ∫∫⇒

OPM integral equationknownfunctional of {{{{ϕϕϕϕj}}}}

Page 33: Ground-state density functional theory: An overvie › Psik-training › Gross-I+II.pdf · TOWARDS THE EXACT FUNCTIONAL 1st generation of DFT : Use approximate functionals (LDA/GGA)

OPM integral equation

to be solved simultaneously with KS equation:

∑ d3r’ ( Vxc,σσσσOPM(r') – uxc,iσσσσ(r'))K iσσσσ(r,r') ϕϕϕϕiσσσσ(r)ϕϕϕϕiσσσσ*(r') + c.c. = 0

where K iσσσσ(r,r') = ∑

and uxc,iσ(r) := ·

ϕkσ*(r)ϕkσ(r')∈∈∈∈kσσσσ – ∈∈∈∈iσσσσ

k = 1k ≠ i

1 δExc [ϕ1σ ...]ϕiσ*(r) δϕiσ(r)

i = 1

– + vo(r) + + Vxc,σOPM(r) ϕjσ(r) = ∈∈∈∈jσ ϕ jσ(r)

∇ 2 ρρρρ (r')2 r - r'

Page 34: Ground-state density functional theory: An overvie › Psik-training › Gross-I+II.pdf · TOWARDS THE EXACT FUNCTIONAL 1st generation of DFT : Use approximate functionals (LDA/GGA)

• order-by-order KS-MBPT

• Resummation of infinitely many terms of the MBP-series

(e.g. RPA)

• Functionals from TDDFT

• Self-Interaction-Corrected LDA or GGA (SIC)

• Meta-GGA

• Interaction-Strength-Interpolation (ISI)

• Hybrid functionals (e.g. B3LYP)

• Colle-Salvetti

Orbital functionals available

Page 35: Ground-state density functional theory: An overvie › Psik-training › Gross-I+II.pdf · TOWARDS THE EXACT FUNCTIONAL 1st generation of DFT : Use approximate functionals (LDA/GGA)

Meta-GGA where[ ]τρ∇ρ= ,,EE xcMGGAxc ( ) ( )∑ ϕ∇=τ

j

2

j r2

1r

J. Perdew, S. Kurth, A. Zupan, P. Blaha, PRL 82, 2544 (1999)

Atomization energies (in kcal/mol). All functionalsevaluated on GGA densities at experimental geometries. Zero-point vibration removed from experimental energies [5]. The GGA is PBE [5], and the LSD is the local part of PBE. The Gaussian basis sets are of triple-zeta quality, with p and d polarization functions for H and d and f polarization functions for first- and second-row atoms.

Page 36: Ground-state density functional theory: An overvie › Psik-training › Gross-I+II.pdf · TOWARDS THE EXACT FUNCTIONAL 1st generation of DFT : Use approximate functionals (LDA/GGA)

[ ]( ) ( ) ( ) ( )

∑∑∫=↑↓σ

σ∗σσ

∗σ

σ

−ϕϕϕϕ

−=

=ρN

k,j

33jjkk

exactx

'rrdd 'rr

'rrr'r

2

1

E

Ec [ρ] = sum of all higher-order diagrams in terms of the Green’s function

⇒ The exactExc[ρ] is an orbital functional

( ) ( ) ( )∑

σ

∗σσ

σ ε−ωϕϕ=

k k

kks

'rr'r,rG

Systematic approach to construct Exc using KS-MBPT

HKS unperturbed system

H = HKS + λλλλ H1 ,

where H1 = Wee– d3r ρρρρ(r)(vH(r) + vxc(r) )

Page 37: Ground-state density functional theory: An overvie › Psik-training › Gross-I+II.pdf · TOWARDS THE EXACT FUNCTIONAL 1st generation of DFT : Use approximate functionals (LDA/GGA)

DF correlation energy versus traditional QC correlation energy

EcQC := Etot – Etot

HF[[[[ϕϕϕϕjHF]]]]

EcDFT = F – Ts – d3r d3r' – E x

HF[[[[ϕϕϕϕjKS]]]]

+ ρρρρ vext – ρρρρ vext

1 ρρρρ (r) ρρρρ (r')2 r - r'

EcDFT := Etot – Etot

HF[[[[ϕϕϕϕjKS]]]]

EtotHF[[[[ϕϕϕϕj

HF] ] ] ] ≤ EtotHF[[[[ϕϕϕϕj

KS]]]]

⇒⇒⇒⇒ EcDFT ≤ Ec

QC

-0.039821-0.042044-0.044267

-0.04195-0.042107-0.044274

H –

HeBe2+

EcQCEc

DFT

details see: E.K.U.G., M.Petersilka, T.Grabo (1996)

in Hartree units

Page 38: Ground-state density functional theory: An overvie › Psik-training › Gross-I+II.pdf · TOWARDS THE EXACT FUNCTIONAL 1st generation of DFT : Use approximate functionals (LDA/GGA)

Total absolute ground-state energies for first-row atoms from various self-consistent calculations.All numbers in hartree. (OPM values from T. Grabo, E.K.U.G., Chem. Phys. Lett. 240, 141 (1995))

OPM BLYP PW91 QCI EXACT

He Li Be B C N O F Ne

2.90337.4829

14.665124.656437.849054.590575.071799.7302

128.9202

2.90717.4827

14.661524.645837.843054.593275.078699.7581

128.9730

2.90007.4742

14.647924.629937.826554.578775.054399.7316

128.9466

2.90497.4743

14.665724.651537.842154.585475.061399.7268

128.9277

2.90377.4781

14.667424.653937.845054.589375.06799.734

128.939

∆ 0.0047 0.0108 0.0114 0.0045

Comparison: ( ) ( ) 177.0HF 383.0LDA =∆=∆

ƥ : Mean absolute deviation from the exact nonrelativistic values.

• QCI: Complete basis set quadratic configuration-interaction/atomic pair natural orbital model: J.A. Montgomery, J.W. Ochterski, G.A. Petersson, J. Chem. Phys. 101, 5900 (1994).

• EXACT: E.R. Davison, S.A. Hagstrom, S.J. Chakravorty, V.M. Umar, C. Froese Fischer, Phys. Rev. A 44, 7071 (1991).

Approximation employed for Exc: Ex[ϕϕϕϕ1 … ϕϕϕϕN] = exact Fock termEc[ϕϕϕϕ1 … ϕϕϕϕN] = Colle-Salvetti functional

Page 39: Ground-state density functional theory: An overvie › Psik-training › Gross-I+II.pdf · TOWARDS THE EXACT FUNCTIONAL 1st generation of DFT : Use approximate functionals (LDA/GGA)

Total absolute ground-state energies for second-row atoms from various self-consistent calculations.All numbers in hartree. (OPM values from T. Grabo, E.K.U.G., Chem. Phys. Lett. 240, 141 (1995))

OPM BLYP PW91 EXPT

Na Mg Al Si P S Cl Ar

162.256200.062242.362289.375341.272398.128460.164527.553

162.293200.093242.380289.388341.278398.128460.165527.551

162.265200.060242.350289.363341.261398.107460.147527.539

162.257200.059242.356289.374341.272398.139460.196527.604

∆ 0.013 0.026 0.023

ƥ : Mean absolute deviation from Lamb-shift corrected experimental values, taken from R.M. Dreizler and E.K.U.G., Density functional theory: an approach to the quantum many-body problem (Springer, Berlin, 1990)).

Page 40: Ground-state density functional theory: An overvie › Psik-training › Gross-I+II.pdf · TOWARDS THE EXACT FUNCTIONAL 1st generation of DFT : Use approximate functionals (LDA/GGA)

Helium Isoelectronic Series

PW91

BLYP

OPM

Page 41: Ground-state density functional theory: An overvie › Psik-training › Gross-I+II.pdf · TOWARDS THE EXACT FUNCTIONAL 1st generation of DFT : Use approximate functionals (LDA/GGA)

OPM LDA BLYP PW91 experiment

He 0.945 0.570 0.585 0.583 0.903

Li 0.200 0.116 0.111 0.119 0.198

Be 0.329 0.206 0.201 0.207 0.343

B 0.328 0.151 0.143 0.149 0.305

C 0.448 0.228 0.218 0.226 0.414

N 0.579 0.309 0.297 0.308 0.534

O 0.559 0.272 0.266 0.267 0.500

F 0.714 0.384 0.376 0.379 0.640

Ne 0.884 0.498 0.491 0.494 0.792

Na 0.189 0.113 0.106 0.113 0.189

Mg 0.273 0.175 0.168 0.174 0.281

Al 0.222 0.111 0.102 0.112 0.220

Si 0.306 0.170 0.160 0.171 0.300

P 0.399 0.231 0.219 0.233 0.385

S 0.404 0.228 0.219 0.222 0.381

Cl 0.506 0.305 0.295 0.301 0.477

Ar 0.619 0.382 0.373 0.380 0.579

∆ 0.030 0.176 0.183 0.177

Atomic ionization potentials from highest occupied Kohn-Sham orbital energy

Page 42: Ground-state density functional theory: An overvie › Psik-training › Gross-I+II.pdf · TOWARDS THE EXACT FUNCTIONAL 1st generation of DFT : Use approximate functionals (LDA/GGA)

Fundamental Energy gapsFundamental Energy gaps

• EXX gives excellent band gaps: larger than LDA by ~1 eV

• Small influence of correlation

• EXX pseudopotentialimportant for Ge: minimum of conduction band in L

from: Städele et al., Phys. Rev. B 59, 10031 (1999)

Page 43: Ground-state density functional theory: An overvie › Psik-training › Gross-I+II.pdf · TOWARDS THE EXACT FUNCTIONAL 1st generation of DFT : Use approximate functionals (LDA/GGA)

A.Fleszar, PRB 64, 245204 (2001)

Page 44: Ground-state density functional theory: An overvie › Psik-training › Gross-I+II.pdf · TOWARDS THE EXACT FUNCTIONAL 1st generation of DFT : Use approximate functionals (LDA/GGA)

True gap vs. KS gap; Discontinuity of VxTrue gap vs. KS gap; Discontinuity of Vx

Page 45: Ground-state density functional theory: An overvie › Psik-training › Gross-I+II.pdf · TOWARDS THE EXACT FUNCTIONAL 1st generation of DFT : Use approximate functionals (LDA/GGA)

Fundamental band gap in semiconductors and insulatorsFundamental band gap in semiconductors and insulators

Gap in Hartree-Fock:

DFT with exact exchange (OPM)

EgHF = EHF(N+1) – 2 EHF(N) + EHF(N – 1)

= ∈∈∈∈N+1HF(N) – ∈∈∈∈ N

HF(N)

EgOPM = EOPM(N+1) – 2 EOPM(N) + EOPM(N – 1)

= ∈∈∈∈N+1KS(N) – ∈∈∈∈ N

KS(N) + ∆x

discontinuity of vx

EHF ≈ EOPM ⇒⇒⇒⇒ EgHF ≈ Eg

OPM

Page 46: Ground-state density functional theory: An overvie › Psik-training › Gross-I+II.pdf · TOWARDS THE EXACT FUNCTIONAL 1st generation of DFT : Use approximate functionals (LDA/GGA)

Cohesive EnergiesCohesive Energies

Exact Exchange + GGA correlation yields cohesive energy close to experimental values.

from: Städele et al., Phys. Rev. B 59, 10031 (1999)

Page 47: Ground-state density functional theory: An overvie › Psik-training › Gross-I+II.pdf · TOWARDS THE EXACT FUNCTIONAL 1st generation of DFT : Use approximate functionals (LDA/GGA)

Orbital functionals for the static xc

energy derived from TDDFT

Orbital functionals for the static xc

energy derived from TDDFT

Page 48: Ground-state density functional theory: An overvie › Psik-training › Gross-I+II.pdf · TOWARDS THE EXACT FUNCTIONAL 1st generation of DFT : Use approximate functionals (LDA/GGA)

ADIABATIC CONNECTION FORMULA

= Hamiltonian of fully interacting system

Choose vλ(r) such that for each λ the ground- state density satisfies ρλ(r) = ρλ=1(r)

Hence vλ=0(r) = vKS(r) vλ=1(r) = vnuc(r)

Determine the response function χ(λ)(r,r';ω) corresponding to H(λ), Then

H ( )= T+ v ri( )i=1

N

∑ + e2

21

ri − rki,k=1i≠k

N

∑λλλλ λλλλ λλλλ 0 ≤≤≤≤ λ λ λ λ ≤≤≤≤ 1111

H ( )= T+ vnuc ri( )i=1

N

∑ + e2

21

ri − rki,k=1i≠k

N

∑λ=1λ=1λ=1λ=1

Exc =− dλ du

2π d3r d3r' e2

r − r'χ λ( ) r,r';iu( )+ρ r( )δ r − r'( ){ }

0

1

0

Page 49: Ground-state density functional theory: An overvie › Psik-training › Gross-I+II.pdf · TOWARDS THE EXACT FUNCTIONAL 1st generation of DFT : Use approximate functionals (LDA/GGA)

Second ingredient : TDDFT

[ ]( )11

1xcclb1s1,ss1

v

fWvv

χ=ρρ++χ=χ=ρ

[ ]( )1xcClb1s1 v fWvv χ++χ=χ

[ ]χ+χ+χ=χ fW xcClbss⇒⇒⇒⇒

and for 0 ≤ λλλλ ≤ 1 :

( ) ( ) ( )λλ χ+λχ+χ=χλ

fW xcClbss

Page 50: Ground-state density functional theory: An overvie › Psik-training › Gross-I+II.pdf · TOWARDS THE EXACT FUNCTIONAL 1st generation of DFT : Use approximate functionals (LDA/GGA)

r s-dependent deviation of approximate correlation energies from the‘‘exact’’ correlation energy per electron of the uniform electron gas.

M. Lein, E. K. U. G., J. Perdew, Phys. Rev. B 61, 13431 (2000).

Page 51: Ground-state density functional theory: An overvie › Psik-training › Gross-I+II.pdf · TOWARDS THE EXACT FUNCTIONAL 1st generation of DFT : Use approximate functionals (LDA/GGA)

For finite systems, truncate after first iteration:

plug this approximation into adiabatic connection formula

⇒⇒⇒⇒ Orbital functional for E c

χχχχ(λλλλ) ≈ χχχχs + χχχχs [λλλλ Wclb + fxc(λλλλ)]χχχχs

Page 52: Ground-state density functional theory: An overvie › Psik-training › Gross-I+II.pdf · TOWARDS THE EXACT FUNCTIONAL 1st generation of DFT : Use approximate functionals (LDA/GGA)

Resulting Atomic Correlation energies (in a.u.)

-0.042-0.096-0.394-0.72

-0.048-0.13-0.41 -0.67

-0.111-0.224-0.739-1.423

HeBeNeAr

exactnew fctlLDAatom

Page 53: Ground-state density functional theory: An overvie › Psik-training › Gross-I+II.pdf · TOWARDS THE EXACT FUNCTIONAL 1st generation of DFT : Use approximate functionals (LDA/GGA)

Resulting v.d.W. coefficients C6Lein, Dobson, EKUG, J. Comp. Chem. (‘99)

system Calculated C6 experiment He-He 1.639 1.458 He-Ne 3.424 3.029 Ne-Ne 7.284 6.383 Li-Li 1313 1390 Li-Na 1453 1450 Na-Na 1614 1550 H-He 2.995 2.82 H-Ne 5.976 5.71 H-Li 64.96 66.4 H-Na 75.4 71.8

Page 54: Ground-state density functional theory: An overvie › Psik-training › Gross-I+II.pdf · TOWARDS THE EXACT FUNCTIONAL 1st generation of DFT : Use approximate functionals (LDA/GGA)

Successful calculation of the full PES of He2: E. Engel, A. Höck, R.M. Dreizler, Phys. Rev. A 61, 032502 (2000))

Energy surface of He2: x-only and correlated OPM data versus LDA, HF [22], MP2 [23], and exact [21] results.

Page 55: Ground-state density functional theory: An overvie › Psik-training › Gross-I+II.pdf · TOWARDS THE EXACT FUNCTIONAL 1st generation of DFT : Use approximate functionals (LDA/GGA)

Self-interaction correction (SIC)Self-interaction correction (SIC)(J. Perdew, 1979)

[ ] [ ] [ ] [ ]{ }[ ] [ ]{ }∑

↓↓

↑↑↓↑↓↑

ρ+ρ−

ρ+ρ−ρρ=ρρ

kk

LSDxck

ii

LSDxci

LSDxc

SICxc

,0EU

0,EU ,E,E

with ( ) ( ) ( ) ( ) 2

kk

2

iirr rr ↓↓↑↑ ϕ=ρϕ=ρ

[ ] ( ) ( ) ( ) ( ) [ ]ρ+−ρρ+ρ+ρ= ∫∫∫ xc

333sHK E 'rrdd

'rr

'rr

2

1 rdrvrTE

[ ]ρU

Page 56: Ground-state density functional theory: An overvie › Psik-training › Gross-I+II.pdf · TOWARDS THE EXACT FUNCTIONAL 1st generation of DFT : Use approximate functionals (LDA/GGA)

3 ways of using a given orbital functional Exc[ϕϕϕϕ1, ϕϕϕϕ2, ...]

a) non-self consistent (post LDA/GGA/HF)

b) self consistent in OEP sense

c) self consistent, but freevariation w.r.t. orbitals

Page 57: Ground-state density functional theory: An overvie › Psik-training › Gross-I+II.pdf · TOWARDS THE EXACT FUNCTIONAL 1st generation of DFT : Use approximate functionals (LDA/GGA)

(free) variation of total energy w.r.t. orbitals leads to:

−∇ 2

2m+ v i ,α r( )

ϕ i ,α r( ) =∈ i,α ϕ i ,α r( ) α =↑,↓

with v i ,α r( ) = v o r( )+ρ r '( )r − r '

d3r '∫ + v xc

LSDr( )

−ρ i ,α r '( )

r − r 'd

3r '∫ − v xc

LSD ρ i ,α[ ] r( )

Consequences:• {ϕϕϕϕi,αααα} not orthonormal• Bloch theorem not valid ⇒⇒⇒⇒ allows

localization in supercell

Note: different single-particle potential vi,αααα(r) for each orbital

Page 58: Ground-state density functional theory: An overvie › Psik-training › Gross-I+II.pdf · TOWARDS THE EXACT FUNCTIONAL 1st generation of DFT : Use approximate functionals (LDA/GGA)

SIC results(Temmerman, Szotek, Lueders)

• MnO, FeO, CoO, NiO, CuO correctly predicted as antiferromagnetic insulators

• VO correctly predicted to be a nonmagnetic metal

• La2CuO4 correctly predicted as antiferromagneticsemiconductor

Page 59: Ground-state density functional theory: An overvie › Psik-training › Gross-I+II.pdf · TOWARDS THE EXACT FUNCTIONAL 1st generation of DFT : Use approximate functionals (LDA/GGA)

DENSITY-FUNTIONAL THEORY OFMAGNETIC SYSTEMS

In principle, Hohenberg-Kohn theorem guarantees that m(r) is a functional of the density: m(r) = m[ρ](r). In practice, m[ρ] isnot known.

Quantity of interest: Spin magnetization m(r)

Include m(r) as basic variable in the formalism, in addition to the density ρ(r).

Page 60: Ground-state density functional theory: An overvie › Psik-training › Gross-I+II.pdf · TOWARDS THE EXACT FUNCTIONAL 1st generation of DFT : Use approximate functionals (LDA/GGA)

DFT for spin-polarized systems

)r(ˆ)r(ˆ)r(m m o :ionmagnetizat spin βαβ

αβ+α ψσψµ−== ∑

rrr

HK theorem

[ ] [ ]ψ→←ρ )r(m),r( 1-1 r

total energy:

[ ] [ ] ( )∫ ⋅−ρ+ρ=ρ )r(m)r(B)r()r(vrdm,Fm,E 3B,v

rrrrr

universal

( ) ( ) ( ) ( )∫ ∫ ⋅−ρ++= rdrBrmrdrvrˆWTH 33B,v

rrr

Page 61: Ground-state density functional theory: An overvie › Psik-training › Gross-I+II.pdf · TOWARDS THE EXACT FUNCTIONAL 1st generation of DFT : Use approximate functionals (LDA/GGA)

KS scheme

For simplicity: ,

vxc[ρρρρ,m] = δδδδExc[ρρρρ,m]/δδδδ ρρρρ Bxc[ρρρρ,m] = δδδδExc[ρρρρ,m]/δδδδ m

ρρρρ (r) = ρρρρ+ (r) + ρρρρ- (r) , m (r) = ρρρρ+ (r) - ρρρρ- (r) , ρρρρ± = ΣϕΣϕΣϕΣϕ j± 2

B →→→→ 0 limitThese equations do notreduce to the original KS equations for B →→→→ 0 if, in this limit, the system has a finite m(r).

( )

=r

r

B

0

0

)(Br

( )

=r

r

m

0

0

)(mr

[ ] [ ] )()( )(B )(v)(vm2 oH

2

rrrrr jjj±±=∈±

−µ±+++∇− ϕϕvxc(r) B xc(r)

Page 62: Ground-state density functional theory: An overvie › Psik-training › Gross-I+II.pdf · TOWARDS THE EXACT FUNCTIONAL 1st generation of DFT : Use approximate functionals (LDA/GGA)

Traditional DFT: Exc[ρ][ ](r)δ

Eδ(r)v xc

xc ρρ=

Page 63: Ground-state density functional theory: An overvie › Psik-training › Gross-I+II.pdf · TOWARDS THE EXACT FUNCTIONAL 1st generation of DFT : Use approximate functionals (LDA/GGA)

Traditional DFT: Exc[ρ]

Collinear SDFT: Exc[ρ,m] [ ](r)δ

m,Eδ(r)v xc

xc ρρ= [ ]

(r)mδm,Eδ

(r) B xcxc

ρ−=

[ ](r)δ

Eδ(r)v xc

xc ρρ=

Page 64: Ground-state density functional theory: An overvie › Psik-training › Gross-I+II.pdf · TOWARDS THE EXACT FUNCTIONAL 1st generation of DFT : Use approximate functionals (LDA/GGA)

Traditional DFT: Exc[ρ]

Collinear SDFT: Exc[ρ,m] [ ](r)δ

m,Eδ(r)v xc

xc ρρ= [ ]

(r)mδm,Eδ

(r) B xcxc

ρ−=

[ ](r)δ

Eδ(r)v xc

xc ρρ=

[ ](r)mδ

m,Eδ(r)B xc

xc r

rr ρ−=Non-Collinear SDFT: Exc[ρ,m]

[ ](r)δ

m,Eδ(r)v xc

xc ρρ=

r

Page 65: Ground-state density functional theory: An overvie › Psik-training › Gross-I+II.pdf · TOWARDS THE EXACT FUNCTIONAL 1st generation of DFT : Use approximate functionals (LDA/GGA)

Traditional DFT: Exc[ρ]

Collinear SDFT: Exc[ρ,m] [ ](r)δ

m,Eδ(r)v xc

xc ρρ= [ ]

(r)mδm,Eδ

(r) B xcxc

ρ−=

[ ](r)δ

Eδ(r)v xc

xc ρρ=

[ ](r)mδ

m,Eδ(r)B xc

xc r

rr ρ−=Non-Collinear SDFT: Exc[ρ,m]

[ ](r)δ

m,Eδ(r)v xc

xc ρρ=

r

[ ](r)jδ

jm,,Eδc(r)A

p

pxc

xcr

rr ρ

=

Collinear CSDFT: Exc[ρ,m,jp] [ ]

(r)mδ

jm,,Eδ(r) B pxc

xc

−=[ ]

(r)δ

jm,,Eδ(r)v pxc

xc ρρ

=r

Page 66: Ground-state density functional theory: An overvie › Psik-training › Gross-I+II.pdf · TOWARDS THE EXACT FUNCTIONAL 1st generation of DFT : Use approximate functionals (LDA/GGA)

Traditional DFT: Exc[ρ]

Collinear SDFT: Exc[ρ,m] [ ](r)δ

m,Eδ(r)v xc

xc ρρ= [ ]

(r)mδm,Eδ

(r) B xcxc

ρ−=

[ ](r)δ

Eδ(r)v xc

xc ρρ=

[ ](r)mδ

m,Eδ(r)B xc

xc r

rr ρ−=Non-Collinear SDFT: Exc[ρ,m]

[ ](r)δ

m,Eδ(r)v xc

xc ρρ=

r

[ ](r)jδ

jm,,Eδc(r)A

p

pxc

xcr

rr ρ

=

Collinear CSDFT: Exc[ρ,m,jp] [ ]

(r)mδ

jm,,Eδ(r) B pxc

xc

−=[ ]

(r)δ

jm,,Eδ(r)v pxc

xc ρρ

=r

[ ](r)jδ

j,m,Eδc(r)A

p

pxc

xcr

rrr ρ

=

Non-Col. CSDFT: Exc[ρ,m,jp] [ ]

(r)mδ

j,m,Eδ(r)B pxc

xc r

rrr ρ

−=[ ]

(r)δ

j,m,Eδ(r)v pxc

xc ρρ

=rr

Page 67: Ground-state density functional theory: An overvie › Psik-training › Gross-I+II.pdf · TOWARDS THE EXACT FUNCTIONAL 1st generation of DFT : Use approximate functionals (LDA/GGA)

( ) ( ) ( ) ( ) ( )rrrBrvrAc1

i21

iiisBs

2

s Φε=Φ

⋅σµ++

+∇−rrrr

[ ](r) A - (r)A2c1

(r) v (r) v (r) v (r)v 2

s

2

02xcH0s +++=

(r)B (r)B (r)B xc0s

rrr+= (r)A (r)A (r)A xc0s

rrr+=

( ) ( ) ( )∑=

=ρN

1ii

i rΦrΦr ( ) ( ) ( )∑=

σµ−=N

1ii

iB rΦrΦrmrr

( ) ( ) ( ) ( )( ) ( )[ ]∑=

∇−∇=N

1ii

ii

ip rΦrΦrΦrΦi2

1rj

rrr

KS equation for the most general case (non-collinear CSDFT):

Page 68: Ground-state density functional theory: An overvie › Psik-training › Gross-I+II.pdf · TOWARDS THE EXACT FUNCTIONAL 1st generation of DFT : Use approximate functionals (LDA/GGA)

Parabolic quantum dot in strong magnetic field

N. Helbig, S. Kurth, S. Pittalis, E.K.U.G., cond-mat/0605599

Page 69: Ground-state density functional theory: An overvie › Psik-training › Gross-I+II.pdf · TOWARDS THE EXACT FUNCTIONAL 1st generation of DFT : Use approximate functionals (LDA/GGA)

Ordinary LSDA yields GLOBAL collinearity

( )( )

=rB

0

0

rB

xc

xc

r ( )( )

=rm

0

0

rmr

m,Bxc

rrparallel to everywhere in space

1

0

0

Functionals available:

Page 70: Ground-state density functional theory: An overvie › Psik-training › Gross-I+II.pdf · TOWARDS THE EXACT FUNCTIONAL 1st generation of DFT : Use approximate functionals (LDA/GGA)

( ) ( ) ( ) ( )∫∫ ⋅−ρ rdrBrmrdrvr 33rr

( ) ( )∑=↑↓βα

βαβαρ≡,

,, rvr

( ) ( ){ }:rm,rrρ 4 independent functions

ραβ is Hermitian⇒ 4 independent functions

Page 71: Ground-state density functional theory: An overvie › Psik-training › Gross-I+II.pdf · TOWARDS THE EXACT FUNCTIONAL 1st generation of DFT : Use approximate functionals (LDA/GGA)

Non-collinear LSDA:(Kübler ’80s)

rr

given point in space:

� Find unitary matrix U(r) such that

� Calculate

in this approximation and may change their direction in space, but locally they are always parallel

( )rBxc

r( )rm

r

( )( ) ( ) ( )( )

↑αβ

+

rn0

0rnrUrU

and from( )rv xc

↑ ( )rv xc

using the normal LSDA expressions

{ }↓↑

n,n

( ) ( ) ( )( ) ( )rUrv0

0rvrUv

xc

xc

xc

+

↑αβ

=

Page 72: Ground-state density functional theory: An overvie › Psik-training › Gross-I+II.pdf · TOWARDS THE EXACT FUNCTIONAL 1st generation of DFT : Use approximate functionals (LDA/GGA)

Extension of OPM to non-collinear spin DFTExtension of OPM to non-collinear spin DFT

Ordinary Spin-DFT: KS orbitals are spin eigenfunctions

Generalization to include relativistic effects on the levelof spin-orbit coupling: KS orbitals are two-component

(Pauli) spinors

xc magnetic field Bxc(r) not globally and not locallycollinear with m(r)

Page 73: Ground-state density functional theory: An overvie › Psik-training › Gross-I+II.pdf · TOWARDS THE EXACT FUNCTIONAL 1st generation of DFT : Use approximate functionals (LDA/GGA)

Cr layer

Page 74: Ground-state density functional theory: An overvie › Psik-training › Gross-I+II.pdf · TOWARDS THE EXACT FUNCTIONAL 1st generation of DFT : Use approximate functionals (LDA/GGA)

m×Bxc is the spin torque appearing on the r.h.s of the equationof motion of the spin magnetisation. In the LSDA, this term vanishes, leading to an unrealistic spin dynamics.⇒⇒⇒⇒ LSDA yields unrealistic spin dynamics.

Page 75: Ground-state density functional theory: An overvie › Psik-training › Gross-I+II.pdf · TOWARDS THE EXACT FUNCTIONAL 1st generation of DFT : Use approximate functionals (LDA/GGA)

m×Bxc

Page 76: Ground-state density functional theory: An overvie › Psik-training › Gross-I+II.pdf · TOWARDS THE EXACT FUNCTIONAL 1st generation of DFT : Use approximate functionals (LDA/GGA)

Log │m×Bxc│

Page 77: Ground-state density functional theory: An overvie › Psik-training › Gross-I+II.pdf · TOWARDS THE EXACT FUNCTIONAL 1st generation of DFT : Use approximate functionals (LDA/GGA)

Summary of noncollinear OPM:

• m(r) has stronger spacial variation in EXX than in LSDA

• m(r) locally not collinear with Bxc

• Improved spin dynamics: Importance for spintronics

Optimized Effective Potential Method for Non-Collinear Magnetism:S. Sharma, J. K. Dewhurst, C. Ambrosch-Draxl, N. Helbig, S. Pittalis, S. Kurth, S. Shallcross, L. Nordstroem, E.K.U.G.PRL (accepted 2007)

Page 78: Ground-state density functional theory: An overvie › Psik-training › Gross-I+II.pdf · TOWARDS THE EXACT FUNCTIONAL 1st generation of DFT : Use approximate functionals (LDA/GGA)

Review Article

Orbital functionals in density functional theory: the optimized effective potential method

T. Grabo, T. Kreibich, S. Kurth, E.K.U. Gross, in “Strong Coulomb Correlations in Electronic Structure: Beyond the LDA”edited by V.I. AnisimovGordon & Breach (2000), p. 203-311.