habitat suitability models developed - devotes project · milestone 15 habitat suitability models...

42
Habitat suitability models developed Milestone 15 WP 4 Milestone 15 LEAD CONTRACTOR Cefas SUBMISSION DATE 30 | April | 2014 Dissemination level Restricted to other programme participants (including the Commission Services) AUTHORS Christian Wilson (OceanDTM), Christopher Lynam (Cefas), Markus Diesing (Cefas), Fernando Tempera (JRC), Heliana Teixeira (JRC), Stelios Katsanevakis (JRC), Ibon Galparsoro (AZTI), Nathalie Niquil (CNRS), Ana Queiros (PML), Martynas Bucas (KUCORPI), Gokhan Kaboglu (DEU), Slava Suslin (MHINASU), Tanya Churilova (MHINASU)

Upload: phungngoc

Post on 30-Jul-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

 

Habitat sui tabi l i ty models developed

M i l e s t o n e 1 5

WP 4 Milestone 15

LEAD CONTRACTOR

Cefas  

SUBMISSION DATE

30  |  April  |  2014  

Dissemination level

Restricted  to  other  programme  participants  (including  the  Commission  Services)  

AUTHORS Christian  Wilson  (OceanDTM),  Christopher  Lynam  (Cefas),  Markus  Diesing  (Cefas),  Fernando  Tempera  (JRC),  Heliana  Teixeira  (JRC),  Stelios  Katsanevakis  (JRC),  Ibon  Galparsoro  (AZTI),  Nathalie  Niquil  (CNRS),  Ana  Queiros  (PML),  Martynas  Bucas  (KUCORPI),  Gokhan  Kaboglu  (DEU),  Slava  Suslin  (MHI-­‐NASU),  Tanya  Churilova  (MHI-­‐NASU)  

 

2

 

Contents

1.   Summary  .............................................................................................................................................  1  

2.   Milestone  scope  ..................................................................................................................................  4  

3.   Approach  .............................................................................................................................................  4  

4.   Next  steps  ..........................................................................................................................................  31  

5.   Relevant  publications  ........................................................................................................................  37  

   

1

1. Summary

This   document   reports   the   progress   made   by   task   4.1.3   Improve   and   validate   GIS   maps   of  

benthic   habitat   using   physical   and   biological   data   along   with   the   next   steps   planned.   It  

accompanies  files   in  directory  DEVOTES_MS15  that  have  been  placed  on  the  partners  area  of  

the  DEVOTES  website  http://www.devotes-­‐project.eu/.  For  ease  of  interrogation  of  these  files  

and  for  subsequent  dissemination  of   information,  we  have  extended  the  DEVOTES  website  to  

include  a  repository  for  spatial  data:  http://maps.devotes.eu/  and  this  can  be  navigated  to  from  

http://www.devotes-­‐project.eu/software-­‐and-­‐tools/.      

 

A   range   of   studies   have   been   pursued   as   part   of   this   task   reflecting   the   different   levels   of  

advances  made  by  previous  projects  and  the  development  needs  in  the  differing  regional  seas:  

NE  Atlantic  

Refine  and  finalize  habitat  suitability  models  for  28  octocoral  genera  that  can  form  particularly  

diverse   habitats.   Statistical  modelling   (MaxEnt)   of   deep-­‐sea   coral   distributions   on   the  Azores  

Plateau   will   build   upon   the   progress   made   under   the   project   CoralFish  

(EC/FP7:ENV/2007/1/213144).   A   work   plan   has   been   drafted   to   potentially   compare   these  

projections   with   those   estimated   via   a   size-­‐spectrum   dynamic   bioclimatic   envelope   model  

(Fernades   et   a.   2013)   for   common   species   of   interest,  which  were   produced   for   FP7   project  

VECTORS.  This  comparison  will  enable  a  more  balanced  perspective  about  the  potential  effects  

of   changes   in   the  distribution  of   suitable  habitat  on   species  distributions,   as   the   two  models  

consider  a  different  set  of  parameters  to  predict  distribution.  

For  the  North  Sea  and  English  Channel  sediment  compositional  data  (Content  of  mud,  sand  and  

gravel)  from  the  British  Geological  Survey  (26319  samples)  and  28152  samples  newly  acquired  

from  the  Information  Integration  System  for  Marine  Substrates  (dbSEABED)  have  been  merged.  

These  data  have  been  linked  with  a  composite  bathymetric  model  such  that  useful  derivatives  

can  be  calculated  and  used  for  habitat  models.  

An  interpretation  schema  to  characterise  benthic  habitats  has  been  developed  from  an  analysis  

of   high   resolution   multi-­‐beam   data   for   the   English   Channel   and   this   analysis   has   shown  

significant  differences  from  existing  broadscale  habitat  maps.  Fish  species  abundance  data  from  

Milestone 15 Habitat suitability models developed

2

beam  trawl  surveys  have  been  linked  to  the  new  and  traditional  seafloor  maps  and  the  acoustic  

classifications  were  shown  consistently  to  be  among  the  best  predictors  for  a  suite  of  species.  

Fish  assemblage  data  have  also  been  used  to  map  spatial  change  in  diversity  over  the  area  and  

additional  benthic  data  are  planned  to  be  included  in  these  analyses.  

In  the  Bay  of  Biscay,  a  process-­‐driven  benthic  sedimentary  habitat  model  has  been  developed  

which  maps  the  major  environmental  factors  influencing  soft-­‐bottom  macrobenthic  community  

structure  and  the  life-­‐history  traits  of  species.  It  was  observed  that  the  habitat  classes  defined  

in  the  process-­‐driven  model  reflected  different  structural  and  functional  characteristics  of  the  

benthos.   Moreover,   benthic   community   structure   anomalies   due   to   human   pressures   could  

also  be  detected  within  the  model  produced.    

Mediterranean  Sea    

Habitat   suitability   models   are   being   used   to   predict   the   distribution   of   high   impact   marine  

invasive   species   (SDMs)   and   identify   areas   vulnerable   to   invasions.   The   current   and   the  

potential  cumulative  impacts  of  these  invasive  species  on  biodiversity  in  the  whole  regional  sea  

will   be   evaluated   and  mapped.     A  work   plan   has   been   drafted   to   potentially   compare   these  

projections   with   those   estimated   via   a   size-­‐spectrum   dynamic   bioclimatic   envelope   model  

(Fernades   et   a.   2013)   for   common   species   of   interest,  which  were   produced   for   FP7   project  

VECTORS   (FP7/2007-­‐2013  266445).   This   comparison  will   enable   a  more  balanced  perspective  

about   the   potential   effects   of   changes   in   the   distribution   of   suitable   habitat   on   species  

distributions,  as  the  two  models  consider  a  different  set  of  parameters  to  predict  distribution.  

 

Black  Sea  

A  regional  model  has  been  developed  by  DEVOTES  partners   (and  described   in  Deliverable  4.1  

Report   on   available   models   for   biodiversity   and   needs   for   development)   and   allows   for   the  

modelling  of  downwelling  radiance  based  on  bio-­‐optical  features.  The  outputs  of  this  research  

will  be  to  determine  the  maximum  depth  that  macrophytes  can  be  extend  to  on  the  western  

and  north-­‐western  shelf  (i.e.  including  the  WP6  case  study  area).  

Baltic  Sea  

Existing  habitat  suitability  model  of  the  red  alga  is  being  improved  by  additional  data  from  the  

eastern  Baltic  Sea  coast.  Empirical  relationship  between  the  red  alga  distribution  and  cover,  and  

3

environmental   parameters   will   be   determined   in   order   to   predict   its   maximum   depth  

distribution.   The   obtained   result   will   be   correlated   to   the   parameters   of   eutrophication  

gradient   (e.g.,   Secchi-­‐depth,   nutrients),   in   order   to   test   the   sensitivity   of   species   maximum  

depth  limit  to  the  pressure,  which  may  serve  as  indicator  for  the  water  quality  assessment.      

Table  1.  Information  on  Milestone  15  of  DEVOTES  project.  

Milestone  

number  

Milestone  name   Work  

package(s)  

involved  

Expected  

date  

Means  of  verification  

MS15   Habitat   suitability  

models  developed  

4   18   Outputs   from   spatial  

analyses   available   on   the  

website  

Milestone 15 Habitat suitability models developed

4

2. Milestone scope

The  work  detailed  in  this  milestone  report  has  been  conducted  during  the  initial  stages  of  Task  

4.1.3,   which   aims   to   build   on   the   current   benthic   habitats  maps   available   to   supporting   the  

MSFD  and  develop  this  evidence  base  using  state-­‐of-­‐the-­‐art  methods.    

 

Task  4.1.3:  Improve  and  validate  GIS  maps  of  benthic  habitat  using  physical  and  biological  data.  

Habitat   suitability   models   (such   as   Ecological-­‐Niche   Factor   Analysis   (ENFA),   openModeller,  

Maxent,  Biomapper,  Hyperniche)  will  be  used  to  model  change  in  the  habitat  and  the  prevailing  

species  diversity.  A  manuscript  relating  habitat  models  to  species  diversity  will  be  published.  

Participants:   Leader   //   OceanDTM;   Partners   //   JRC,   CEFAS,   PML,   AZTI,   KUCORPI,   DEU,   CNRS,  

MHI-­‐NASU.  

 

3. Approach

In  Deliverable   4.1  Report   on  available  models   for   biodiversity   and  needs   for   development  we  

evaluated   the   range  of  models   that  are  able   to  address  marine  biodiversity   indicators,  which  

are   considered   suitable   to  assess  biological  diversity   (D1),  non-­‐indigenous   species   (D2),   food-­‐

web   (D4),   and   seafloor   integrity   (D6),   as   described   in   the   MSFD   (COM   Dec;   2010/477/EU).  

Drawing  upon  the  expertise  within  the  WP4  team,  we  have  been  able  to  apply  a  subset  of  those  

models   described   within   Deliverable   4.1   in   Task   4.1.3.   For   example,   the   bio-­‐optical   model  

developed  for  the  Black  Sea  (MHI-­‐NASU)  and  the  use  of  maximum  entropy  modelling  (DEU  and  

JRC).  Where  possible  DEVOTES  partners  have  attempted  to  build  upon  developments  in  habitat  

modelling  made   in   previous   projects   (e.g.  MeshAtlantic,   CoralFish,   VECTORS,   EuroBasin)   and  

attempted  to  link  this  work  to  ongoing  modelling  to  support  the  MSFD.  

GIS  maps  are  available  for  layers  and  can  be  viewed  online  at  http://maps.devotes.eu/  

A  short  description  of  the  work  conducted  and  planned  by  area  and  partner  is  given  here:  

 

 

5

NE  Atlantic  (including  the  Channel  and  North  Sea):  OceanDTM,  Cefas,  PML,  JRC.  

(Cefas)  Seabed  habitats  of  the  Greater  North  Sea  

(Leads:  Christopher  Lynam  and  Markus  Diesing)  

Scope  &  main  objectives  

This  component  of  the  work  aims  to  develop  benthic  habitat  maps  for  the  Greater  North  Sea  

using   physical   data   on   bathymetry,   including   derivatives   thereof   (e.g.   slope,   curvature,  

rugosity),   and   seabed   samples   (sediment   composition)   linked   to   biological   data   on   benthic  

fauna  and  demersal  fish.  

Currently   available   products   such   as   the   EMODnet-­‐Geology   seabed   substrate   map   and   the  

EUNIS   level   3/4   broadscale   habitat   map   (EUSeaMap),   will   be   considered   and   compared   to  

newly  available  data  collated  here  and  acoustic  multi-­‐beam  data  collected  in-­‐situ  through  WP5  

activities.   As   currently   available   products   are   based   on   divisions   of   a   modified   Folk  

classifications   (e.g.   mud   and   sandy   mud,   sand   and   muddy   sand,   coarse   sediment,   mixed  

sediment)   statistical   analyses   are   potentially   overly   limited   by   this   fixed   classification.  When  

considering  a  great  range  of  species,  the  percentage  of  sediment  fractions  in  a  location  (mud  to  

sand  for  instance)  that  can  be  considered  important  for  a  particular  species  may  differ  to  that  

for   another.   Therefore,   habitat   suitability  models   can   benefit   from   spatial   predictions   of   the  

relative  proportions  of  sediment  fractions  at  sample  locations.    

Data  acquisition  

Physical  data  

Typically,   for   marine   habitat   studies,   bathymetry   is   an   important   variable   predicting   habitat  

suitability.    The  best  data  layer  in  current  existence  for  the  northeast  Atlantic  is  freely  available  

from   EMODnet   http://www.emodnet-­‐hydrography.eu/.   However,   even   this   layer   shows  

inaccuracies  when  viewed  at   fine   resolution   (see  Fig  1   top).  To  complement   this  data  we  are  

attempting   to  merge   the   EMODnet   layer  with   the  higher   resolved  UK  Defra  Digital   Elevation  

Model  (DEM,  Fig  1  middle).  The  combination  (Fig  1,  bottom)  gives  a  powerful  dataset  for  use  in  

statistical   modelling   studies   and   a   more   accurate   representation   of   the   extent   of   a   type   of  

habitat  sampled  by  point  source  biological  data  (e.g.  from  benthic  grabs  or  trawls  for  fish).  Of  

course,   bathymetry   on   its   own   does   not   give   all   the   information   of   relevance   to   biota.  

Therefore   we   are   conducting   spatial   predictions   of   sediment   composition   using   machine  

Milestone 15 Habitat suitability models developed

6

learning  algorithms  (e.g.  Random  Forest),  based  on  sediment  sample  data  (response  variable)  

and  various  physical  data   layers  such  as  bathymetry,   its  derivatives  and  hydrodynamic  model  

outputs   (predictor   variables).   For   this   purpose,   we   have   acquired   sediment   data   from   the  

University   of   Colorado,   Boulder,   (28152   samples,   Fig   2   top),   extracted   from   the   database  

dbSEABED   “Information   Integration   System   for   Marine   Substrates”  

http://instaar.colorado.edu/~jenkinsc/dbseabed/,  and  collated  these  with  data  from  the  British  

Geological  Survey   (BGS)   (26319  samples,  Fig  2  middle).  The  samples   in   the  BGS  dataset  were  

collected  between  1967  and  1994  with  a  variety  of  samplers;  however  in  approximately  80%  of  

cases   a   Shipek   grab  was   used.   The   data   contained   in   dbSEABED  were   obtained   from   a   large  

variety   of   sources   and   contain   measured   as   well   as   parsed   (i.e.   estimated   from   verbal  

descriptions)  data.  Although  a  large  dataset  of  54471  samples,  the  dataset  still  has  an  uneven  

distribution  spatially  with  most  samples  on  the  UK  continental  shelf  (less  than  200  m  depth).  

 

Response  variable  (Biological  data)  

Benthic   infauna  and  epifauna  for  many  (>3000)  taxa  recorded  at  differing  levels  (e.g.  families,  

species  where  possible)  collected  2001  –  2012  (Fig  3).  Many  of  these  taxa  are  recorded  simply  

as   present/absent;   however,   554   groups   are   represented   by   50   or  more   individuals.   Benthic  

epifauna  have  also  been  recorded  during  ICES  co-­‐ordinated  surveys  for  fish.  The  benthos  data  is  

particularly   useful   from   the   beam   trawl   surveys,   however   much   of   this   data   is   still   held   on  

national  databases.  Current  work  by  the  ICES  working  group  for  beam  trawl  surveys  (WGBEAM)  

aims   to   collate   benthos   data   and   share   it   through   the   DATRAS   online   database   data,   which  

currently   houses   the   data   for   fish   and   invertebrate   species.   Preliminary   analyses   have   been  

made  in  DEVOTES  using  data  on  40  species  of  fish  and  invertebrates,  which  have  been  obtained  

from  ICES  for  the  International  beam  trawl  surveys  (Fig  4)  and  the  International  bottom  trawl  

survey  (IBTS,  Fig  5).  

 

Environmental  covariates  

Useful  climatology  data  (maximum  of  the  density  gradient,  mixed  Layer  depth,  bottom  salinity  

and   bottom   temperature),   available   from   The   Environmental   Marine   Information   System  

(EMIS)   housed   by   the   JRC,   http://emis.jrc.ec.europa.eu/,   along  with   bottle   and   CTD   samples  

7

housed   by   ICES   http://ecosystemdata.ices.dk/   ,   have   been   collated   and   will   be   explored   in  

habitat  suitability  modelling.  

 

Modelling  Approach  and  relevant  outputs  

Habitat  suitability  models  will  be  developed  by  statistical  modelling:  spatial  generalized  additive  

models   (GAM)   extended   with   integrated   nested   Laplacian   approximation   (INLA),   and/or  

Maximum   Entropy   Modeling   (MaxEnt);   possibly   also   size-­‐spectrum   dynamic   bioclimatic  

envelope   models   (SS-­‐DBEM,   Fernandes   et   al.   2013).   The   biological   response   data   will   be  

modelled   using   the   spatial   predictions   of   the   sediment   fractions,   bathymetry   and  

environmental   covariate   data.   The   SS-­‐DBEM   further   consider   also   changes   in   productivity   as  

derived   from   coupled   hydrodynamic-­‐biogeochemical   models   (e.g.   POLCOMS_ERSEM),   and  

changes  in  target  species  population  dynamics  and  dispersal  associated  with  changes  in  habitat.    

Habitat  suitability  maps  will  then  be  predicted  from  the  model.    

The  habitat  maps  generated  for  the  North  Sea  will  be  of  further  use  in  WP4  to  develop  spatial  

ecosystem   models   (T4.1.4),   examine   habitat   type   for   selected   pilot   areas   relative   to   wider  

regional   sea   habitats   (T4.2.1),   and   in  WP6   as   a   basis   to   develop   the  Operational   biodiversity  

assessment  tool  (T6.1.2),  in  testing  and  validation  of  the  biodiversity  assessment  tool  (T6.2.2),  

and  in  the  comparison  of  the  biodiversity  assessment  across  pilot  areas  (T6.3.1).  

 Future  work  

Benthic  habitat  suitability  models  for  benthos  and  fish  will  be  developed  from  physical  and  

environmental  data  collated  already  in  DEVOTES.  However,  to  improve  the  modelling  we  will  

also  attempt  to  combine  these  data  with  additional  information  on  water  column.  Specifically,  

eco-­‐hydrodynamic  zones  based  on  stratification  regimes  (from  ERSEM  modelling)  are  being  

developed  for  the  Greater  North  Sea  (in  T4.1.4,  Develop  spatial  ecosystem  models)  and  should  

provide  an  additional  source  of  information  on  the  water  column  processes  that  can  refine  

benthic  habitat  suitability  models.  Similarly,  maps  of  phytoplankton  productivity  have  been  

generated  in  T3.2.1,  Quality  analysis  of  the  indicators,  from  remote  sensing  data  and  may  prove  

beneficial  to  the  modelling  study.  The  combination  of  data  on  water  column  and  seafloor  

processes  in  this  way  is  a  particularly  novel  and  exciting  opportunity.  We  will  attempt  to  

combine  information  from  the  benthic  habitat  suitability  models  for  the  various  benthic  fauna  

Milestone 15 Habitat suitability models developed

8

and  fish  species  in  order  to  generate  a  map  showing  the  change  in  the  diversity  of  habitats  and  

species  spatially.  

 

Figure  1.  Bathymetry  data  from  EMODnet  (top),  UK  Defra  Digital  Elevation  Model  (DEM  middle)  and  the  

two   datasets   combined   (bottom)   coloured   by   depth   band.   Arrows   indicate   inadequacies   of   the  

EMODnet  layer  relative  to  the  UK  DEM.  

9

 

 

Figure   2.   Substrate   samples   from   dbSEABED   (top),   BGS   (middle)   and   the   two   datasets   combined  

(bottom)  coloured  by  classification  for  ease  of  visualisation.  

Milestone 15 Habitat suitability models developed

10

 

 

 

Figure  3.  Sampling  locations  of  benthic  fauna  from  a  suite  of  surveys  using  grabs  2001-­‐2012.    

 

Figure  4.  Sampling  locations  of  demersal  fish  and  benthic  epifauna  using  beam  trawls  from  international  

surveys:  1983-­‐2012  during  quarter  3  and  4  (left)  along  with  mean  catch  per  unit  effort  of  all  fish  species  

(kg  per  hour,  right)  gridded  by  ICES  statistical  rectangle.  

11

 

 

Figure  5.  Sampling  locations  of  demersal  and  pelagic  fish  using  the  GOV  from  the  IBTS:  1983-­‐2012  during  

quarter  1  (left)  and  1991-­‐2012  during  quarter  3  (right).    

 

Relevant  files  on  the  website:            

http://maps.devotes.eu/layers/geonode:north_sea_benthic_samples  

http://maps.devotes.eu/layers/geonode:dbseabed_metadata  

http://maps.devotes.eu/layers/geonode:bgs_20131125_metadata  

 

(OceanDTM)  Improvement  of  seabed  substrate  maps  using  high  resolution  bathymetric  data.    

(Lead:  Christian  Wilson)  

Scope  &  main  objectives  

Existing  habitat  maps  used  for  national  and  European-­‐scale  marine  management  (such  as  the  

broadscale  EUNIS  maps)  suffer  from  serious  limitations  which,  if  not  recognised,  can  result  in  

poor  correlation  with  biological  datasets  and  thus  impair  the  effectiveness  of  monitoring  and  

management  decisions.  However,  the  need  to  have  maps  showing  the  spatial  relationship  of  

significant  environmental  gradients  and  features  is  so  fundamental  and  pressing  that  the  

distinction  between  “best  available”  and  “fit  for  purpose”  can  be  overlooked.    It  is  the  goal  of  

Milestone 15 Habitat suitability models developed

12

this  part  to  the  task  to  demonstrate  the  suitability  of  widely  available  multi-­‐beam  datasets  to  

improve  our  knowledge  of  seabed  sedimentary  environments.  It  is  useful  to  consider  the  two  

main  factors  constraining  the  suitability  of  a  habitat  map  for  use  in  environmental  monitoring  

and  management.    

Firstly  the  matter  of  accuracy,  which  is  largely  dependent  on  the  qualities  of  the  underlying  

source  data.    Secondly  the  interpretation  or  classification  schema  into  which  the  data  are  used  

to  construct.  A  basic  requirement  for  mapping  is  that  the  data  used  should  be  of  appropriate  

spatial  and  temporal  resolution.  For  example  Wiggert  et  al.  (1994)  showed  that  the  effects  of  

temporal  undersampling  on  primary  production  estimates  could  lead  to  errors  in  excess  of  85%  

when  estimating  a  total  annual  value  based  on  a  monthly  rather  than  daily  sampling  frequency.  

Of  course  not  all  environmental  variables  have  the  same  magnitude  and  rate  of  change  as  

phytoplankton  abundances,  but  basic  sampling  theory  demonstrates  that  even  a  perfectly  

regular  and  noise-­‐free  signal  of  a  known  bandwidth  requires  a  sampling  rate/resolution  of  

twice  that  of  the  highest  frequency/smallest  feature  to  be  described  accurately  (Govaere  et  al.  

1980).  The  accurate  characterisation  of  high  resolution  spatial  and  temporal  variability  is  in  

itself  a  worthwhile  goal  as  it  may  represent  the  most  significant  “niche  space”  exploited  by  

certain  species  or  populations  (Benedetti-­‐Cecchi,  2003)  (i.e.  the  rate  of  change  may  be  more  

significant  than  the  absolute  maximum  and  minimum  values  attained).  This  undersampling  

problem  manifests  itself  very  clearly  when  describing  seabed  types  which  are  frequently  patchy  

and  heterogeneous  and  therefore  requite  very  resolute  initial  datasets  to  allow  for  meaningful  

generalisations  to  be  made.  In  addition  to  sparse  data  the  quality  of  the  final  maps  will  suffer  if  

there  are  errors  or  biases  in  the  sampling  strategies.  So  for  example  a  seabed  sediment  grab  

may  under-­‐represent  the  fine  sediments  in  a  sample  as  these  may  be  washed  out  during  

recovery.  Or  there  may  not  be  enough  replicates  of  a  biological  dataset  to  provide  a  statistically  

significant  representation  of  the  species  composition  of  a  site.      

The  second  major  difficulty  for  habitat  mapping  is  that  the  source  data  (with  whatever  biases  

and  uncertainties)  are  then  coerced  into  a  classification  or  interpretation  schema.    A  recent  

paper  by  Kostylev  (2012)  highlights  a  number  of  assumptions  made  when  undertaking  this  step  

of  reducing  the  dimensionality  of  the  natural  environment  down  to  a  map.  The  next  level  of  

abstraction  then  is  to  try  and  link  these  rather  nebulous  physical  environmental  classes  to  even  

more  nebulous  biological  assemblages  or  communities  in  the  form  of  biotopes  or  biocenosis.  

The  limitations  of  our  current  understanding  and  thus  difficulties  in  developing  meaningful  

13

ways  of  representing    “habitats”  was  captured  by  Fraschetti  et  al.  (2011):  “current  

classifications  generally  lack  explicit  recognition  of  overarching  scientific  criteria  for  the  choice  

of  habitat/species  inclusion  in  the  lists”.  

Data  acquisition

As  part  of  WP5  we  have  detailed  the  collection  of  “opportunistic”  high  resolution  seabed  

acoustic  data  from  the  Cefas  Endeavour  research  vessel.  In  summary  Cefas  (using  the  Olex  

software  package)  operate  their  multi-­‐beam  system  as  an  “acoustic  ferrybox”  logging  multi-­‐

beam  data  even  when  the  vessel  is  undertaking  other  research  activities  or  transiting  between  

fixed  stations.  Using  this  strategy  it  is  possible  to  build  up  an  extensive  and  valuable  dataset  

(Figure  6)  with  almost  no  additional  costs  (there  are  no  mechanical  parts  in  the  multi-­‐beam  

transducer  and  the  life  expectancy  of  the  system  is  not  adversely  affected  by  continuous  use).    

 

Figure  6.  Compilation  of  data  collected  on  Cefas  Endeavour,  between  2007-­‐20012,  during  ecosystems  

monitoring  cruises,  primarily  focused  on  beam-­‐trawling  at  random-­‐stratified  sites.  

The  utility  of  such  data  is  becoming  more  widely  appreciated  and  a  recent  report  by  “Olsen  et  

al.  (2013)    entitled  “Achieving  Ecologically  Coherent  MPA  Networks  in  Europe:  Science  Needs  

and  Priorities”  contains  the  following  statement:    

“If  MPAs  are  to  protect  the  full  range  of  marine  biodiversity  at  multiple  levels  then  multi-­‐beam  

surveys  with  biological  surface  and  deep-­‐water  sampling  are  a  critical  first  step  in  

Milestone 15 Habitat suitability models developed

14

understanding  the  three-­‐dimensional  marine  environment.  Existing  data  (often  from  separate  

research  cruises)  should  be  collated,  on-­‐going  work  should  be  completed,  and  geographical  

gaps  filled.”  

Also,    in  recent  advice  to  OSPAR  (1.5.6.4  Special  request,  Advice  June  2013),  ICES  recognised  the  

potential  for  utilising  acoustic  data  from  the  IBTS  and  Beam  Trawl  Surveys  (BTS)  to  provide  

information  for  use  in  the  MSFD  GEnS  assesment.  

“Acoustic  surveys  probably  also  represent  our  best  option  for  collecting  the  Pelagic  Habitat  (PH)  

indicators,  and  also  the  Benthic  Habitat  (BH)  indicators  via  Acoustic  Sea  Bed  classification  

methodologies  including  multi-­‐beam  technology.”

Modelling  Approach  

In  order  to  provide  some  context  for  the  study  we  investigated  what  data  were  currently  

available  and  determined  that  the  Global  Biodiversity  Information  Facility  (GBIF)  contained  the  

most  extensive  dataset  that  would  be  suitable  for  our  purposes  (Figure  7).  

 

Figure  7.  Distribution  of  species  presence  records  in  the  GBIF  repository  (data  were  filtered  to  exclude  

records  of  less  than  4m  water  depth  to  reduce  the  bias  towards  much  more  intensively  sample  coastal  

areas  resulting  in  over  4  million  records).  

Using  these  data  it  was  then  possible  to  segment  the  area  and  determine  the  total  number  of  

records  and  number  of  unique  species  per  quadrat.  As  expected  there  was  an  increase  in  

species  richness  with  an  increase  in  sampling  effort  (Figures  7,  8).    

15

 

Figure  7.  Transformed  species  richness  plotted  against  transformed  sampling  effort  coloured  by  

difference  from  linear  regression  of  relationship.    

 

 

Figure  8.  Uncorrected  species  richness  which  totals  the  number  of  unique  species  per  analysis  polygon.  

Areas  that  had  a  lower  than  predicted  richness/effort  ratio  would  therefore  be  comparatively  

less  diverse  (in  terms  of  unique  species  richness)  and  so  comparisons  between  areas  with  

differing  levels  of  effort  could  be  made.  We  also  used  the  Global  Map  of  human  Impact  on  

Marine  Ecosystems  (Halpern  2008)  to  investigate  links  with  environmental  pressures.  It  is  then  

Milestone 15 Habitat suitability models developed

16

possible  to  cluster  the  quadrats  according  to  their  associated  biological  and  environmental  

characteristics  to  give  a  broad  overview  of  differing  bio-­‐geographic  zones  at  a  European  scale.  

The  site  specific  work  carried  out  focused  on  the  Western  English  Channel  and  the  creation  of  

an  interpretation  scheme  suited  to  a  whole  acoustically  derived  map  (i.e.  no  ground-­‐truthing  

data).  Basing  the  classes  only  on  seabed  morphology  and  backscatter  has  some  disadvantages  

in  terms  of  absolute  accuracy  in  determining  grain-­‐size  characteristics  for  example  (the  strength  

of  the  acoustic  backscatter  return  signal  does  provide  some  information  on  sediment  

properties  but  this  is  not  quantitative  so  distinctions  between  gradational  sediment  classes  

such  as  such  as  between  silty-­‐sand  and  sandy-­‐silt  are  subject  to  considerable  uncertainty).  

However  the  advantages  are  that  the  interpretation  can  incorporate  information  at  multiple  

scales  to  describe  a  broader  range  of  environments  which  include  the  presence  of  bedforms  

(indicating  differing  hydrodynamic  conditions)  or  differing  types  of  rock  outcrop  (which  can  

significantly  influence  terrain  complexity  see  Figure  9).  

 

Figure  9.  Marine  seascape  classification  schema  based  on  high-­‐resolution  multibeam  data.  

The  interpreted  classes  where  then  combined  with  other  environmental  variables  (depth,  

bottom  shear  stress,  distance  from  coast  and  landscape  metrics  based  on  automatically  

classified  regions)  and  then  modelled  against  species  abundance  composition  data  (collected  by  

Cefas  with  support  from  the  Strategic  Evidence  Partnership  Fund  (SEFP))  using  boosted  

regression  trees  analysis  (Elith  et  al.  2008).  

17

Relevant  outputs  

By  clustering  derived  attributes  from  the  GBIF  and  Marine  Impacts  (Halpern  et  al.  2008)  

datasets  we  were  able  to  create  a  bio-­‐geographic  map  (Figure  10).  There  are  of  course  some  

large  sources  of  uncertainty,  not  least  the  highly  uneven  nature  and  distribution  of  the  

biological  sample  data.  Such  analyses  may  inform  us  as  much  about  data  gaps  as  they  do  about  

the  actual  status  of  the  marine  environment.  

Figure  10.  Plot  of  cluster  groups  derived  from  combining  attributes  from  species  and  environmental  

variable  layers.  

Figure  11.  Relative  diversity  plot  showing  the  relative  abundance  of  unique  species  per  analysis  zone  

once  the  effects  of  sampling  effort  have  been  corrected  for.

Milestone 15 Habitat suitability models developed

18

Figure  12.  Analysis  polygons  grouped  according  to  the  cluster  and  coloured  according  to  corrected  

species  abundance.  

For  the  detailed  interpretation  we  used  kriging  to  extrapolate  a  probability  surface  across  the  

area  for  each  class  in  turn.  The  class  with  the  maximum  probability  was  then  assigned  to  each  

cell.    

 

Figure  13.  Extrapolation  of  interpreted  seabed  classes  using  geostatistical  weighting  create  surfaces  for  

each  layer  and  then  assign  membership  according  to  which  layer  had  the  maximum  probability  per  cell.  

Inset  map  shows  the  extracted  EUNIS  level  3  classes  for  the  same  area.

19

Further  work  

The  main  focus  of  future  work  will  be  to  automate  the  process  of  interpreting  the  multi-­‐beam  

data  using  the  detailed  interpretations  already  carried  out  as  a  training  dataset.  We  will  then  

apply  the  technique  to  a  wider  area  and  test  it  against  biotic  variables  to  determine  which  are  

the  most  important  attributes  or  classes  to  use  when  investigating  habitat  distribution.  

 

 Figure  14.  Processing  workflow  developed  to  handle  large  quantities  of  multibeam  data  and  produce  an  

ecologically  relevant  set  of  environmental  variables  for  use  in  habitat  mapping  work.  

 

Relevant  files  on  the  website:            

http://maps.devotes.eu/layers/geonode:weng_sed_krig_odtmp  http://maps.devotes.eu/layers/geonode:hex115attrributes      

 

(JRC)   Habitat   forming   Cold-­‐Water   Coral   Habitat   Suitability   and   Biodiversity   Hotspots   on   the  

Azores  Plateau  

(Lead:  Fernando  Tempera,  in  collaboration  with  IMAR/DOP-­‐UAz)  

Scope  &  main  objectives  

This   works   builds   upon   the   progress   made   under   project   CoralFish  

(EC/FP7:ENV/2007/1/213144)  regarding  the  statistical  modelling  of  deep-­‐sea  coral  distributions  

on  the  Azores  Plateau  (NE  Atlantic).  It  aims  at  refining  and  finalizing  Habitat  Suitability  Models  

for  28  habitat-­‐forming  octocoral  genera  using  the  statistical  package  MaxEnt.  

Milestone 15 Habitat suitability models developed

20

 

Data  acquisition  

Response  variable  

A  comprehensive  coral  occurrence  dataset  was  kindly  provided  by  IMAR/DOP,  University  of  the  

Azores.  The  data  were  extracted  from  the  COLETA  database  at  IMAR/DOP-­‐UAz  containing  both  

published  cold-­‐water  coral  records  and  fisheries  by-­‐catch  data.  

The   original   1350   coral   records   were   inspected   and   their   quality   assessed.   Only   998   non-­‐

colocated   records   with   a   geographical   accuracy   better   than   <3km   were   retained   for   the  

analysis.  The  occurrence  numbers  varied  between  10  and  91  depending  on  the  coral  genus.  

 

Environmental  covariates  

Occurrence   data  were   intersected  with   the   following   35   variables   to   produce   an   occurrence  

matrix.  A  mesoscale  resolution  bathymetric  grid  of  the  Azores  (cell  size:  280m;  projection:  UTM  

26N;   datum:   WGS84)   produced   by   IMAR/DOP-­‐UAz   was   used   as   the   best   available  

geomorphological  source.  Terrain  variables  (general  and  complexity)  were  extracted  from  this  

layer  in  an  ArcGIS  environment.  

General  terrain  variables  

• Depth  

• Slope  

• Eastness  (zonal  component  of  aspect)  

• Northness  (meridional  component  of  aspect)  

• General  Curvature  

• Profile  Curvature  

• Plan  Curvature  

• Residual  bathymetry  (neighbourhood  radius:  1,400m)  

• Bathymetry  Positioning  Index  or  BPI  (neighbourhood  radius:  1,400m)  

Terrain  complexity  parameters  

• Vectorial  Rugosity  Measure  (VRM)  

• Standard  Deviation  of  Slope  

• Surface  to  Area  ratio  

 

21

Near-­‐seabed  oceanographic  conditions  were  calculated  by  upscaling  from  the  280m-­‐resolution  

bathymetry  using  data  from  the  Global  Ocean  Data  Analysis  Project  (GLODAP),  the  World  

Ocean  Atlas  v.2009  (WOA  09)  and  Orr  (2005).  

 

Seabed  chemical  and  physical  conditions  

(Collaboration  with  Chris  Yesson,  project  CoralFish,  Zoological  Society  of  London)  

• Temperature  (WOA  09)  

• pH  (Orr  2005  e  GLODAP)  

• Alkalinity  (GLODAP)  

• ΩAragonite  (Orr  2005  e  GLODAP)  

• ΩCalcite  (Orr  2005  e  GLODAP)  

• Salinity  (WOA  09)  

• Phosphate  concentration  (WOA  09)  

• Silicate  concentration  (WOA  09)  

• Nitrate  concentration  (WOA  09)  

• Dissolved  Oxygen  (WOA  09)  

• Oxygen  Saturation  (WOA  09)  

• Apparent  Oxygen  Utilization  (WOA  09)  

 

Near-­‐seabed  currents  

(Collaboration  with  Manuela  Juliano  and  Anabela  Simões,  project  EASYCO,  University  of  the  

Azores)  

• Mean  current  intensity  (velocity  in  m/s)  

• Mean  current  northness  

• Mean  current  eastness  

• Maximum  current  intensity  (velocity  in  m/s)  

• Maximum  current  northness  

• Maximum  current  eastness  

• Leeward/weatherside  location  in  relation  to  average  current  direction  

• Leeward/weatherside  location  in  relation  to  maximum  current  direction  

 

Milestone 15 Habitat suitability models developed

22

After   conversion   to   the  ascii   raster   required  by  MaxEnt  using   the  ArcGIS  Raster   to  ascii   tool,  

these  variables  were  used  as  covariates  in  the  development  of  spatial  predictive  models  for  the  

different  deep-­‐sea  coral  taxa.  

Modelling  Approach  

Habitat  suitability  is  being  modelled  using  the  presence-­‐only  machine  learning  routine  MaxEnt  

(version   3.3.3k;   http://www.cs.princeton.edu/~schapire/maxent).   This   statistical   modelling  

package  estimates  the  probability  distribution  of  maximum  entropy  (i.e.  closest  to  uniform)  for  

presence-­‐only   data   based   on   environmental   constraints.   Instead   of   presences   and   true  

absences,  MaxEnt   requires  only   species  presence  data  and  grids  of   continuous  or   categorical  

environmental  variables  for  the  study  area.  MaxEnt  has  been  shown  to  surpass  all  other  models  

when  predicting  distribution  based  on  presence-­‐only  data  and   remain  effective  despite   small  

sample  sizes.  

 The  settings  used  during  the  runs  were  the  following:  

-­‐ presence  records  used  for  training:  10  to  91,  depending  on  the  coral  genus;  

-­‐ background   points   used   to   determine   the   MaxEnt   distribution   (10,000   background  

points   +   presence   points   for   each   genus;   in   order   to   create   a   similar   bias   between  

sample   data   and   background   points,   the   background   domain   is   confined   to   a   mask  

delimited  by  the  maximum  depth  of  coral  occurrence   in  the  response  variable  dataset  

among  all  genera);  

-­‐ Environmental  layers  used:  all  

-­‐ Regularization   values   (default):   linear/quadratic/product:   0.133,   categorical:   0.250,  

threshold:  1.290,  hinge:  0.500  

-­‐ Feature  types  used:  all  (linear,  quadratic,  hinge,  product,  threshold)  

-­‐ Response  curves  output:  true  

-­‐ Jackknife:  false  

-­‐ Output  format:  logistic  

-­‐ adjustsampleradius:  -­‐5  

-­‐ algorithm  terminated  after  500  iterations.  

No  constraints  were   imposed  to   the   feature   types   (which  essentially   represent  our  ecological  

response  assumptions)  due  to  the  observation  that  the  coral  gardens  to  model  were  dominated  

23

by  a  variety  of  species  that  could  induce  multimodal  responses  along  environmental  gradients  –  

an  effect  that  would  be  better  seized  if  a  high  degree  of  flexibility  was  conferred  to  the  model.  

The  logistic  output  option  was  chosen  as  it  provides  a  relative  index  of  suitability  that  is  easier  

to   interpret.   This   post-­‐transformation  of  MaxEnt’s   output   scales  up   the   raw  values   in   a   non-­‐

linear  way  to  values  between  0  and  1,  where  0  =  unsuitable  habitat  and  1  =  optimal  habitat.  If  

species  prevalence  (τ,   the  chance  of  species  being  present   in  suitable  areas)  used  for  training  

are  from  environmental  conditions  where  probability  of  presence  is  ~0.5  (i.e.,  50%  of  the  study  

area   is  occupied  by  the  species)  then  the   logistic  output  can  be   interpreted  as  an  estimate  of  

the  probability  that  the  species  is  present  conditional  on  the  environmental  conditions.  As  this  

is  generally  not  known,   the  output  can  be   interpreted  as   the  probability  of  presence  under  a  

similar  level  of  sampling  effort  as  was  required  to  obtain  the  known  occurrence  data.  

Model  performance  evaluation  

Model   performance   is   being   evaluated   using   the   AUC   (Area   Under   the   Receiver   Operating  

Characteristic  Curve)  which   is  generated  by  the  MaxEnt  model  using  pseudo-­‐random  absence  

(background)  points.  Usually  its  values  range  from  0.5  (random)  to  1.0  (perfect  discrimination)  

with   values   lower   than   0.5   indicating   that   the   model   performance   is   worse   than   a   random  

guess  (Engler  et  al  2004).  AUC’s  were  computed  for  both  training  and  test  datasets  as  there  was  

interest   in   assessing   the  model’s   ability   to   accurately   predict   the   occurrences   used   in  model  

building  (AUCTrain)  as  well  of  independent  occurrences  (AUCTest).  

A   five-­‐fold   partitioning   of   the   occurrence   dataset   was   used   for   cross-­‐validation.   Using   this  

approach,  each  fold  in  turn  (representing  20%  of  the  full  dataset)  provides  the  test  data  for  the  

model  run  whilst  the  other  4  folds  (corresponding  to  80%  of  the  full  dataset)  are  used  to  train  

the  model.  

The   importance   of   the   individual   environmental   variables   was   assessed   using   percent  

contribution   and   permutation   importance.   Percent   contribution   refers   to   the   increase   in  

regularized   gain   added   by   each   variable.   Permutation   importance   for   each   environmental  

variable   reflect   the  drop   in   training  AUC   (normalized   to  a  percentage)  produced  by   randomly  

permuting  the  values  of  each  variable  on  training  presence  and  background  data.  

   

Milestone 15 Habitat suitability models developed

24

Relevant  outputs  

Based  on  the  final  model  equation,  the  environmental  covariate  fields  will  be  used  to  produce  a  

predictive  habitat  suitability  map  for  the  region  of  interest,  displaying  the  potential  distribution  

of   each   genus.   The   predicted   coral   distribution  map  obtained   for   each   genus   is  made   into   a  

binary  layer  (representing  suitable  vs.  poorly  suitable  habitat)  using  an  Equal  training  sensitivity  

and  specificity  criterion.  A  synthesis  map  of  species  richness  will  then  be  produced  from  a  sum  

of   the   28   binary   maps   that   highlights   potential   species-­‐rich   areas   (hotspots)   for   the   Azores  

Plateau.  

Future  work  

Enhancement  of  the  background  domain  using  customized  background  domain  masks  for  each  

genus.   For   each   genus,   this   mask   will   extend   between   the   shallowest   and   deepest   coral  

occurrences.  

Relevant  files  on  the  website:  none  to  date  for  this  activity  

   

25

Mediterranean  Sea:  JRC,  DEU  

(JRC)  Mapping  and  forecasting  vulnerable  areas  to  invasions  in  the  Mediterranean  Sea  

(Leads:  Heliana  Teixeira,  Fernando  Tempera,  Stelios  Katsanevakis)  

Scope  &  main  objectives  

Identify  vulnerable  areas  to  invasions  in  the  Mediterranean  Sea,  using  habitat  suitability  models  

for  predicting  distribution  of  high  impact  marine  invasive  species  (SDMs).  

After   modelling   the   selected   species   potential   distribution   in   the   Mediterranean,   both   the  

realized  and   the  potential  distribution  maps  will  be  used   to  map  most  vulnerable  areas.  Also  

the   current   and   the  potential   cumulative   impacts  of   these   invasive   species  on  biodiversity   in  

the  whole  regional  sea  will  be  evaluated  and  mapped.  

In  addition,   the   impact  of   future  scenarios  on  the  potential  distribution  of   the  species  will  be  

modelled,   using   both   climatic   drivers   (as   forecasted   in   recent   climate   change   scenarios)   and  

anthropogenic   drivers   (to   be   built   based   on   most   relevant   pressures   identified   in   the  

Mediterranean  area  and  their  future  trends).  

The  final  goal   is  to  understand  regional  and  local  threats  to  biodiversity   in  the  Mediterranean  

area   caused   by   invasive   species,   using   their   potential   distribution   and   trends   (observed   &  

predicted)  in  their  invasive  patterns.  

Modelling  approach  

The   potential   distribution   of   high   impact   marine   invasive   species   will   be   developed   using   a  

correlative   model   (MaxEnt).   The   models   will   take   presence-­‐only   species   records   using   both  

native   range   (possibly   applying   the   Projected   Dispersal   Envelop   concept   -­‐   PDE)   and   invaded  

range,  to  better  infer  on  the  invasive  potential  of  the  species.  

The  following  climatic  variables  and  environmental  variables  are  currently  being  considered  for  

use:   temperature,   depth,   habitat   type,   substrate   nature.   pH,   primary   production,   light  

availability/transparency.  

The  potential  distributions  of  the  selected  species  will  also  be  modelled  under  future  scenarios  

of  climatic  change  and  anthropogenic  changes  in  order  to  evaluate  future  spatial  changes  in  the  

impacts.   A   work   plan   has   been   drafted   to   potentially   compare   these   projections  with   those  

estimated   via   a   size-­‐spectrum  dynamic   bioclimatic   envelope  model   (Fernades   et   a.   2013)   for  

Milestone 15 Habitat suitability models developed

26

common   species   of   interest,  which  were   produced   for   FP7   project   VECTORS   (FP7/2007-­‐2013  

266445).The   SS-­‐DBEM   further   consider   also   changes   in   productivity   as   derived   from   coupled  

hydrodynamic-­‐biogeochemical  models   (e.g.  POLCOMS_ERSEM),  and  changes   in   target   species  

population   dynamics   and   dispersal   associated  with   changes   in   habitat.     This   comparison  will  

enable  a  more  balanced  perspective  about  the  potential  effects  of  changes  in  the  distribution  

of   suitable   habitat   on   species   distributions,   as   the   two   models   consider   a   different   set   of  

parameters  to  predict  distribution.  

Data  acquisition  

Data  on  species  native  range  and  invaded  range  will  be  sourced  from  global  databases  such  as  

GBIF  (native  range)  and  EASIN  (invaded  range  in  the  Mediterranean  region).  Other  information  

on   impacts   of   each   invasive   species   and   pathways   of   invasion   are   also   being   gathered   from  

literature  and  the  EASIN  database.  

Environmental   layers  are  currently  being  gathered  from  different  sources  (e.g.  Giakoumi  et  al  

2013;  Micheli  et  al  2013,  EMIS  portal,  and  others  to  be  detailed).  

Publicly   available   IPCC   climate   change  datasets   as  well   as   JRC   in-­‐house  modelling   results  will  

likely  provide  the  geospatial  layers  representing  future  marine  climate  scenarios.  

Anthropogenic   scenarios   will   be   built   using   DEVOTES   outputs   from   other   tasks   as   well   as  

complementary  sources  to  be  detailed.  

Relevant  outputs  

Vulnerability  maps  showing  areas  with  higher  potential  for  future  invasions,  under  current  and  

future  climatic  scenarios  for  the  whole  the  Mediterranean  area.  

Cumulative  impact  maps  and  consequences  for  biodiversity,  for  all  scenarios  modelled,  will  also  

be  produced  for  the  whole  the  Mediterranean  area.  

Planning  of  activities  and  task  due  date    

To  date:  activities  for  this  tasks  have  started  with  the  compilation  of  data  and  literature  review,  

namely:  

a. species  data   -­‐   list  of   species   to  be  modelled  and   type  of  data  available   from  sources  of  data   on   species   alien   range   (acquired)   and   native   range   (compilation  will   start   in   April  2014);  

27

b. environmental  data  -­‐  parameters  selection,  GIS  layers  searched  (compilation  will  start  in  April  2014);  

c. scenarios  data  (climatic  change  scenarios)  

Future:  

d. complete  the  collation  of  the  above-­‐mentioned  data  

e. gather  anthropogenic  scenarios  information  

f. establish  single  species  impact  on  biodiversity  

g. run  species  models  

h. add  scenarios  to  modelling  

Relevant  files  on  the  website:  none  to  date  for  this  activity  

 

(DEU)   Species   distribution   dependence   on   pressure   variables:   An   assessment   using   Habitat  

Suitability  Models  (HSM)  

(Lead:  Gökhan  Kaboğlu)  

Scope  &  main  objectives  

In   literature,   HSM   applications   have   mainly   focused   on   the   estimation   of   the   relationship  

between   species   presence   data   and   environmental   parameters   characterizing   the   spatial  

properties   of   the   species   niche   (Phillips   et   al.,   2004;   Phillips   et   al.,   2006;   Elith   et   al.,   2011).  

Anthropogenic  pressures  in  the  marine  environment  are  also  studied  well  (Stelzenmüller  et  al.,  

2010;   Parravicini   et   al.,   2011),   but   are   rarely   coupled   to   species   distribution.   Besides   niche  

preferences   of   the   species   (environmental   parameters),   their   present   distribution   is   also  

affected   at   a   local   scale   by   human   activities   such   as   aquaculture,   fishing,   shipping,   coastal,  

marine   and   underwater   structures,   dumping,   aggregates,   landfill   &   dredging,   etc.   and   at   a  

global  scale  by  the  climate  change.    

The  main  objective  of  this  activity  is  to  test  whether  HSMs  are  capable  of  predicting  the  inter-­‐

relation  between  species  distribution  and  anthropogenic  pressures.  The   idea  depends  on   the  

fact   that   species   distribution  does  not   depend  only   on   the   environmental   (geomorphological  

and   physico-­‐chemical)   parameters   of   the   marine   environment,   but   also   is   limited   with   the  

human  disturbance.    

Milestone 15 Habitat suitability models developed

28

A   number   of   cases  will   be   run   in   the  models   to   determine   the   changes   in   HSM   distribution  

probabilities.  The  research  will  be  structured  to  answer  the  following  questions  to  improve  and  

validate  GIS  maps  of  benthic  habitats:  

• Are   HSMs   capable   of   coupling   anthropogenic   pressure   variables   with   environmental  

parameters  in  producing  benthic  species  distribution  patterns?    

• How   do   benthic   species   distribution   patterns   change   under   the   effect   of   human  

activities?    

• Which  pressures  (activities)  have  major  effect  in  this  change?    

Linked  to  Tasks:  T1.1.2  Create  generic/regional  sea-­‐specific  matrices  of  pressure-­‐impact  

links  and  variations  in  biodiversity  and  T1.3.1  Evaluate  the  adequacy  of  pressure-­‐impact  

links   as   means   to   indicate   status   and   changes   of   key   processes,   determination   of  

pressure-­‐impact  links.  

• Which  benthic  groups  are  more  sensitive  to  human  activities  (disturbance)?  

Linked   to   enhancing  monitoring   techniques:   T5.1.1  Applying   remote   sensing   to   assess  

marine  biodiversity   (from  species  distribution  to  habitat   types  and  their  heterogeneity)  

and   T5.2.1   Validation   of   the   metagenetic   and   metagenomic   approaches   to   assess  

structural  and  functional  biodiversity  (from  phytoplankton  to  macro-­‐invertebrates).  

Modelling  approach  

The   MaxEnt   model   will   be   used   to   assess   if   HSMs   are   capable   of   coupling   these   pressure  

parameters  with  traditionally  used  environmental  parameters.  

The  modelling  approach  will  include  following  steps:  

Determination   of   species:   Models   will   be   run   for   a   wide   number   of   benthic   species,   giving  

priority  to  key,  endemic,  endangered  and  invasive  species,  as  possible  as  existing  dataset  allows  

in  two  case  areas  (Gulf  of   Izmir  and   Ildiri,  at   the  Aegean  coast  of  Turkey).  Presence-­‐only  data  

will  be  used  for  modelling.  

Environmental   parameters  will,   at  minimum,   include   terrain   variables   (depth,   slope,   aspect),  

seabed   physical   variables   (temperature,   salinity,   density,   mean   current   velocity),   chemical  

variables   (pH,  dissolved  oxygen,  organic  carbon)  and  sediment  variables   (grain  size).  HSM  will  

29

be   run   with   these   environmental   parameters   for   the   selected   species   in   order   to   obtain  

distribution  probabilities.  

Pressure   variable:   Major   human   activities   in   the   study   areas   will   be   digitized   in   GIS.   Then,  

"relative  distance"  of  each  grid  cell  (which  will  define  the  resolution  of  mapped  environmental  

parameters)   to  each  activity  will  be  calculated.  Relative  distance  values  will  be  treated  as  the  

pressure  variable  to  MaxEnt,  in  addition  to  the  environmental  parameters  mentioned  above.  

The  difference  maps  will  be  obtained  by  comparing  the  model  outputs  of  both  cases  (with  and  

without  pressure  variable)  for  each  species  of  interest.  

Data  acquisition  

Species  presence,  terrain,  physical,  chemical  and  sediment  datasets  will  mainly  obtained  from  

several  finalized  DEU  projects,  and  will  be  supported  by  published  literature.  

Human  activities  dataset  will  be  obtained  from  the  local  authorities  and  will  be  mapped  in  the  

GIS  software.  

Relevant  outputs  

Difference   maps   of   test   results   indicating   whether   HSM   MaxEnt   is   capable   of   coupling  

environmental  parameters  with  pressure  variable.  

Majority  list  of  environmental  parameters  affecting  the  distribution  of  selected  benthic  species.  

Majority  list  of  human  activities  affecting  the  distribution  of  selected  benthic  species  (in  case  of  

success  in  output  1).  

Assessment  of  sensitiveness  to  human  pressure  of  selected  species  (dependent  on  output  1).  

Planning  of  activities    

To  date:    

a. Data  inventory  search  for  7  sites  along  the  Mediterranean  and  Aegean  coasts  of  Turkey  

b. Two  sites  (Gulf  of  Izmir  and  Ildiri)  with  best  datasets  for  HSM  application  are  selected  for  the  case  studies.  

Future:  

c. Preparation  of  GIS  basemaps  and  importing  all  datasets  to  the  GIS  and  HSM;  

d. Run  Maxent  for  only  environmental  parameters;  

e. Run  MaxEnt  with  additional  "relative  distance"  variable;  

Milestone 15 Habitat suitability models developed

30

f. Obtain  "difference  maps"  of  two  cases  for  each  selected  species;  

g. Assessment   of   environmental   parameters   and   human   activities   that   affect   species  distribution.  

Relevant  files  on  the  website:  none  to  date  for  this  activity  

 Bay  of  Biscay:  AZTI,  CNRS  

(AZTI)  Seabed  habitat  mapping  in  the  Bay  of  Biscay  

(Lead:  Ibon  Galparsoro)  

Scope  &  main  objectives  

The  approach  developed  by  AZTI  is  described  in  Galparsoro  (2013)  but  in  summary  this  method  

creates   a   process-­‐driven   benthic   sedimentary   habitat   model   which   maps   the   major  

environmental  factors  influencing  soft-­‐bottom  macrobenthic  community  structure  and  the  life-­‐

history   traits  of   species.  Among  the  16  environmental  variables  considered,  a  combination  of  

water   depth,   mean   grain   size,   a   wave-­‐induced   sediment   re-­‐suspension   index   and   annual  

bottom  maximum  temperature,  were   the  most   significant   factors  explaining   the  variability   in  

the   structure   of   benthic   communities   in   the   area.   It   was   observed   that   the   habitat   classes  

defined  in  the  process-­‐driven  model  reflected  different  structural  and  functional  characteristics  

of   the   benthos.  Moreover,   benthic   community   structure   anomalies   due   to   human   pressures  

could  also  be  detected  within  the  model  produced.  Thus,  the  final  process-­‐driven  habitat  map  

can   be   considered   as   being   highly   useful   for   seafloor   integrity   and   biodiversity   assessment,  

within   the  European  MSFD  as  well  as   for  conservation,  environmental   status  assessment  and  

managing  human  activities,  especially  within  the  marine  spatial  planning  process.  

Relevant  files  on  the  website:  http://maps.devotes.eu/layers/geonode:process_flat  

 

Black  Sea:  MHI-­‐NASU,  DEU,  KUCORPI  

(MHI-­‐NASU)  Habitat  mapping  of  macrophytes  in  the  Black  Sea  

(Lead:  Tanya  Churilova)  

Scope  &  main  objectives  

31

The   regional  model  of  downwelling   radiance  was  developed  based  on  bio-­‐optical   features  of  

the  Black  Sea  (Churilova  and  Suslin,  2008,  described  in  D4.1)  and  will  be  used  by  MHI-­‐NASU  to  

assess  the  potential  extension  of  macrophytes  on  the  north-­‐western  shelf,  using  a  regional  bio-­‐

optical  model  based  on  remote  sensing  data,  by:  

a. assessing  water  transparency;  which  will  allow  to  estimate  light  condition  near  bottom;    

b. analysing  seasonal  variability  in  the  light  intensity  near  bottom,    

c. estimating  maps  of  potential  extension  of  benthic   flora   taking   into  account  known  data  on  photo-­‐physiological  characteristics  of  macrophytes  

 

To   apply   this  model   for   assessment   of   near   bottom  photosynthetic   available   radiation   (PAR)  

data  on  the  bottom  depth  in  the  Black  Sea  shelf  are  required.  Based  on  these  information  the  

PAR   distribution   on   the   shelf   bottom   (PARbottom)   have   been   calculated   with   high   spatial  

resolution  (4  x  4  km).  The  two-­‐  weekly  composition  maps  of  PARbottom  have  been  done  (Figure  

15).   The   strong   (one-­‐two   order)   inter-­‐annual   variability   in   PARbottom  was   observed.  Minimum  

values  of  PARbottom  are  typical   for  winter-­‐spring  and  maximum  values   for   late  summer  (Figure  

15).  

 

1st  half  of  Jan   2nd  half  of  Jan   1st  half  of  Feb   2nd  half  of  Feb  

1st  half  of  Mar    2nd  half  of  Mar   1st  half  of  Apr   2nd  half  of  Apr  

1st  half  of  May   2nd  half  of  May   1st  half  of  Jun   2nd  half  of  Jun  

1st  half  of  Jul   2nd  half  of  Jul   1st  half  of  Aug   2nd  half  of  Aug  

Milestone 15 Habitat suitability models developed

32

1st  half  of  Sept   2nd  half  of  Sept   1st  half  of  Oct   2nd  half  of  Oct  

1st  half  of  Nov   2nd  half  of  Nov   1st  half  of  Dec   2nd  half  of  Dec  

 Figure  15.  Maps  of  photosynthetic  available  radiation  (PAR,  in  E  m-­‐2  day-­‐1)  near  bottom  simulated  for  2006  by  regional  model    

 

 

 

Figure   16.   Dynamics   of   chlorophyll   a   concentration   (Chl)   and   light   absorption   coefficient   of   colored  dissolved   organic  matter   in   sum  with   non-­‐algal   particles   (aCDM(490))   simulated   by   regional   Chl  model  (Suslin  et  al.,  2008)  near  Danube  delta.  

 

The   inter-­‐annual   variability   in   PARbottom   resulted   from   the   seasonal   dynamics   of   water  

transparency,  which   in  turn  was  dependent  on  phytoplankton  pigments,  suspended  non-­‐algal  

particles  (NAP)  and  coloured  dissolved  organic  matter  (CDOM)  content  that  absorb  light  energy  

within   the  water   column.   Figure   16   shows   the   dynamics   of   chlorophyll   a   concentration   (top  

panel)  and  the  light  absorption  coefficient  of  CDOM  (bottom  panel)  in  sum  with  NAP  relevant  

for  upper  layer  (averaged  for  first  optical  depth)  in  a  fixed  station  near  Danube  Delta.    

0

4

8

12

16

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

Chl, mg m-3

0

0.05

0.1

0.15

0.2

0.25

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

aCDM(490), m-1

33

 

Further  work  

Analysis   of   published   information   on   light   compensation   point   for   macrophytes   growth   will  

allow  an  assessment  of   the  minimum   light   required   for  growth.  We  will   then  aim  to   find   the  

maximum  depth  of  macrophytes  distribution  on  the  western  (Case  Study  area),  north–western  

shelf    of  the  Black  Sea.  For  this  aim  the  annual  value  of  PARbottom  will  be  calculated.  Then  isolines  

relevant  to  minimum  PAR  required  for  macrophyte  growth  will  be  defined.    As  result  we  will  be  

able  to  map  the  potential  distribution  of  macrophytes  on  the  Black  Sea  shelf.  

Analyse  the  inter-­‐annual  variability  in  phytoplankton  bloom  intensity  (using  chl  a  concentration  

as   proxy   of   phytoplankton   biomass);   dissolved   and   suspended   organic   matter   enrichment  

(using   light   absorption   as   indicator)   will   be   analysed   in   order   to   show   the   effect   of  

eutrophication-­‐related  pressures    on  decreasing  potential  area  of  macrophytes  distribution,    

 

Relevant  files  on  the  website:  none  to  date  

 (KUCORPI)  Species  distribution  dependence  on  pressure  variables:  An  assessment  using  Habitat  

Suitability  Models  (HSM)  

(Lead:  Martynas  Bučas)  

Scope  &  main  objectives  

The  prediction  of  species  distribution  can  provide  useful  information  for  the  management  and  

conservation   of   threatened   and   endangered   species   and   vulnerable   ecological   communities.  

Indeed,   the   ability   to   effectively   predict   species   habitats   and   biological   communities   has  

become  urgent   in   the   context   of   recent   rapid   habitat   loss   and   the   impacts   of   global   climate  

change  (Clark  et  al.,  2001).  Importantly,  the  results  of  HSM  can  enhance  our  understanding  of  

the  degree  of  influence  of  various  environmental  parameters  on  distributions  of  habitats  (e.g.  

Austin,   2002;   Franklin,   1995;  Guisan  and  Zimmermann,   2000).  Moreover,   new  marine   survey  

techniques  (e.g.,  multibeam  sonar;  georeferenced  underwater  video)  coupled  with  an  increase  

in   the  need   to   conserve  biodiversity  over   large  areas,   are  now  enabling  and  driving   research  

into  marine  ecological  processes  and  the  effective  mapping  of  species’  habitats  and  biological  

Milestone 15 Habitat suitability models developed

34

communities  (e.g.,  Greene  et  al.,  1999;  Roff  et  al.,  2003)  and  testing  against  human  pressures  

(e.g.,  Bergström  et  al.,  2003).    

The  main  objective  of   this   activity   is   to   improve  HSM  of   the   red  alga   (Furcellaria   lumbricalis)  

habitat  distribution  in  the  eastern  Baltic  Sea  coast  (Bučas,  2009)  and  derive  its  maximum  depth  

limit,  which  may  be  related  to  local  eutrophication  gradient  and  serve  as  indicator  for  the  water  

quality   assessment.   The   existing  HSM  model  was   based   on   data   from   the   Lithuanian   coastal  

waters,  whereas  additional  species  distribution  and  environmental  data   is  now  available  from  

Latvian  coastal  waters.  It  will  be  added  to  the  common  dataset  and  the  HSM  will  be  extended  

along   the   local   eutrophication   gradient   formed   by   outflow   of   turbid   and   nutrient   enriched  

waters  from  the  Curonian  lagoon.  The  maximum  depth  limit  will  be  derived  from  the  empirical  

relationship   between   algal   cover   and   depth,   and   correlated   to   the   parameters   of  

eutrophication   gradient,   e.g.,   Secchi   depth,   nutrients.   The   obtained   results  may   serve   to   the  

Task  3.3.3:  Develop  tools/methodologies  for  setting  reference  and  target  values  for  biodiversity  

and  food-­‐web  GES  indicators  where  possible.    

Modelling  approach  

The   nonlinear   predictive   species   distribution  modelling  methods   (e.g.   GAM,  MaxEnt)   will   be  

used  to  assess  HSM  of  the  red  alga  (Furcellaria  lumbricalis)  habitat  distribution  and  cover.  

Data  acquisition  

Species  data:  existing  data  is  from  the  Baltic  Sea  Lithuanian  coast  containing  400  descriptions  of  

bottom  vegetation  occurrence  and  cover  by  SCUBA  divers  or  using  underwater  video  systems.  

Additional   data   is   now   available   from   Latvian   coastal  waters   on   species   occurrence,   and   the  

data  of  algal  cover  most  likely  will  be  available  too.    

The  main   environmental   parameters   that   could   cause   the   species   distribution   and/or   cover,  

and  for  which  is  available  data  will  be  used  in  the  HSM.  Existing  data  from  the  both  areas  in  the  

eastern   Baltic   Sea   coast   contains   these   environmental   parameters:   Secchi   depth,   bottom  

substrate  type,  wave  exposure,  depth,  slope,  aspect,  salinity,  mean  current  velocity.  The  data  is  

obtained   from  national  monitoring  programs,  other  national   and   international   (e.g.  BALANCE  

project)   data   resources.   In   order   to   collate   the   datasets   of   environmental   parameters   from  

Lithuanian  and  Latvian  coastal  waters  it  is  necessary  to  unify  data  according  the  time  frame  and  

methods.  The  point-­‐sampled  data  will  be  interpolated  within  the  study  area  in  order  to  obtain  

GIS  layers  of  environmental  parameters,  needed  for  the  HSM.    

35

Relevant  outputs  

The   empirical   relationships   between   the   red   alga   (occurrence   and   cover)   and   environmental  

variables.  

The  red  alga  distribution  and  cover  map  in  the  eastern  Baltic  Sea  coast.  

Assessment   of   sensitiveness   to   eutrophication   pressure   (Secchi   depth,   concentration   of  

nutrients).  

Planning  of  activities    

To  date:    

d. Data  inventory  search  for  the  eastern  Baltic  Sea  coastal  waters.  

e. Creation   of   common   dataset   of   species   occurrence   in   the   eastern   Baltic   Sea   coastal  waters.  

Future:  

f. Preparation  of  GIS  basemaps  and  importing  all  datasets  to  the  GIS  and  HSM;  

g. Run  of  HSM  for  species  occurrence;  

h. Run  of  HSM  for  species  cover;  

i. Assessment   of   eutrophication   parameters   that   affect   species   maximum   depth  distribution.    

 

4. Next  steps  

Task  4.1.3  will  be  completed  with  the  contribution  from  several  project  partners  (OceanDTM,  

JRC,   CEFAS,   PML,  AZTI,   KUCORPI,  DEU,   CNRS,  MHI-­‐NASU)   in   the  next   phase.  DEVOTES   T4.1.3  

partners  will:  

Participant   Location   Future  activity  Cefas  /  OceanDTM/  PML  

North  Sea,  English  Channel  

▪ Benthic  habitat  suitability  models  for  benthos  and  fish  will  be  developed  from  physical  and  environmental  data  collated  already  in  DEVOTES  and  include  water-­‐column  and  phytoplankton  productivity  information.  SS-­‐DBEM  further  considers  changes  in  population  dynamics  parameters  and  dispersal  (from  T4.1.4  and  T3.2.1  respectively).  

▪ We  will  combine  information  from  the  benthic  habitat  suitability  models  for  the  various  benthic  fauna  and  

Milestone 15 Habitat suitability models developed

36

fish  species  to  show  change  in  the  diversity  of  habitats  and  species  spatially.  

OceanDTM  /  Cefas  

English  Channel,  North  Sea  

▪ Automate  method  for  deriving  morphometric  parameters  from  high  resolution  multi-­‐beam  datasets.  

▪ Use  existing  manually  interpreted  data  as  a  training  dataset  to  develop  classification  schema.  

▪ Use  biological  sampling  datasets  to  test  the  ability  of  acoustic  data  to  improve  upon  existing  habitat  classifications  and  maps.  

PML   English  Channel  

▪ Utilize  Western  Channel  Observatory  data  in  habitat  studies  to  assess  changes  between  driver  and  impact    relationships  across  scales  

▪ Examine  variability  and  error  in  habitat  maps  JRC  /  IMAR   Azores  

Plateau  ▪ Enhancement  of  the  background  domain  using  

customized  background  domain  masks  for  each  genus.  ▪ For  each  genus,  this  mask  will  extend  between  the  

shallowest  and  deepest  coral  occurrences.  JRC/PML  (possibly)  

Mediterra-­‐nean  (entire  area)  

▪ scenarios  data  (climatic  change  scenarios)  ▪ complete  the  collation  of  the  species  list  and  native  

range  data  ▪ gather  anthropogenic  scenarios  information  ▪ establish  single  species  impact  on  biodiversity  ▪ run  species  models  ▪ add  scenarios  to  modelling  ▪ compare  projections  between  different  models  

DEU   Gulf  of  Izmir  and  Ildiri,  at  the  Aegean  coast  of  Turkey  

▪ Preparation  of  GIS  basemaps  and  importing  all  datasets  to  the  GIS  and  HSM;  

▪ Run  MaxEnt  for  only  environmental  parameters;  ▪ Run  MaxEnt  with  additional  "relative  distance"  

variable;  ▪ Obtain  "difference  maps"  of  two  cases  for  each  

selected  species;  ▪ Assessment  of  environmental  parameters  and  human  

activities  that  affect  species  distribution.  MHI-­‐NASU   Black  Sea   ▪ Determine  the  maximum  depth  of  macrophytes  

distribution  on  the  western  (Case  Study  area)  ▪ Assess  eutrophication-­‐related  pressures  and  model  the  

potential  decrease  in  the  area  of  macrophytes  distribution  

KUCORPI   Baltic  Sea   ▪ Prepare  GIS  basemaps  and  import  all  datasets  to  the  GIS  and  HSM;  

▪ Run  HSM  for  species  occurrence;  ▪ Run  HSM  for  species  cover;  ▪ Assess  eutrophication  parameters  that  affect  species  

maximum  depth  distribution.  

37

5. Relevant publications

DEVOTES  authors  in  bold  and  DEVOTES  papers  online:  www.devotes-­‐project.eu/publications/    

Austin,   M.P.   (2002).   Spatial   prediction   of   species   distribution:   an   interface   between   ecological  theory  and  statistical  modelling.  Ecol.  Modell.  157:  101-­‐118.  

Benedetti-­‐Cecchi,   L.   (2003).  The   importance  of   the   variance  around   the  mean  effect   size   of   ecological  processes.  Ecology,  84(9),  2335-­‐2346.  

Bergström,  U.,  G.  Sundblad,  A.-­‐L.  Downie,  M.  Snickars,  C.  Boström,  and  M.  Lindegarth  (2013).  Evaluating  eutrophication   management   scenarios   in   the   Baltic   Sea   using   species   distribution   modelling.  Journal  of  Applied  Ecology  50:  680–690.  

Bucas,   M.   (2009).   Distribution   patterns   and   ecological   role   of   the   red   alga   Furcellaria   lumbricalis  (Hudson)  J.V.  Lamouroux  off  the  exposed  Baltic  Sea  coast  of  Lithuania.  Doctoral  degree  theses  of  Ph.D.  in  ecology  and  environmental  studies,  Klaipeda  University.  Klaipeda,  124  p.  

Churilova  T.,  Suslin  V.  Parametrization  of  light  absorption  by  all  in-­‐water  optically  active  components  in  the  Black  Sea:   Impact   for  underwater   irradiance  and  primary  production  modeling.  Proceeding  of   the   fifth   international   conference   on   EuroGOOS   “Coastal   to   Global   Operational  Oceanography:   Achievements   and   Challenges”   20   -­‐   22   May   2008,   Exeter,   UK.   published   by  EuroGOOS  Office,  2010.  N28.  P.  199  –  205.  

Clark,   J.S.,   Lewis,   M.,   Horvath,   L.   (2001).   Invasion   by   extremes:   population   spread   with   variation   in  dispersal  and  reproduction.  Am.  Nat.  157,  537–554.  

Elith,   J.,   Leathwick,   J.   R.,   &   Hastie,   T.   (2008).  A  working   guide   to   boosted   regression   trees.  Journal   of  Animal  Ecology,  77(4),  802-­‐813.  

Elith.  J.,  Phillips,  S.  J.,  Hastie,  T.,  Dudik,  M.,  Chee,  Y.  E.  and  Yates,  C.  J.  (2011).  A  statistical  explanation  of  MaxEnt  for  ecologists.  Diversity  and  Distributions  17,  43–57    

Fraschetti,   S.,   Guarnieri,   G.,   Bevilacqua,   S.,   Terlizzi,   A.,   Claudet,   J.,   Russo,   G.   F.,   &   Boero,   F.   (2011).  Conservation  of  Mediterranean  habitats  and  biodiversity  countdowns:  what   information  do  we  really  need?  Aquatic  Conservation:  Marine  and  Freshwater  Ecosystems.  21(3),  299-­‐306.  

Fernandes,  J.  A.,  W.  W.  Cheung,  S.  Jennings,  M.  Butenschön,  L.  Mora,  T.  L.  Frölicher,  M.  Barange,  and  A.  Grant.   2013.   Modelling   the   effects   of   climate   change   on   the   distribution   and   production   of  marine   fishes:   accounting   for   trophic   interactions   in   a   dynamic   bioclimate   envelope   model.  Global  Change  Biology  19:2596–2607.  

Franklin,  J.  (1995)  Predictive  vegetation  mapping:  geographic  modeling  of  biospatial  patterns  in  relation  to  environmental  gradients.  Progress  in  Physical  Geography,  19:  474–499.  

Galparsoro,   I.,  Á.  Borja,  V.  E.  Kostylev,   J.  G.  Rodríguez,  M.  Pascual,   I.  Muxika   (2013).  A  process-­‐driven  sedimentary   habitat   modelling   approach,   explaining   seafloor   integrity   and   biodiversity  assessment  within   the   European  Marine   Strategy   Framework  Directive.   Estuarine,   Coastal   and  Shelf  Science  131,194-­‐205  

Govaere,   J.   C.  R.,  Van  Damme,  D.,  Heip,  C.,  &  De  Coninck,   L.  A.  P.   (1980).  Benthic   communities   in   the  Southern   Bight   of   the   North   Sea   and   their   use   in   ecological   monitoring.   Helgoländer  Meeresuntersuchungen,  33(1-­‐4),  507-­‐521.  

Greene,  H.G.,  Yoklavich,  M.M.,  Starr,  R.M.,  O'Connell,  V.M.,  Wakefield,  W.W.,  Sullivan,  D.E.,  McRea  Jr,  J.E.,  Cailliet,  G.M.  (1999).  A  classification  scheme  for  deep  seafloor  habitats.  Oceanologica  Acta  22  (6),  663-­‐678.  

Milestone 15 Habitat suitability models developed

38

Guisan,  A.  and  Zimmerman,  N.E.  (2000).  Predictive  habitat  distribution  models  in  ecology.  Ecol.  Modell.  135:  147-­‐186.  

Halpern,  B.  S.,  Walbridge,  S.,  Selkoe,  K.  A.,  Kappel,  C.  V.,  Micheli,  F.,  D'Agrosa,  C.,  &  Watson,  R.  (2008).  A  global  map  of  human  impact  on  marine  ecosystems.  Science,  319(5865),  948-­‐952.  

Kostylev,  V.  E.   (2012).  Benthic  habitat  mapping   from  seabed  acoustic   surveys:  do   implicit  assumptions  hold?  Sediments,  Morphology  and  Sedimentary  Processes  on  Continental  Shelves:  Advances   in  technologies,  research  and  applications  (Special  Publication  44  of  the  IAS),  108,  405-­‐416.  

Olsen  EM,  Johnson  D,  Weaver  P,  Goñi  R,  Ribeiro  MC,  Rabaut  M,  Macpherson  E,  Pelletier  D,  Fonseca  L,  Katsanevakis   S,   Zaharia   T   (2013).   Achieving   Ecologically   Coherent   MPA   Networks   in   Europe:  Science   Needs   and   Priorities.   Marine   Board   Position   Paper   18.   Larkin,   KE   and  McDonough   N  (Eds.).  European  Marine  Board,  Ostend,Belgium.  

Roff,  J.C.,  Taylor,  M.E.,  Laughren,  J.  (2003).  Geophysical  approaches  to  the  classification,  delineation  and  monitoring   of   marine   habitats   and   their   communities.   Aquatic   Conservation:   Marine   and  Freshwater  Ecosystems  13,  77-­‐90.  

Steven   J.  Phillips,  Miroslav  Dudík,  Robert  E.   Schapire   (2004).  A  maximum  entropy  approach   to   species  distribution   modeling.   Proceedings   of   the   Twenty-­‐First   International   Conference   on   Machine  Learning,  655-­‐662  

Steven  J.  Phillips,  Robert  P.  Anderson,  Robert  E.  Schapire  (2006).  Maximum  entropy  modeling  of  species  geographic  distributions.  Ecological  Modelling  190,  231-­‐259  

Stelzenmüller  V.,  J.  Lee,  A.  South,  S.I.  Rogers  (2010).  Quantifying  cumulative  impacts  of  human  pressures  on  the  marine  environment:  a  geospatial  modelling  framework.  Marine  Ecology  Progress  Series  398,  19-­‐32  

Suslin  V.V.,  Churilovs  T.J.,  Sosik  H.M.    The  SeaWiFS  algorithm  of  chlorophyll  a  in  the  Black  Sea.  Marine  Ecological  Journal,  2008,  Vol.  VII,  No.  2,  p.  24-­‐42  (in  Russian)  

Parravicini   V.,   A.   Rovere,   P.   Vassallo,   F.  Micheli,  M.  Montefalcone,   C.  Morri,   C.   Paoli,  G.   Albertelli,  M.  Fabiano,  C.  N.  Bianchi  (2011).  Understanding  relationships  between  conflicting  human  uses  and  coastal   ecosystems   status:   A   geospatial   modeling   approach.   Ecological   Indicators   (2011),  doi:10.1016/j.ecolind.2011.07.027  

Wiggert,  J.,  Dickey,  T.,  &  Granata,  T.  (1994).  The  effect  of  temporal  undersampling  on  primary  production  estimates.  Journal  of  Geophysical  Research:  Oceans  (1978–2012),  99(C2),  3361-­‐3371.