groupe de physique appliquée-unité d’optique université de

68
1 GAP Optique Geneva University Quantum teleportation Nicolas Gisin H. Deriedmatten, I. Marcikic, R. Thew, W. Tittel, H. Zbinden Groupe de Physique Appliquée-unité d’Optique Université de Genène The science and the science-fiction of quantum teleportation Intuitive and mathematical introduction What is teleported ? Q fax? The no-cloning theorem The “teleportation channel”: Entanglement The Geneva experiment Telecom wavelengths Time-bin qubits partial Bell measurement and tests of Bell inequality Applications: Quantum Key Distribution Simplifications, limitations Q relays and Q repeaters

Upload: others

Post on 16-Jun-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Groupe de Physique Appliquée-unité d’Optique Université de

1

GA

P O

ptiq

ue G

enev

a U

nive

rsity

Quantum teleportationNicolas Gisin

H. Deriedmatten, I. Marcikic, R. Thew, W. Tittel, H. ZbindenGroupe de Physique Appliquée-unité d’Optique

Université de Genène

• The science and the science-fiction of quantum teleportation• Intuitive and mathematical introduction• What is teleported ?• Q fax? The no-cloning theorem• The “teleportation channel”: Entanglement

• The Geneva experiment• Telecom wavelengths• Time-bin qubits• partial Bell measurement and tests of Bell inequality

• Applications: Quantum Key Distribution• Simplifications, limitations• Q relays and Q repeaters

Page 2: Groupe de Physique Appliquée-unité d’Optique Université de

2

GA

P O

ptiq

ue G

enev

a U

nive

rsity

The Geneva Teleportationexperiment over 3x2 km

Photon = particle (atom) of light

Polarized photon(≈ structured photon)

Unpolarized photon(≈ unstructured ≈ dust)

Page 3: Groupe de Physique Appliquée-unité d’Optique Université de

3

GA

P O

ptiq

ue G

enev

a U

nive

rsity

55 metres

2 km ofoptical fibre

2 km ofoptical fibre

Two entangledphotons

Page 4: Groupe de Physique Appliquée-unité d’Optique Université de

4

GA

P O

ptiq

ue G

enev

a U

nive

rsity

55 metres

2 km ofoptical fibre

Page 5: Groupe de Physique Appliquée-unité d’Optique Université de

5

GA

P O

ptiq

ue G

enev

a U

nive

rsity

55 metres

Bell measurement(partial)

the 2 photonsinteract

4 possible results:0, 90, 180, 270 degrees

Page 6: Groupe de Physique Appliquée-unité d’Optique Université de

6

GA

P O

ptiq

ue G

enev

a U

nive

rsity

55 metres

Bell measurement(partial)

the 2 photonsinteract

4 possible results:0, 90, 180, 270 degrees

Perfect Correlation

The correlation is independent of the quantumstate which may be unknownor even entangled with a fourth photon

Page 7: Groupe de Physique Appliquée-unité d’Optique Université de

7

GA

P O

ptiq

ue G

enev

a U

nive

rsity

Quantum teleportation

2/)1,10,0()10( 10 +⊗+

=⊗

cc

EPRψ

)0,11,0(2

1

)0,11,0(2

1

)1,10,0(2

1

)1,10,0(2

1

+

+123 Ψ

123 σzΨ

123 σxΨ

123 σyΨ)10()0,11,0(

221

)10()0,11,0(22

1

)10()1,10,0(22

1

)10()1,10,0(22

1

01

01

10

10

cc

cc

cc

cc

−⊗−+

+⊗++

−⊗−+

+⊗+=

Bell

2 bitsU

ψ

Page 8: Groupe de Physique Appliquée-unité d’Optique Université de

8

GA

P O

ptiq

ue G

enev

a U

nive

rsity

What is teleported ?According to Aristotle, objects are constituted by matter

and form, ie by elementary particles and quantum states.

Matter and energy can not be teleported from one place to another: they can not be transferred from one place to another without passing through intermediate locations.

However, quantum states, the ultimate structure of objects, can be teleported. Accordingly, objects can be transferred from one place to another without ever existing anywhere in between! But only the structure is teleported, the matter stays at the source and has to be already present at the final location.

C.H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres and W. Wootters, PRL 70, 1895 (1993)D. Boschi et al., Phys. Rev. Lett. 80, 1121 (1998) Y-K. Kim et al., Phys. Rev. Lett. 86, 1370 (2001)D. Bouwmeester et al., Nature 390, 575 (1997) I. Marcikic et al., Nature 421, 509 (2003)

Page 9: Groupe de Physique Appliquée-unité d’Optique Université de

9

GA

P O

ptiq

ue G

enev

a U

nive

rsity

A Quantum Fax ?

During a quantum teleportation process, the original system is destroyed.

According to the basic law of quantum physics, this is a necessity since it is impossible to clone an unknown quantum state. If not:– one could violate Heisenberg’s uncertainty relations

(Quantum Physics would be deterministic !)– one could exploit entanglement and cloning to signal

faster than light.(Relativity would have an absolute time).

Page 10: Groupe de Physique Appliquée-unité d’Optique Université de

10

GA

P O

ptiq

ue G

enev

a U

nive

rsity

No cloning theorem and thecompatibility with relativity

No cloning theorem: It is impossible to copy an unknownquantum state,

⇒)10()10(

1,10,010+⊗+≠

+→+

ψψψ ⋅→//

1,110,00

→→

Proof #1:

Proof #2: (by contradiction)

*Alice Bob

}clonesM

Source ofentangledparticules

Arbitrary fast signaling !

Page 11: Groupe de Physique Appliquée-unité d’Optique Université de

11

GA

P O

ptiq

ue G

enev

a U

nive

rsity

No cloning theorem and thecompatibility with relativity

• The first account on quantum cloning was done by E.P. Wignerin his analysis of earlier work by W.M. Elsasser devoted to a discussion of the origin of life and the multiplication of organisms.Wigner has presented a quantum-mechanical argumentaccording to which ``the probability is zero for existence ofself-reproducing states''.

• Today’s standard references are:W. K. Wootters and W. H. Zurek, Nature 299, 802, 1982.P.W. Milonni and M.L.Hardies, Phys. Lett. A 92, 32, 1982.

• The connection to “no signaling” appeared in:N. Gisin, Phys. Lett. A 242, 1, 1998.

Page 12: Groupe de Physique Appliquée-unité d’Optique Université de

12

GA

P O

ptiq

ue G

enev

a U

nive

rsity

The Quantum Teleportation channel ?

Page 13: Groupe de Physique Appliquée-unité d’Optique Université de

13

GA

P O

ptiq

ue G

enev

a U

nive

rsity

EntanglementA density matrix ρ is separable iff it decomposes in product states with probabilité coefficients pj>0 :

∑ ⊗= jBj

Ajjp ρρρ

ρ is entangled iff it is not separable.

The partial transpose test :If ρ is seprable, then its partial transpose is

whre (this test is exhaustive en dim 2x2)

0≥ptρ

bapt

ab αβαβ ρρ ,, ≡

Given a ρ, one knows of no constructive method to determine wheher ρ is separable or entanglement !

Page 14: Groupe de Physique Appliquée-unité d’Optique Université de

14

GA

P O

ptiq

ue G

enev

a U

nive

rsity

Non-locality: definition

),|,( BAbaP

probability Events.Not under humancontrol

Experimental settings.Under human control

The correlations P(a,b|An,Bm) are local iff there is a random variable λ such that:

P(a,b|An,Bm, λ) = P(a|An, λ) ·P(b|Bm, λ)

Historically λ was called a “local hidden variable”. Today, one measures the amount of nonlocality by the minimumcommunication required to reproduce P(a,b|An,Bm).

Page 15: Groupe de Physique Appliquée-unité d’Optique Université de

15

GA

P O

ptiq

ue G

enev

a U

nive

rsity

Implications of entanglementThe world can’t be understood in terms of“little billiard balls”.

The world is nonlocal (but the nonlocality can’tbe used to signal faster than light).

Quantum physics offers new ways of processinginformation.

Page 16: Groupe de Physique Appliquée-unité d’Optique Université de

16

GA

P O

ptiq

ue G

enev

a U

nive

rsity

What can be teleported ?Photon

Atom

Molecule

Virus

Large object

Done

Probably soon !

Likely some day

?? Possibly ??

Still science-fiction

What can carry the Q info to be teleported ?

Page 17: Groupe de Physique Appliquée-unité d’Optique Université de

17

GA

P O

ptiq

ue G

enev

a U

nive

rsity

Q communication in optical fibres

The transmission depends on the wavelength- Lower attenuation : 1310 nm (0.3 dB/km) and 1550 nm

(0.2dB/km) (telecom wavelengths)

Two problems : Losses and decoherence. How to minimize them ?

Time-bin coding with

Decoherence due to birefringence : Polarization Mode Dispersion

photons at telecom wavelength

Page 18: Groupe de Physique Appliquée-unité d’Optique Université de

18

GA

P O

ptiq

ue G

enev

a U

nive

rsity

Time-bin qubits

qubit :

any qubit state can be created andmeasured in any basis

variable coupler variable coupler

1 0

φ ϕ

Alice BobD0

D1

switchswitch

1

0

10 10φψ iecc +=

0

1

210 −

210 +

21i0 +

21i0 −

10 10φψ iecc +=

State preparation Projective measurement

W. Tittel & G. Weihs, Quant. Inf. Comput. 1, Number 2, 3 (2001)

Page 19: Groupe de Physique Appliquée-unité d’Optique Université de

19

GA

P O

ptiq

ue G

enev

a U

nive

rsity

Photon pairs source

laser

nonlinearbirefringentcrystal

filtre

λs,iλp

Parametric fluorescenceEnergy and momentum conservation

Phase matching determines the wavelengths and propagation directions of the down-converted photons

ispisp kkk rrr

+=ω+ω=ω

Energy conservation:⇒ each photon from the pair has an uncertain frequency,

but the sum of the two frequencies is precisely that of the pump laser⇒ each photon from the pair has an uncertain age,

but the age’s difference is precisely zero

⇒ similar to the original EPR state

Page 20: Groupe de Physique Appliquée-unité d’Optique Université de

20

GA

P O

ptiq

ue G

enev

a U

nive

rsity

BA

i

BAecc 1100 10

φψ +=B

0A

01

B

1 A

+

α

β

Detectors &Coincidence

Time-bin entanglement

Robust againstdecoherence

in optical fibers

PDC

φ

Laser Variable coupler

0 20 40 60 80 1000

50

100

150

200

250

Noise level

coin

cide

nces

[/10

s]

phase[arb unit]

After 2x2km of optical fibers

2 kmoptical fibers

V net =96%Photon pair creation in a non-linear crystalParametric down-conversion (PDC)Energy and momentum conservation

ispisp kkkrrr

+=ω+ω=ω

λp=710nmλs=1310nmλi=1550nm

R. Thew et al., Phys. Rev. A 66, 062304 (2002)

Page 21: Groupe de Physique Appliquée-unité d’Optique Université de

21

GA

P O

ptiq

ue G

enev

a U

nive

rsity

The interferometers

δ

FM

C1 2

3

FM

single mode fibers

Michelson configuration

circulator C : second output port

Faraday mirrors FM: compensation of birefringence

temperature tuning enables phase change

Page 22: Groupe de Physique Appliquée-unité d’Optique Université de

22

GA

P O

ptiq

ue G

enev

a U

nive

rsity

Optical circulator

port 1horizontalpol.

verticalpol.

port 2

-45° pol.

+45° pol.

PBS@45°

port 2

horizontalpol.

verticalpol.

Faradayeffect

port 3

PBS@0°

Page 23: Groupe de Physique Appliquée-unité d’Optique Université de

23

GA

P O

ptiq

ue G

enev

a U

nive

rsity

Faraday mirrors

• Faraday rotator• standard mirror (⊥ incidence)• Faraday rotator

FM

mr mR r)(ω→ ))(( mR rω−→←−− ))()((1 mRR rωω←− mr

Independent of ω

Page 24: Groupe de Physique Appliquée-unité d’Optique Université de

24

GA

P O

ptiq

ue G

enev

a U

nive

rsity

Partially Entangled Time-Bin Qubits

1100 10piecc φψ +=

102 ccV=

212

21

202

20 loglog ccccE −−=

R. Thew et al., Phys. Rev. A 66, 062304 (2002)

Page 25: Groupe de Physique Appliquée-unité d’Optique Université de

25

GA

P O

ptiq

ue G

enev

a U

nive

rsity

Geneva 1997

Page 26: Groupe de Physique Appliquée-unité d’Optique Université de

26

GA

P O

ptiq

ue G

enev

a U

nive

rsity

2-υ source of Aspect’s 1982 experiment

Page 27: Groupe de Physique Appliquée-unité d’Optique Université de

27

GA

P O

ptiq

ue G

enev

a U

nive

rsity

Photon pairs source (Geneva 1997)

Energy-time entanglement

diode laser

simple, compact, handy

40 x 45 x 15 cm3

Ipump = 8 mW

with waveguide in LiNbO3

with quasi phase matching,Ipump ≈ 8 µW

KNbO3

F

LaserLP

nm 1310 ;nm 655 i,sp =λ=λ

655nm

output 1 output 2

lens

filter

crystal

laser

Page 28: Groupe de Physique Appliquée-unité d’Optique Université de

28

GA

P O

ptiq

ue G

enev

a U

nive

rsity

test of Bell inequalities over 10 km

δ1

KNbO3

8.1 km

9.3 km

Genève

Bellevue

Bernex

quantum channel

quantum channel

classical channelsF

laser LPR++R-+R+-R--

δ2

APD1 -

APD1 +

APD2-

APD2+

&

FS

ZFS

FM

FMZ

4.5 km

7.3 km

10.9

km

Page 29: Groupe de Physique Appliquée-unité d’Optique Université de

29

GA

P O

ptiq

ue G

enev

a U

nive

rsity

results

15 Hz coincidences Sraw = 2.41Snet = 2.7 violation of Bell inequalities by 16 (25) standard-deviationsclose to quantum-mechanical predictionssame result in the lab

1000 4000 7000 10000 13000

-0.5

0.0

0.5

1.0

corr

elat

ion

coef

ficie

nt

time [sec]

0

Vraw

= (85.3 ± 0.9)%

Vnet.

= (95.5 ± 1) %

Page 30: Groupe de Physique Appliquée-unité d’Optique Université de

30

GA

P O

ptiq

ue G

enev

a U

nive

rsity

Creation of a photon

Creation of a qubit

Creation of an entangled pair

The Bell measurement

teleportation setup

Creation of any qubitto be teleported

Analysis of the teleportedqubit

&

Coincidence electronics3-fold 4-fold

Femto-second laser

Pulse width =150 fs

Mode locked Ti:Saphire

LBO

RG filterWDM

RG filterWDM

GeA B

InGaAs C

β

LBO

Beam splitter 50:50

InGaAs

α

Φ

I. Marcikic et al., Nature, 421, 509-513, 2003

Page 31: Groupe de Physique Appliquée-unité d’Optique Université de

31

GA

P O

ptiq

ue G

enev

a U

nive

rsity

Bell state measurementBell state measurement

BABABBAAii 0110101010

21−++a

BABABBAAii 0110101001

21+−+a

)1010(01102121 BBAA

i ++ aBABA

011001102121

−− a

H. Weinfurter, Europhysics Letters 25, 559-564 (1994)H. de Riedmatten et al., Phys. Rev. A 67, 022301 (2003)

1 2

A B

Page 32: Groupe de Physique Appliquée-unité d’Optique Université de

32

GA

P O

ptiq

ue G

enev

a U

nive

rsity

Page 33: Groupe de Physique Appliquée-unité d’Optique Université de

33

GA

P O

ptiq

ue G

enev

a U

nive

rsity

Teleportation of a time-bin qubitequatorial states

2 photons +laser clock(1310&1550nm)

3 photons+laser clock

Raw visibility :Vraw=70 ± 5 %

Fidelity for equatorial states :2

1 raweq

VF += =85 ± 2.5 %

4 5 6 7 8 9 10 110

5

10

15

20

25

30

35

4-fo

ld c

oinc

iden

ces

[/500

s]

phase β [a.u]

0

2000

4000

6000

8000

10000

3-f

old

coin

denc

es [/

500s

]

Page 34: Groupe de Physique Appliquée-unité d’Optique Université de

34

GA

P O

ptiq

ue G

enev

a U

nive

rsity

Teleportation of a time-bin qubitNorth&South poles

( ) ( )( ) ( )1,00,1

0,11.0

PPP

F+

=

( ) %4%881,0 ±=F

( ) %4%840,1 ±=F

0 1 2 3 4 5 60

50

100

150

200

250

300Time-bin 1Time-bin 0

Initial qubit

prepared in :

time-bin0

time-bin1

coin

cide

nces

[a.u

]

delay between start&stop [ns]

=+= peqtot FFF31

32

85 % ± 3 %

Page 35: Groupe de Physique Appliquée-unité d’Optique Université de

35

GA

P O

ptiq

ue G

enev

a U

nive

rsity

2 km of optical fiber2 km of optical fiber

Alice:creation of qubits to be teleportedAliceAlice:creation of qubits to be teleported

AliceAlice

55 m

Bob:analysis of theteleported qubit, 55 m fromCharlie

BobBob:analysis of theteleported qubit, 55 m fromCharlie

BobBob

Charlie:the Bell measurementCharlieCharlie:the Bell measurement

CharlieCharliefs laser @ 710 nmfs laser @ 710 nm

ExperimentalExperimental setupsetup

creation of entangled qubitscreation of entangled qubits

coincidence electronicscoincidence electronics

&

LBO

RG

WDM

RG

WDM

GeInGaAs

LBO

BS

InGaAs

fsla

ser

sync out

1.3

mµ 1.3mµ

1.5 mµ

1.5 mµ

2km 2km

2km

I. Marcikic et al., Nature, 421, 509-513, 2003

Page 36: Groupe de Physique Appliquée-unité d’Optique Université de

36

GA

P O

ptiq

ue G

enev

a U

nive

rsity

resultsresults

0 2 4 6 8 10 12 14 16 180

5

10

15

20

25

30

35

40

0 2 4 6 8 10 12 14 16 180

5

10

15

20

25

30

35

40

four

-fol

d co

inci

denc

es [1

/500

s]

Phase [arb. units]

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Thr

ee-f

old

coin

cide

nce

[/50

0s]

four

-fol

d co

inci

denc

es [1

/500

s]

Phase [arb. units]

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Thr

ee-f

old

coin

cide

nce

[/50

0s]

EquatorialEquatorial statesstates

RawRaw visibilityvisibility : : VVrawraw= 55 = 55 ±± 5 %5 %

2V1F raweq += = 77.5 = 77.5 ±± 2.5 %2.5 %

1

0

( )1,0F

( )0,1F

= = 78 78 ± ± 3%3%

= = 77 77 ± ± 3%3%

NorthNorth & & southsouth polespoles

wrongcorrect

correctCC

CF+

=

meanmean fidelityfidelity: : FFpolespoles=77.5 =77.5 ±± 3 %3 %

0 1 2 3 4 5 60.0

0.2

0.4

0.6

0.8

1.0

coin

cide

nce[

arb

unit]

time between start and stop [ns]

31

32

=

+= peqmean FFF

77.5 ±2.5 %

MeanMean FidelityFidelity

» 67 % (no entanglement)

Page 37: Groupe de Physique Appliquée-unité d’Optique Université de

37

GA

P O

ptiq

ue G

enev

a U

nive

rsity

2 km of optical fiber2 km of optical fiber

Alice:creation of qubits to be teleportedAliceAlice:creation of qubits to be teleported

AliceAlice

55 m

Bob:analysis of theteleported qubit, 55 m fromCharlie

BobBob:analysis of theteleported qubit, 55 m fromCharlie

BobBob

Charlie:the Bell measurementCharlieCharlie:the Bell measurement

CharlieCharliefs laser @ 710 nmfs laser @ 710 nm

ExperimentalExperimental setupsetup

creation of entangled qubitscreation of entangled qubits

coincidence electronicscoincidence electronics

&

LBO

RG

WDM

RG

WDM

GeInGaAs

LBO

BS

InGaAs

fsla

ser

sync out

1.3

mµ 1.3mµ

1.5 mµ

1.5 mµ

2km 2km

2km

I. Marcikic et al., Nature, 421, 509-513, 2003

On the same spool !

Page 38: Groupe de Physique Appliquée-unité d’Optique Université de

38

GA

P O

ptiq

ue G

enev

a U

nive

rsity

5 10 15 200.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Vis

ibili

ty

Dimension d

NLCδ

Mode-locked fs Ti:Saphiref=75 MHz

∆τ = 150 fs

TAC

Rc

WDM

LBO

Bulk interferometer

BS

Ge APD InGaAs APD

λ=1310 nm λ=1550 nm

∆τ=13 ns

AOM

d pulses train

λ=710nm

Tailoring high dimensional time-bin entanglement

Analysis with 2Analysis with 2--arms arms interferometerinterferometer

d1dVV max −=

de Riedmatten et al, de Riedmatten et al, Quant. Inf. Comput, 2, 425 (2002)Quant. Inf. Comput, 2, 425 (2002)

Page 39: Groupe de Physique Appliquée-unité d’Optique Université de

39

GA

P O

ptiq

ue G

enev

a U

nive

rsity

Idea: verify from time to time the phase

10800 10820 10840 10860 10880 10900 10920 10940

0

1

2

3

4

5

Stabilisation period~ 5 [s]

Measuring period~ 100 [s]

Inte

nsity

[arb

. uni

ts]

Time [s]

Stabilisation of the interferometersStabilisation of the interferometers

APD

WDM

BS

FM

FM

EPRSource

PIN

Stabilised laser

Feedback

Phase controlerSwitch

Every 100 s the phase is brought back to a given value

Page 40: Groupe de Physique Appliquée-unité d’Optique Université de

40

GA

P O

ptiq

ue G

enev

a U

nive

rsity

α β

ϕ

A-1

A1

B-1

B1

25 km SOF 25 km DSF

Bell test over 50 kmBell test over 50 km

BobAlice

Bp00

Bp11

Bp10

Bp01

Time arrival on A1

Ap 00 Ap 11

Ap 10

Ap01

Time arrival on B1

0 = short path1 = long path

( )BABA

11002

1 +=Φ+

Type I NLCCreating photons @ 1.3 & 1.55 µm

No single photon interference because his twin photon gives information of creation time

BAp 000

BAp010

BAp110

BAp100BAp

001

BAp101

BAp011

BAp111

&

&

Coincidence between Ai & Bj

)cos(1),( βαβα ++∝ ijVPij

Page 41: Groupe de Physique Appliquée-unité d’Optique Université de

41

GA

P O

ptiq

ue G

enev

a U

nive

rsity

Bell test over 50 kmBell test over 50 km

Until now no phase controlCorrelation function: Violation of Bell inequalities depends on visibility:

VS2

4=

)cos(),( βαβα +=VE

0 20 40 60 80 100-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

Cor

rela

tion

Func

tion

Phase α+β [a.u]

Row visibility after 50 km

%6.178 ±=rawV

04.021.2 ±=S

Violation of Bell inequalities by more than 4.5 σ

Page 42: Groupe de Physique Appliquée-unité d’Optique Université de

42

GA

P O

ptiq

ue G

enev

a U

nive

rsity

Bell test over 50 kmBell test over 50 km

With phase control we can choose four different settings α = 0° or 90° and β = -45° or 45°

Violation of Bell inequalities:)45,90()45,0()45,90()45,0( °°°°°°°° ==−==+−==+−=== βαβαβαβα EEEES

0.0 0.2 0.4 0.6 0.8 1.0 1.2-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

Cor

rela

tion

Func

tion

Time [h]

006.0518.0)45,0( ±=−== °° βαE

0.0 0.2 0.4 0.6 0.8 1.0 1.2-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

Cor

rela

tion

Func

tion

Time [h]

005.0554.0)45,90( ±=−== °° βαE

0.0 0.2 0.4 0.6 0.8 1.0 1.2-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

Cor

rela

tion

Func

tion

Time [h]

006.0533.0)45,0( ±=== °° βαE

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

Cor

rela

tion

Func

tion

Time [h]

007.0581.0)45,90( ±=== °° βαE

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

Cor

rela

tion

Func

tion

Time [h]

012.0185.2 ±=SViolation of Bell inequalities

by more than 15 σ

Page 43: Groupe de Physique Appliquée-unité d’Optique Université de

43

GA

P O

ptiq

ue G

enev

a U

nive

rsity

For what could Q teleportation be useful ?For the physicist ’s fascination !For teaching Q physics !For the secure communications of tomorrow !

If the structure to be teleported contains a message,then no adversary can intercept it, since it doesn’t exist anywhere inbetween the emitter and the receiver !

Let’s exploit this idea

to make the idea practical with today’s technology

to improve tomorrow’s quantum cryptography

Page 44: Groupe de Physique Appliquée-unité d’Optique Université de

44

GA

P O

ptiq

ue G

enev

a U

nive

rsity

Page 45: Groupe de Physique Appliquée-unité d’Optique Université de

45

GA

P O

ptiq

ue G

enev

a U

nive

rsity

Experimental QKD with entanglement

Alice Bob

W. Tittel et al., PRL 84, 4737, 2000 pulsed source

NL crystal

to

t-to

counts

t-to

counts

Perfect correlation in the frequency domain

Perfect correlation in the time domain

D

DD

D

Page 46: Groupe de Physique Appliquée-unité d’Optique Université de

46

GA

P O

ptiq

ue G

enev

a U

nive

rsity

α β

ϕ

A0

A1

B0

B1

25 km SOF 25 km DSF

Simulation of QKD over 50 kmSimulation of QKD over 50 km

Ap00

Ap11

Ap 10

Ap01

Bp 00 Bp 11

Bp 10

Bp 01

0

1

210 +

210 −

BB84 protocol

BobAlice

, basis0 1

, basis2

10 +

210 −

00 11

0 1

CodingCodingα and β such that

always coincidenceA0B0 = 0 and A1B1 = 1

Passive choiceof basis

Page 47: Groupe de Physique Appliquée-unité d’Optique Université de

47

GA

P O

ptiq

ue G

enev

a U

nive

rsity

Simulation of QKD over 50 kmSimulation of QKD over 50 km, basis

210 +

210 −

Coincidences between A0 and B0

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1600 1650 1700 1750 1800 1850 1900

Delay between start & stop [arb.unit]

Coin

cide

nces

[arb

.uni

t]

0

2000

4000

6000

8000

10000

12000

2800 2850 2900 2950 3000 3050 3100

Delay between start & stop [arb.unit]

Coi

ncid

ence

s [a

rb.u

nit]

Coincidences between A1 and B1

0

500

1000

1500

2000

2500

3000

3500

4000

400 450 500 550 600 650 700 750 800 850 900

Delay between start & stop [arb.unit]

Coi

ncid

ence

s [a

rb.u

nit]

Coincidences between A1 and B0

0

2000

4000

6000

8000

10000

12000

4000 4050 4100 4150 4200 4250 4300

Delay between start & stop [arb.unit]

Coi

ncid

ence

s [a

rb.u

nit]

Coincidences between A0 and B1

01101100

0110

BABABABA

BABA

RRRRRR

QBER+++

+=

0

200

400

600

800

1000

1200

1400

0 1 2 3 4 5 6

Time [h]

Bit

Rat

e [2

00 s

]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

QB

ER

Bit Rate RA0B0+RA1B1

Mean value of QBER = 10 %

Page 48: Groupe de Physique Appliquée-unité d’Optique Université de

48

GA

P O

ptiq

ue G

enev

a U

nive

rsity

Simulation of QKD over 50 kmSimulation of QKD over 50 km, basis0 1

0

1000

2000

3000

4000

5000

6000

500 600 700 800 900

De l a y be t we e n s t a r t & s t o p [ a r b . uni t ]

Coincidences between A0 and B0Wright counts

Wrong counts

%3.13)(

=+

=∑

∑WrongWright

WrongQBER

Page 49: Groupe de Physique Appliquée-unité d’Optique Université de

49

GA

P O

ptiq

ue G

enev

a U

nive

rsity

Experimental QKD with entanglement

Alice Bob

W. Tittel et al., PRL 84, 4737, 2000

pulsed source

NL crystal

to

D

DD

D

Page 50: Groupe de Physique Appliquée-unité d’Optique Université de

50

GA

P O

ptiq

ue G

enev

a U

nive

rsity

Experimental QKD with entanglement

Alice Bob*

J. Franson, PRL 62, 2205, 1989W. Tittel et al., PRL 81, 3563-3566, 1998

cw source

NL crystal

Page 51: Groupe de Physique Appliquée-unité d’Optique Université de

51

GA

P O

ptiq

ue G

enev

a U

nive

rsity

From Bell tests to Quantum cryptography

Alice Bob

*W. Tittel et al., PRL 81, 3563-3566, 1998

100% correlation ⇒ perfect keyFragile correlation ⇒ secret key

Page 52: Groupe de Physique Appliquée-unité d’Optique Université de

52

GA

P O

ptiq

ue G

enev

a U

nive

rsity

From Bell tests to Quantum cryptography

Alice Bob

*G. Ribordy et al., Phys. Rev. A 63, 012309, 2001

*P.D. Townsend et al., Electr. Lett. 30, 809, 1994

R. Hughes et al., J. Modern Opt. 47, 533-547 , 2000

100% correlation ⇒ perfect keyFragile correlation ⇒ secret key

Page 53: Groupe de Physique Appliquée-unité d’Optique Université de

53

GA

P O

ptiq

ue G

enev

a U

nive

rsity

Quantum cryptography below lake Geneva

Alice Bob

*Att.

F.M.PBS

Applied Phys. Lett. 70, 793-795, 1997. Electron. Letters 33, 586-588, 1997; 34, 2116-2117, 1998.J. Modern optics 48, 2009-2021, 2001.

Page 54: Groupe de Physique Appliquée-unité d’Optique Université de

54

GA

P O

ptiq

ue G

enev

a U

nive

rsity

Pseudo single-photon Q cryptography:the Plug-&-Play configuration

D A PBS

Laser

FR APDAPD

APDAPDPM

PM

Perfect interference (V≥99%) without any adjustments, since:

• both pulses travel the same path in inverse order• both pulses have exactly the same polarisation thanks to FM

AliceBob

Drawback 1:Rayleigh backscattering

Drawback 2:Trojan horse attacks

Page 55: Groupe de Physique Appliquée-unité d’Optique Université de

55

GA

P O

ptiq

ue G

enev

a U

nive

rsity

QC over 67 km, QBER ≈ 5%

+ aerial cable (in Ste Croix, Jura) ! D. Stucki et al., New Journal of Physics4, 41.1-41.8, 2002. Quant-ph/0203118

RMP 74, 145-195, 2002, Quant-ph/0101098

Page 56: Groupe de Physique Appliquée-unité d’Optique Université de

56

GA

P O

ptiq

ue G

enev

a U

nive

rsity

Company established in 2001– Spin-off from the University of Geneva

Products– Quantum Cryptography

(optical fiber system)– Quantum Random Number Generator– Single-photon detector module (1.3 µm and 1.55

µm)

Contact informationemail: [email protected]

web: http://www.idquantique.com

Page 57: Groupe de Physique Appliquée-unité d’Optique Université de

57

GA

P O

ptiq

ue G

enev

a U

nive

rsity

0.0 0.1 0.20.0

0.2

0.4

0.6

0.8

1.0

Sha

nnon

Info

rmat

ion

QBER

)(1 QBERHIAB −=

IAE≤1-IAB

IAE

Bell inequ. violated Bell inequ. not violated

Page 58: Groupe de Physique Appliquée-unité d’Optique Université de

58

GA

P O

ptiq

ue G

enev

a U

nive

rsity

Limits of Q crypto

distance≈ 100 km

Secr

et b

it pe

r pu

lse

10-2

10-6

Q channel loss

Detector noise

)( noiseopticalEveAB II ≈

- distance- bit rate

1.0≈≈ηn

Page 59: Groupe de Physique Appliquée-unité d’Optique Université de

59

GA

P O

ptiq

ue G

enev

a U

nive

rsity

PNS Attack: the idea

Alice Bob0 ph 0 ph 1 ph

Losses

Quantum memory

Lossless channel (e.g. teleportation)

QND measurement of photon number

PNS (photon-number splitting):The photons that reach Bob are unperturbedConstraint for Eve: do not introduce more losses than expected (PNS important for long-distanceQKD).

1 ph0 ph 2 ph90,5% 9% 0.5%

0 ph 0 ph 1 ph

Eve!!!

Page 60: Groupe de Physique Appliquée-unité d’Optique Université de

60

GA

P O

ptiq

ue G

enev

a U

nive

rsity

Limits of Q crypto

distance≈ 100 km

Secr

et b

it pe

r pu

lse

10-2

10-6

Q channel loss

Detector noise

- distance- bit rate

≈ 50 km

)( pulsephotonmultiEveAB II −≈

)( noiseopticalEveAB II ≈

Page 61: Groupe de Physique Appliquée-unité d’Optique Université de

61

GA

P O

ptiq

ue G

enev

a U

nive

rsity

How to improve Q crypto ?

Effect ondistance

Effect onbit rate

Feasibility

Detectors1-υ sourceQ channelProtocolsQ relaysQ repeater

Page 62: Groupe de Physique Appliquée-unité d’Optique Université de

62

GA

P O

ptiq

ue G

enev

a U

nive

rsity

A new protocol: SARG

Joint patent UniGE + id Quantique pendingPhys. Rev. A, 2003; quant-ph/0211131& 0302037

The quantum protol isidentical to the BB84

During the public discussionphase of the new protocol Alice doesn’t announce basesbut sets of non-orthogonalstates

⇒ even if Eve hold a copy, she can’t find out the bit with certainty

⇒ More robust against PNS attacks !

Page 63: Groupe de Physique Appliquée-unité d’Optique Université de

63

GA

P O

ptiq

ue G

enev

a U

nive

rsity

Distance [km]

Secr

et k

ey ra

te, l

og10

[bits

/pul

se]

SARGBB84

Perfect detectorsη=1, D=0

Typical detectorη=0.1, D=10-5

SARG vs BB84PNS, optimal µ, detector efficiency η, dark

counts D

67km = Geneva-Lausanne

µ = 0.014

µ = 0.335

Page 64: Groupe de Physique Appliquée-unité d’Optique Université de

64

GA

P O

ptiq

ue G

enev

a U

nive

rsity

3-photon: Q teleportation & Q relays

⊗ EPRψ

Bell

2 bitsU

ψ

Alice Charlie

EPR source

Bob

BSM

1 3

ψ ψ

Classical channel

2

0.800.820.840.860.880.900.920.940.960.981.00

0 50 100 150 200 250 300 350

Distance [km]

Fide

lity

n=1 n=2 n=3 n=4

Page 65: Groupe de Physique Appliquée-unité d’Optique Université de

65

GA

P O

ptiq

ue G

enev

a U

nive

rsity

Q repeaters & relays

*entanglement

*entanglement

entanglement

Bellmeasurement

. .

QND measurement+ Q memory

*entanglement

*entanglement

Bellmeasurement

.??

RE

PEA

TE

R

RE

LA

YJ. D. Franson et al, PRA 66,052307,2002

Page 66: Groupe de Physique Appliquée-unité d’Optique Université de

66

GA

P O

ptiq

ue G

enev

a U

nive

rsityConclusions

Q teleportation

with:

telecom wavelength

two different crystals (spatially separated sources)

from one wavelength (1300 nm) to another (1550 nm)

first time with time-bins (ie insensitive to polarization fluctuations)

over 3x2 km of fiber and 55 meters of physical distance

mean fidelity : ≈ 85% both in the lab and at a distance of 2 km

mean fideity 77.5% in a 3x2km quantum relay configuration

Q teleportation raises questions about the meaning of basic

concepts like: object, information, space & time.

Elementary Q processor can extend today’s Q crypto systems

= the possibility to teleport the "ultimate structure" of an object from one place to another, without the object ever being anywhere in between

Page 67: Groupe de Physique Appliquée-unité d’Optique Université de

67

GA

P O

ptiq

ue G

enev

a U

nive

rsity

0.0 0.1 0.2 0.3 0.40.0

0.2

0.4

0.6

0.8

1.0S

hann

on In

form

atio

n

QBER

)(1 QBERHIAB −=

IAE

2-way Alicequantum. Inf. Proc. andsuffice Bob

separatedBell inequality:

can be neverviolated violated

or classical

1-wayclass. Inf. Proc.suffice

D0

individual

Page 68: Groupe de Physique Appliquée-unité d’Optique Université de

68

GA

P O

ptiq

ue G

enev

a U

nive

rsity

BobAlice

Leftsame different

Middlesame different

Rightsame different

Left 100 % 0 %Middle 100 % 0 %Right 100 % 0 %

LMR if ≠ settings Prob(results =)

GGG 100 %GGR 1/3GRG 1/3RGG 1/3GRR 1/3RGR 1/3RRG 1/3RRR 100 %

Arbitr. mixture ≥ 1/3 Bell Inequality

1/4 3/41/4 3/4 1/4 3/4

1/4 3/4 1/4 3/41/4 3/4

Bell’s inequality: (D. Mermin, Am. J. Phys. 49, 940-943, 1981)

QuantumMechanics

= 1 / 4 Quantum non-locality

Alice Bob