groundwater geochemistry (hydrogeochemistry) - ukm

27
Groundwater Geochemistry (Hydrogeochemistry) Wan Zuhairi Wan Yaacob (PhD, Assoc. Prof) Program Geologi, UKM 2/12/2010 drwzwy

Upload: others

Post on 24-Apr-2022

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Groundwater Geochemistry (Hydrogeochemistry) - UKM

Groundwater Geochemistry(Hydrogeochemistry)

Wan Zuhairi Wan Yaacob (PhD, Assoc. Prof)

Program Geologi, UKM

2/12/2010 drwzwy

Page 2: Groundwater Geochemistry (Hydrogeochemistry) - UKM

Geochemistry

• Water / rock interactions in unsaturated/saturated zones

• Geochemistry is important to groundwater studies:-– Characterizing the natural system (or

groundwater composition)

– Understanding contaminant migration

– Designing remediation programs

2/12/2010 drwzwy

Page 3: Groundwater Geochemistry (Hydrogeochemistry) - UKM

Simple geochemical model

• Aqueous geochemistry

– Water/rock interactions

– To control the groundwater composition and the movement of dissolved constituents

Deutch WJ. 1997. Groundwater Chemistry. CRC Press

2/12/2010 drwzwy

Page 4: Groundwater Geochemistry (Hydrogeochemistry) - UKM

Fresh water without any dissolved constituents

(disequilibrium)

Reactions that dissolve gases and minerals and

changes the solution composition

Dynamic geochemical system consisting(i) Solid phase(ii) Gas phase(iii) Aqueous

solution phase

2/12/2010 drwzwy

disequilibrium

Page 5: Groundwater Geochemistry (Hydrogeochemistry) - UKM

Groundwater solution• Definitions and concentration units

2/12/2010 drwzwy

Page 6: Groundwater Geochemistry (Hydrogeochemistry) - UKM

• Concentration of solute in solution• Milligram per liter (mg/L)

• Part per million (ppm)

mg/L ppmmg/L ppm

mg/L------- = solution density (g/cc) – TDS (g/cc)ppm

Solution density = 1.008 g/ccTDS = 10,000 mg/L (0.01 g/cc)

Then, 1 ppm = 0.998 mg/L (0.2 % difference!)

2/12/2010 drwzwy

Page 7: Groundwater Geochemistry (Hydrogeochemistry) - UKM

2/12/2010 drwzwy

Page 8: Groundwater Geochemistry (Hydrogeochemistry) - UKM

• Groundwater solutes

– Major Ions (concentration > 1 mg/L)

– Minor ions (concentration < 1 mg/L)

2/12/2010 drwzwy

Page 9: Groundwater Geochemistry (Hydrogeochemistry) - UKM

• Converting measured concentration (mg/L or ppm) to electrical equivalent unit (meq)

= 4.6 meq / L

(1000 miliequivalents = 1 equivalent)

2/12/2010 drwzwy

Page 10: Groundwater Geochemistry (Hydrogeochemistry) - UKM

• Conversion to meq

• Electrical balance

Electrical balance:

2/12/2010 drwzwy

Electrical balance for Table 1-2 = +0.5%+ (excess cations; insufficient anions)- (excess anions; insufficient cations)Reasonable balance for routine analysis < 5%

Page 11: Groundwater Geochemistry (Hydrogeochemistry) - UKM

Several possible reasons that create an electrical imbalance in the data

1. The design of the sampling program neglected a major dissolved species

2. Laboratory error

3. Using unfiltered water samples

4. Precipitation of a mineral in the sample

5. In certain cases, the dissolved species may not correspond to the typical species used in the making the ion balance calculation

2/12/2010 drwzwy

Page 12: Groundwater Geochemistry (Hydrogeochemistry) - UKM

Groundwater types• Classify groundwater based on dominant

cations and anions

• Ca-HCO3 type (dominant with Ca and HCO3)

• Displayed graphically by several methods

– Bar graph

– Circular diagram

– Stiff diagram

– Trilinear or Piper diagram

– Durov diagrams

2/12/2010 drwzwy

Page 13: Groundwater Geochemistry (Hydrogeochemistry) - UKM

Bar Diagram Circular Diagram

2/12/2010 drwzwy

Page 14: Groundwater Geochemistry (Hydrogeochemistry) - UKM

Stiff Diagram Piper Diagram

Durov Diagram

2/12/2010 drwzwy

Page 15: Groundwater Geochemistry (Hydrogeochemistry) - UKM

STIFF DIAGRAM

1. Ion concentrations in meq L-1 are plotted on the horizontal axis.

2. Cations are plotted to the left, anions to the right, of a vertical axis.

3. The data are plotted in four rows and the points are connected to form a polygon.

4. Advantage: each water type produces a distinct shape.

5. Disadvantage: each analysis requires its own plot; only a limited number of data can be shown on a single plot.

2/12/2010 drwzwy

Page 16: Groundwater Geochemistry (Hydrogeochemistry) - UKM

P i n e Cre e k , CDA V a l l e y , Id a h oM ine Wat er s

Cat io ns m e q / l Anio n s

1 5 1 0 5 5 1 0 1 5

C l

H C O 3 + C O 3

S O 4M g

C a

N a + K

AD0 0 2

C l

H C O 3 + C O 3

S O 4M g

C a

N a + K

AD0 0 4

C l

H C O 3 + C O 3

S O 4M g

C a

N a + K

AD0 0 5

C l

H C O 3 + C O 3

S O 4M g

C a

N a + K

AD0 0 7

C l

H C O 3 + C O 3

S O 4M g

C a

N a + K

S97 - 3

C l

H C O 3 + C O 3

S O 4M g

C a

N a + K

SP0 0 2

C l

H C O 3 + C O 3

S O 4M g

C a

N a + K

SPNEW

An example of a Stiff diagram drawn for mine waters from the Pine Creek district, Coeur d’Alene Valley, ID. The anions are mostly dominated by sulfate, with lesser bicarbonate, whereas the cations are dominated by calcium and magnesium.

2/12/2010 drwzwy

Page 17: Groundwater Geochemistry (Hydrogeochemistry) - UKM

2/12/2010 drwzwy

Isocon of TDS

Stiff pattern

Stiff pattern are centered over locations of wells

Page 18: Groundwater Geochemistry (Hydrogeochemistry) - UKM

PIPER DIAGRAMS1. Consists of two triangles (one for cations and one for

anions), and a central diamond-shaped figure.

2. Cations are plotted on the Ca-Mg-(Na + K) triangle as percentages.

3. Anions are plotted on the HCO3--SO4

2--Cl- triangle as percentages.

4. Concentrations are in meq L-1.

5. Points on the anion and cation diagrams are projected upward to where they intersect on the diamond.

6. Many water analyses can be plotted on the same diagram and can be used to classify waters.

2/12/2010 drwzwy

Page 19: Groundwater Geochemistry (Hydrogeochemistry) - UKM

2/12/2010 drwzwy

Cations meq/L % of total

Anions meq/L % of total

Ca2+ 1.15 36 Cl - 0.27 9

Mg2+ 0.39 12 SO42- 0.02 1

Na+ + K+ 1.64 52 CO32- +

HCO3 -

2.80 90

Total 3.18 Total 3.09

Percentage of cations and anions as percentage of the total(Step 2 and 3)

Page 20: Groundwater Geochemistry (Hydrogeochemistry) - UKM

Figure 1-6 fromKehew (2001). Water analyses plotted on a Piper diagram. Cationpercentages in meq L-1

plotted on the left triangle, and anion percentages in meq L-1

plotted on the right triangle.

Ca = 22.3 %Mg = 13.7 %Na+K = 64 %HCO3 = 31.3 %SO4 = 54.5 %Cl = 14.2 %

2/12/2010 drwzwy

Page 21: Groundwater Geochemistry (Hydrogeochemistry) - UKM

Figure 1-7 fromKehew (2001). Classification of hydrochemical facies using the Piper plot.

2/12/2010 drwzwy

Page 22: Groundwater Geochemistry (Hydrogeochemistry) - UKM

2/12/2010 drwzwy

Page 23: Groundwater Geochemistry (Hydrogeochemistry) - UKM

Pine Cr ee k , CDA Va lle y , I d ah o

M in e W a t e r s

C A T I O N S A N I O N S% m e q / l

N a + KH C O + C O3 3 C l

M g S O4

C aC a lc iu m ( C a ) C h lo r id e ( C l)

Su

l fa

te

(S

O4

)+

Ch

l or

i de

(C

l )

Ca

l ci u

m(

Ca

)+

Ma

gn

es

i um

(M

g)

Ca

rb

on

ate

(C

O3

)+

Bi c

ar

bo

na

te

(H

CO

3)

So

di u

m(

Na

)+

Po

ta

ss

i um

(K

)

Su

l fa

te

(S

O4

)

Ma

gn

es

i um

(M

g)

8 0 6 0 4 0 2 0 2 0 4 0 6 0 8 0

80

60

40

20

20

40

60

80

20

40

60

80

80

60

40

20

20

40

60

80

20

40

60

80

80

60

40

20

80

60

40

20

AD002

AD004

AD005

AD007

S97- 3

SP002

SPNEW

An example of a Piper diagram drawn for mine waters from the Pine Creek district, Coeur d’Alene Valley, ID. These may be characterized as Ca-Mg sulfate-bicarbonate-type waters.

2/12/2010 drwzwy

Page 24: Groundwater Geochemistry (Hydrogeochemistry) - UKM

Ke he w ( 2 0 0 1)

C A T I O N S A N I O N S% m e q / l

N a + KH C O + C O3 3 C l

M g S O4

C aC a lc iu m ( C a ) C h lo r id e ( C l)

Su

l fa

te

(S

O4

)+

Ch

l or

i de

(C

l )

Ca

l ci u

m(

Ca

)+

Ma

gn

es

i um

(M

g)

Ca

rb

on

at

e(

CO

3)

+B

i ca

rb

on

at

e(

HC

O3

)

So

di u

m(

Na

)+

Po

ta

ss

i um

(K

)

Su

l fa

te

(S

O4

)

Ma

gn

es

i um

(M

g)

8 0 6 0 4 0 2 0 2 0 4 0 6 0 8 0

80

60

40

20

20

40

60

80

20

40

60

80

80

60

40

20

20

40

60

80

20

40

60

80

80

60

40

20

80

60

40

20

T o t a l D is s o lv e d S o lid s

( P a r t s P e r M illio n )

0 1,

00

0

2,

00

0

3,

00

0

4,

00

0

5,

00

0

1 1

1

2

2

2

3

3

3

4

4

4

5

5

5

6 6

6

7

7

7

8

8

8

An example of a Piper diagram with TDS circles.

2/12/2010 drwzwy

Plot the radius of TDS using suitable scale(5000 ppm)

TDS – represents overall salt content of the water

Page 25: Groundwater Geochemistry (Hydrogeochemistry) - UKM

2/12/2010 drwzwy

karst rivers systems Can you guess the type of aquifer of this groundwater ?

Page 26: Groundwater Geochemistry (Hydrogeochemistry) - UKM

2/12/2010 drwzwy

Page 27: Groundwater Geochemistry (Hydrogeochemistry) - UKM

Thank you

2/12/2010 drwzwy